
Ecology, 87(6), 2006, pp. 1411–1423
� 2006 by the Ecological Society of America

EMPIRICAL EVALUATION OF NEUTRAL THEORY

BRIAN J. MCGILL,1,3 BRIAN A. MAURER,1 AND MICHAEL D. WEISER
2

1Department of Fisheries and Wildlife, Natural Resources Building, Room 13, Michigan State University,
East Lansing, Michigan 48823 USA

2Department of Ecology and Evolutionary Biology, Biosciences West, University of Arizona, Tucson, Arizona 85721 USA

Abstract. We describe a general framework for testing neutral theory. We summarize
similarities and differences between ten different versions of neutral theory. Two central
predictions of neutral theory are that species abundance distributions will follow a zero-sum
multinomial distribution and that community composition will change over space due to
dispersal limitation. We review all published empirical tests of neutral theory. With the
exception of one type of test, all tests fail to support neutral theory. We identify and perform
several new tests. Specifically, we develop a set of best practices for testing the fit of the zero-
sum multinomial (ZSM) vs. a lognormal null hypothesis and apply this to a data set,
concluding that the lognormal outperforms neutral theory on robust tests. We explore whether
a priori parameterization of neutral theory is possible, and we conclude that it is not. We show
that non-curve-fitting predictions readily derived from neutral theory are easily falsifiable. In
toto, there is a current overwhelming weight of evidence against neutral theory. We suggest
some next steps for neutral theory.
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INTRODUCTION

Neutral theories of biodiversity assert that all

individuals of all species are competitively identical.

Any variation in traits between species has no impact on

their overall abundance or on their speciation rates. This

contradicts 100 years of community ecology (Elton

1927, Gause 1934, Odum 1959, MacArthur 1972,

Roughgarden 1979, Pianka 1988, Maurer 1999). Thus,

neutral theory has provided a much-needed challenge

and invigoration to community ecology. Scientists are

now going back and paying much more careful attention

and applying new levels of rigor to the study of niches

(Wisheu 1998, Peterson et al. 1999, Silvertown et al.

1999, Gregory and Gaston 2000, McKane et al. 2002,

Chase and Liebold 2003). At the same time, a large

number of empirical tests of neutral theory have been

conducted (e.g., Condit et al. 2002, Clark and McLa-

chlan 2003, McGill 2003a, Ricklefs 2003).

The main goal of this paper is to provide a review of

empirical tests of neutral theory. We start by defining a

framework that allows for careful evaluation of the tests.

We then summarize neutral model theory and predic-

tions, discussing to which organisms neutral theory

should apply, describing types and strengths of tests,

and reviewing empirical tests. We add some new tests to

fill in gaps identified in published tests. We conclude

with some suggestions of useful directions in which to

proceed with neutral theory.

WHICH NEUTRAL MODEL ARE WE TESTING?

There are at least 10 different neutral community

models proposed (see Table 1, Chave 2004, Holyoak and

Loreau 2006). A more detailed discussion of the

differences between the models can be found in

Appendix A, but some critical attributes are listed below

and the correspondence of these attributes to specific

models is given in Table 1.

Is it a metacommunity model?—The metacommunity

(Hubbell 2001, Leibold et al. 2004) or regional pool

(Ricklefs 1987) is the large spatial setting within which

local dynamics in abundance occur. A purely local

model of neutral dynamics results in fixation to a single

species (Hubbell and Foster 1986), which is clearly

unrealistic. In all neutral models developed in 2000 and

after, emigration from the metacommunity to the local

community slows fixation to a single species.

Is it a spatially explicit metacommunity?—Metacom-

munities can be modeled in one of two ways. Spatially

explicit metacommunity models create a number of local

communities (with an explicit spatial relationship

between the local communities influencing migration)

and model the metacommunity as the sum of the local

communities. Spatially implicit metacommunities model

only two groups, one local community, and one

metacommunity. In these models the metacommunity

is assumed to be so large with changes occurring so

slowly that the metacommunity is completely indepen-

dent of and unchanging relative to the local community.

This is sometimes called the fast-slow assumption (fast
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local dynamics, slow metacommunity dynamics). The

fast-slow assumption is convenient for modeling, but it

is biologically unrealistic to assume that the metacom-

munity is so big as to be unchanging but small enough

that all individuals in the metacommunity have equal

probability of migrating into the local community.

Is there a constant local population (zero-sum)?—

Some models have the same number of individuals in

the local community at every time step. This is known as

the zero-sum assumption. Hubbell (2001) makes the

zero-sum assumption a central assumption in the neutral

model. However, Caswell (1976) showed that zero-sum

and variable size local community models produce very

similar results.

