© 2014 Brian J McGill. You are welcome to link to this tutorial but not copy or repost.
Feedback is welcome and should be sent to mail AT brianmcgill DOT org

Zonal Statistics in PostGIS — a Tutorial

Zonal statistics is a common GIS operation but surprisingly hard to perform in POSTGIS
today (2014 version 2.1). Solutions tend to involve highly complex queries, return answers for
only one polygon instead of a table with a row for each polygon, and to perform incorrectly if the
raster type is a float rather than an integer. Below are two solutions (one faster, one more
accurate).

There are two methods to summarize a raster by polygons (e.g. a gridded temperature
dataset by county). One involves converting the raster to polygons to do a polygon-polygon
comparison. The other involves converting the polygon to raster to do a raster-raster comparison.
The difference comes for pixels that cross the polygon boundary. Pixels wholly interior to the
polygon or wholly exterior to the polygon (or more precisely in this case wholly in the interior of
a different polygon) are counted the same in either method. But for pixels on the polygon
boundary (or again more precisely spanning two polygons), the raster-raster method assigns the
pixel to one polygon or the other (usually the polygon containing the center of the pixel), while
the polygon-polygon method can calculate the proportion of the pixel in each polygon and do an
area weighted approach that is more accurate. Thus the polygon-polygon methods is more
accurate but it is an order of magnitude or two slower than the raster-raster method.

Raster-raster in PostGIS.

1) Load the raster into POSTGIS (here historical minimum temperatures)
raster2pgsql -s 2037 -c¢ -1 me_hist_tmin_.tif hist_tmin |psql -U
postgres -d dss
2) Load the polygons into POSTGIS (here county boundaries for state of Maine)
shp2pgsgl -s 2037 -c -1 counties.shp counties | psql -U postgres
-d dss
3) Issue a SQL query. This uses GROUP BY on cntycode which works because
ST_Union is a GROUP BY operator (just like SUM and MAX). So here one row is
created for each polygon in the counties file by clipping the raster (here the whole
300x600 raster) by the polygon (this results in a smaller but still square raster
surrounding the polygon with pixels outside the polygon set to NODATA). These
separate rasters for each polygon in a county are then merged back into a larger raster
by ST_Union which will have values (instead of NO DATA) only in areas where the
raster is inside the county. This raster is then reduced to mean/sum/min/max/count by
the ST_SummaryStats function which reduces a raster column to 5 columns summing
across the raster (which here has already been ST_Clip’d to only have valid values
within the county).
SELECT cntycode,
(ST_SummaryStats(ST_Union(ST_Clip(rast,geom)))).* FROM
hist_tmin, counties GROUP BY cntycode;

Polygon-polygon in PostGIS

The normal step here is to convert each pixel into a square (or trapezoidal in some
projections) polygon with its associated value. Then one intersects each square polygon
(formerly pixel) with each normal polygon (e.g. county) for area of overlap. This can then be
used to give area weighted averages and sums with pixels on the boundary included proportional
to the area of overlap.

The program is the GDAL/POSTGIS stack doesn’t have a good generic solution for this
POSTGIS has ST_DumpAsPolygons function which is a wrapper around the GDAL Polygonize
API (also exposed in the gdal_polygonize.py command line utility). However this function is
inadequate for the current purpose — it merges pixels with the same value into larger polygons. In
principle this should still be acceptable but the actual implementation (in a poorly documented
“feature”) does this by converting every value to an integer. So pixels with a temperature of
13.49 and 12.51 are merged incorrectly (and the value stored is 13 which is also incorrect). The
trick is to use the POSTGIS commandline tool raster2pgsql combined with POSTGIS functions
to achieve the desired one rectangle pixel per polygon with non-integer values retained correctly.

1) Load the polygons into POSTGIS (here county boundaries for state of Maine)
shp2pgsgl -s 2037 -c -1 counties.shp counties | psql -U postgres

-d dss
2) The raster should ideally have points outside all polygons (e.g. outside the state
of Maine in my example) already clipped to be NODATA (its not required but it
speeds things up). Load the raster into POSTGIS using the -t switch in the somewhat
orthodox fashion of breaking the raster up into tiles of 1x1 pixel (normally the -t
option is used to break very large tiles up into smaller, say 64x64 pixel tiles as
separate rows in one table, which is the preferred way to store large rasters in
POSTGIS as it allows for efficient spatial indexing (POSTGIS spatial indexing only
works across rows and thus cannot “reach into” a large raster stored as a single row).
Here we just go to the extreme and store each pixel in a separate row. This is
incredibly wasteful in terms of disk storage and read/writes. It shouldn’t be used as a
permanent way to the store the raster in POSTGIS (hence | include code to deleet this
table). But is overall the path to the fastest correct polygon-polygon method that |
have found. Use:
raster2pgsgl -d -s 2037 -1 -t 1x1 me_hist_tmin.tif
mht_poly|]psqgl -U postgres -d dss >c:\temp\rast.log
3) Now we need to convert this strange storage of a raster into a parallel table
where there is one row for each pixel with the polygon stored in a “geom” column
and the value stored in a 2™ column. Although in principle this could be done as part
of a single complex WITH query, the ability to create an index on the geom column
pays for itself several times over speedwise, so | create it as a table and then create an
index. This index would also payoff even more if one forgot to index the ‘geom’
column in the original polygon file from step 1 (done by the —I command to
shp2pgsql). | also calculate the area of each pixel in case the projection is not an
equal area projection).
DROP TABLE IF EXISTS mht_poly use;
SELECT ST_ConvexHull(rast) AS pixelgeom,
ST _Area(ST_ConvexHull(rast)) AS
pixelarea, (ST_SummaryStats(rast)).sum AS pixelval INTO
mht_poly use FROM mht_poly WHERE (ST_SummaryStats(rast)).sum
IS NOT NULL;