Is the metapopulation finite?—All spatially explicit and

some spatially implicit metacommunity models assign a

particular population size to the metacommunity, while

some implicit models allow the metacommunity size to

vary, possibly approaching infinity. A varying meta-

community effectively breaks the zero-sum assumption

for the metacommunity.

Do species abundances affect each other?—It is easier

to model the dynamics of just one species at a time using

a mean field model (McKane et al. 2000), but in fact the

abundances of different species are not independent of

each other (Etienne and Olff 2004), especially if a zero-

sum assumption is made. It is unclear how big an effect

the non-independence of species has in the real world,

although it clearly becomes bigger as the number of

species and individuals becomes smaller.

Is the model analytical or Monte Carlo?—Two general

modeling techniques exist, analytical solutions that

produce formulas, and Monte Carlo simulations on a

computer that use random numbers. Both of these

techniques have been used to analyze neutral models,

although to date only Monte Carlo models have been

used for spatially explicit metacommunities.

WHAT PREDICTIONS OF NEUTRAL MODELS CAN WE TEST?

Considering different neutral models leads to various

predictions, some common to all models and others that

are specific to particular models. These predictions can

be grouped into three categories.

Species abundance distribution (SAD).—All of the

neutral models predict the shape of the species

abundance distribution, which is a histogram of the

number of individuals of various species. Empirical data

have suggested for decades that in almost all commu-

nities the SAD is hyperbolic (hollow-curved) and modal

on a log-abundance scale (Motomura 1932, Raunkiaer

1934, Preston 1948). Neutral theory predicts a proba-

bility distribution known as the Ewens distribution in

molecular neutral theory (Johnson et al. 1997), and with

some changes due to the addition of migration and a

metacommunity, the zero-sum multinomial distribution

(ZSM) in neutral ecology (Hubbell 2001). Although the

various neutral models frequently derive slightly differ-

ent forms of the ZSM depending on their assumptions, it

should be emphasized that biologically these distinctions

are small. We use the abbreviations anZSM and mcZSM

to describe analytically calculated vs. Monte Carlo

versions of the ZSM.

Dispersal limitation.—Most neutral models predict

that species composition changes across space because

species have limited dispersal distances, which becomes

more acute when the species is rare. This is in contrast to

the traditional assumption that changes in community

structure are due to adaptations of different species to

TABLE 1. A summary of 10 versions of the neutral model.

Reference

Has
metacommunity

model?

Spatially
explicit

metacommunity?

Constant local
population
(zero-sum)?

Finite
metapopulation?

Species
abundances affect
other abundances?

Caswell (1976) no� NA yes/no� NA no
Hubbell (1979), Hubbell and Foster (1986) no� NA yes NA yes
Hubbell (2001) yes no yes yes yes
Bell (2000) yes no yes§ yes yes
Bell (2001, 2003) yes yes yes§ yes yes
Volkov et al. (2003) yes no yes no no
McKane et al. (2000), Vallade and
Houchmandzadeh (2003), McKane
et al. (2004)

yes no yes yes} no

Etienne and Olff (2004) yes no yes yes yes

He (2005) yes no yes no no
Etienne (2005) yes no yes yes yes

Notes: The column definitions are described in more detail in Which neutral model are we testing? Abbreviations are: NA, not
applicable; SAD, species abundance distribution; SAR, species–area relationship. Several different implementations of spatially
explicit models have been omitted from this table but are compared in Appendix A.

� Caswell explicitly modeled and Hubbell discussed qualitatively the role of migration from outside the local community, but
there is no quantitative model of a metacommunity or regional pool.

� Caswell analyzed models both with fixed and with varying population sizes, but he cited theorems that prove the results he
studied are independent of this fact.

§ Bell’s models have only an upper limit on population size (carrying capacity), but populations can be below this level.
} An infinite metapopulation was also presented, which was faster to solve analytically.
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local conditions (Whittaker 1975). The exact form of

this prediction varies, including predictions about

species–area relationships (SARs), the decay of similar-

ity with distance, beta diversity, and so on. But they all

trace to the same underlying process and we collectively

label these predictions ‘‘dispersal limitation.’’ There are

also clearly non-neutral invocations of dispersal limi-

tation (e.g., metapopulation dynamics). It is worth

noting that predictions of SARs may truly involve

spatial structure or may just predict diversity as a

function of number of individuals sampled indepen-

dently of spatial structure. This second prediction is

more properly called a collectors curve and is really a

prediction about SADs and their sampling (Ugland et

al. 2003), not dispersal limitation.