CREATE INDEX idx_pixelgeom ON mht_poly use USING
GIST(pixelgeom); -- costs 6-8 sec but saves about 35 seconds
(10% reduction) - also a good backup incase a future user
forgets to index the polygon geometry

4) Now comes a query which creates an intermediate table that has a row for each
pixel polygon that intersects each original polygon (e.g. county) and then calculating
resulting areas and carrying along the raster pixel value. This is a “spatial join” and it
is orders of magnitude faster if the two geometry columns are spatially indexed and a
WHERE clause testing that the pixels intersect (which uses the spatial index) before
creating a row. This temporary table is passed using the WITH clause into the final
calculation which uses GROUP BY and appropriate area weighting formulas to get
summary statistics. The answer is what comes out of this query (which could be used
in SELECT INTO to create a new table with the final result).

WITH temp_table AS (SELECT
ST_Area((ST_Intersection(pixelgeom,geom)).geometry) AS
intersectarea, pixelval, pixelarea AS origarea, cntycode FROM
mht_poly use, counties WHERE ST_Intersects(pixelgeom,geom)

)

SELECT cntycode, SUM(pixelval*intersectarea/origarea) AS sums,
SUM(pixelval*intersectarea)/SUM(intersectarea) AS means,
COUNT(*) AS counts, MAX(pixelval) AS maxes, MIN(pixelval) AS
mins, SUM(intersectarea)/1000000 AS area from temp_table
group by cntycode;

5) Finally, clean up the intermediate tables

DROP TABLE IF EXISTS mht_poly use;

DROP TABLE IF EXISTS mht_poly;

In principle this method should also work for polygon-polygon zonal statistics (i.e. where the
statistics are in one shapefile, e.g. population on census blocks, and the larger aggregating
regions, e.g. counties, are in a separate shapefile) with little modification (step 2 would look like
step 1 and step 3 would be dropped).

In my test case the raster is roughly 300x600 pixels and the polygon data represents, 16 counties
broken into 6,890 polygons — lots of islands in Maine — stored as POLYGON with a code linking
multiple polygons within one county, not as MULTIPOLYGON). The polygon-polygon method
takes about five minutes on a laptop (client and server on same laptop). The raster-raster method
takes about two minutes. For my application (many pixels inside the mainland polygon, but also
for some counties many island polygons so small they don’t include the center of the pixel they
occur within) the differences for inland counties (represented as one or a few large polygons)
were very small (usually in the 3 or 4™ significant digit, i.e. 0.1 °C or 0.01 °C), but for coastal
counties with many (often hundreds) of very small off-shore islands, the means were close
(usually 3" significant digit), but the count of # of pixels included and the resulting sums were
about 20% smaller. The max and min were surprisingly close even in the coastal counties, but
this relies on the fact that my raster (temperature) was also strongly autocorrelated/spatially
smooth. More rugged, heterogenous data would see larger effects on min and max. Different
ratios between polygon size and raster size would of course give different amounts of accuracy,
but this data nicely captures the endpoints — many pixels in few large polygons means the two

methods are very close, while many small polygons (especially even smaller than the pixels)
combined with very rugose boundaries give unacceptable errors for sum but probably acceptable
results for mean.

The counties table | used (loaded from a shapefile already projected into the same projection as
the raster) (and limited to the first 5 rows):

qgid county cntycode land island |tag shape_area shape_len|geom

integer | character varying(15)| character| charac characte characti numeric numeric | geometry({MultiPolygon,2037)
1 1 Washington 29 Kl Kl n 129.22015943.0965340106000020F5070000010000(¢
2 2 Washington 29 v v n 47.2205729 36.53910¢ 0106000020F5070000010000¢
3 3 Washington 29 Kl Kl n 31.905876629.45358:0106000020F5070000010000(¢
4 4 Washington 29 v v n 71.5644210 358.507608 0106000020F5070000010000¢
5] Washington 29 Kl Kl n 21.5927367 22.3567140106000020F5070000010000¢

Here is the raster table loaded in the raster-raster method

rid rast |filename
integer| raster| text
1 1 me hist tmin.tif

And the first few rows of the raster loaded in the polygon-polygon method (1x1=pixel tiles)

rid rast filename
integer| raster text

0100000100681ime hist tmin.tif
0100000100681ime hist tmin.tif
0100000100681ime hist tmin.tif
010000010061ime hist tmin.tif
0100000100681¢me hist tmin.tif

LR R S
[R A

And the intermediate table (called mht_poly_use in the code above) from the raster-raster
method (note that the raster column has been converted to a geometry column AND a pixelval
column and that the area of the pixel has been calculated for future use (here the areas are all
equal because an equal-area projection was used).

pixelgeom pixelarea picehval

geometry double precision |double precision

0103000020F5C 992545.05988663 -18. 049999237060

0103000020F5C 992545. 05988669 -18.425113677978!

0103000020F5C 992545.05982669 ~18. 5250287356567

0103000020F5C 992545. 05988663 ~18. 637895584106:

0103000020F5C 992545.05988669 -18. 715801239013

WA WM

And here is the results for the more accurate polygon-polygon approach:

U-RE- RN R R R R SR

And

W0 s B | | e

cntycode

sSums

means

character varying(2) double precision double precision | bigint

-181605.75434-17.
-75140.623669. -14.
-202765.69930¢-17.
-14244.993785:-11.
-30633.579683(-11.
-33826.980475:-13.
-100120.510427-13.
-321233.038241-13.
-29429.355205¢-12.
-16697.154108¢-12.
-10457.123193¢-10.
-25969.407623(-13.
-86140.6558517 -15.
-57679.161548(-13.
-7904.4544133¢-11.
-147038.36008¢-15.

014230637111084
51840595961: 4812

7559848997 11740
542817757: 2341

603876818.3024

6774037421 2665

9333251401 95548

0663400241 18221
3033224082 3770

B36632127{ 1415

7265960917 3134

2486688312209

21840885991

7

2
8698660427 1785
8669542009584

the less accurate but faster raster-raster approach:

cntycode

count sum

mean

counts

stddev

maxes

mins

area

double precision | double precision double precision

-13.735569000: -19.
-13.2795104938(-18.
-15.503147125:-20.
-6.23250913614-13.
-6.1243710517¢-15.
-11.432807922:-14.
-7.5632758140% -14.
-14.521695137(-21.
-3.5442028045¢ -15.
-11.790640830%-14.
-5.6799998283: -13.
-9.15721797947-14.
-12.741768834¢ -18.
-6.90764904027 -15.
-8.956014463317 -13.
-12.040963894¢ -18.

315305709¢10594.1842550:
999738693:/4514.98994118:
7890872955 11334.4370529:
343219757(]1224.92128797!
0157117841 2620.30808488¢
9546575541 2454. 764295421
869070053.7132.11587943¢

283588404 17648.1935325!C
3608608241 2374.152294458!
5036048384 1286.03638717!
406533241:971.311651855:
9604997634 1945.53540271!
9304409027 5635.21256555!
926179885(4374.42106133¢(
204180717 660.961728779
975835800:9197.87100130!

max

character varying(2) | bigint double precision| double precision double precision | double precision double precision

11399 -202386. 48668(-17.754758020¢ 1. 158878 92866(-20.

|21

0s 2398 -29483.318971¢-12.

09 4411 -57737.308445¢-13.

2 663 | -7874.2835798-11.

13 986 | -10556.119127:-10.

27 1954 -25898.612516: -13.

17 5668 |-85994.674777(-15.

29 7180 -100035.75407¢ -13.932556277
03 17781 -321259. 695877 -18.

31 2636 -30607.330233" -11.

2 10682 181759952727 -17.

19 280 -147275.43042¢ -15.87019724470.
07 4546 |-75093.554388(-16.

01 1294 -16674.497840(-12.886010696: 0.
15 1242 -14319.503746(-11.

11 2475 |-33858.304053-13.

611278540{1.3055
015535735:1.13110788760¢-19.
. 9758358007 -12.

294962039{1.28101665429; -15.
08939207571.912949680817" -15
876747480{0.599088791583"7 -12.
T0600317141.80230723409(-13.2
254151748¢1.0027771114631 -14.
171360969{1.49321368747¢ -18.
§1.51434600765¢-148.
0675831437 1.034856593011(|-21.
2274341 -15.

28466876137 -18

518599733¢1.33156452455¢ -18.
32432214441 -14.
529351099{/1.05539605703¢ -13.
680122849{0.620437637737 -14.

TE9087295%-15.542162895;
360860824 -8.54420258045¢

. 9261798858 -7.14125394382;

9289503097|-9.0408744812¢

23349571 -5.917295455%
960499763¢-9.5193710327!
7857246391 -12.764060574!
8690700531 -8.8728685379¢(

233588404 -14.521695137¢(
015711784 -8.7241611480"
1801490781 -13.788994789:
040968894
999738693 -13.279510498¢(
4120445257 -11.750640830¢
299100875(-6.23250913461¢
9237422947 -11.4328075922:

Compare results for an island (few large polygons) county like #21 (Piscataquis — a single
polygon) vs a coastal (many small polygons county) county like #13 (Knox)