Miscellaneous.—Neutral theory is such a powerful,

self-consistent, and elegant theory that a great many

predictions can be derived. Thus, there are a large

number of predictions made by only one or two of the

models (although these predictions presumably could be

made by other models). These are summarized in Table

1 and discussed further in Appendix A.

Thus, despite the diversity of models and assump-

tions, neutral theory appears to have converged on two

main predictions and a number of auxiliary predic-

tions.

HOW GENERAL ARE NEUTRAL MODELS?

Hubbell (2001) claimed that neutral theory provides a

‘‘unified theory of biodiversity and biogeography.’’

However, it is unlikely that a single theory in ecology

applies at all spatial, temporal, and taxonomic scales.

Tests at inappropriate scales or scopes are unreasonable

tests. Moreover, the degree of universality is central to

judging the importance of neutral theory.

There are differing viewpoints on the scales across

which neutral theory applies. Hubbell (2001) and Bell

(2003) presented empirical data taken from spatial scales

ranging from 0.25 m2 to the entire British Isles or a

substantial chunk of the Pacific Ocean and taxonomic

groups ranging from copepods to herbs to trees to bats

to bees, and they suggest that the neutral model is

explanatory for these data. Others suggested limits to

the applicability of neutral theory. Chave (2004)

suggested, ‘‘neutral theory is explicitly concerned with

communities of resident organisms (like plants, corals,

or non-migratory animals).’’ Hubbell (2001:6) defined

neutrality as applying to a ‘‘trophically defined com-

munity’’ (2001:54, 312), but later suggested that neutral

theory can apply across multiple trophic guilds

(2001:312). The main limit Hubbell (2001:54, 312)

placed is that neutral theory applies only when the

assumption of zero-sum dynamics (constant population

size) is met. He gave three examples (2001:54) of when

violation of the zero-sum dynamic assumption can be

expected: variation in resource supply across space,

severe disturbance regimes, or ‘‘attempting to aggregate

taxa that are trophically too dissimilar.’’ Hubbell

(2001:55) explicitly stated that zero-sum dynamics does

not require a constant carrying capacity, allowing

temporal heterogeneity.

There are several problems with this seemingly precise

statement. First, Bell (2000, 2001, 2003) allows popula-

tions to fluctuate below carrying capacity and yet

produces similar results. Caswell (1976) demonstrates

that the neutral results for constant population vs.

infinitely growing populations are very similar. In a

paper with Volkov and colleagues, Hubbell (Volkov et

al. 2003) described a neutral model with metacommun-

ities that grow without limit but converged to the same

SAD as his earlier finite metapopulation (Hubbell 2001).

Finally, Alonso and McKane (2004) showed that all of

the anZSM models place no requirement of spatial

proximity of a local community—a local community of

size J is mathematically equivalent to any random,

independent sample of size J from the metacommunity

(albeit the migration parameter may change). Thus zero-

sum dynamics may not be as important as initially

thought. This leaves no model assumptions that point to

specific organisms. Either the neutral theory should

TABLE 1. Extended.

Analytical or
Monte Carlo? Predicts SAD? Predicts SAR? Other predictions

analytical yes collector Shannon-Weaver diversity
Monte Carlo yes no time to extinction
Monte Carlo yes collector and SAR phylogeny
Monte Carlo yes collector many
Monte Carlo yes collector and SAR many
analytical yes no left skew increases as migration decreases
analytical yes no dynamics of SAD

Markov Chain Monte Carlo
on analytical formula

yes no none

analytical yes no none
analytical yes no none
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apply generally to all organisms, or we will have to

determine empirically which organisms behave neutrally.

Chave (2004) has attempted to empirically measure

which organisms exhibit equivalent per-capita fitness to

answer this question. But caution is needed. Niche-based

scenarios can generate per-capita fitness equivalence as

well. Imagine one species per niche in a set of non-

overlapping niches, with each species at the carrying

capacity for that niche. In this scenario, each species has

equivalent fitness but drift has played no role in

determining abundances.

Beyond the question of what taxa might exhibit

neutrality, there is the practical question of what is a

reasonable size for a local community (Hubbell

2001:313)? A more useful phrasing of this question is

‘‘over what scales is the variation among species in

adaptation to heterogeneous environmental conditions

irrelevant to population dynamics?’’ If adaptation to

heterogeneous environmental conditions matters, then

neutrality is broken; fitness at a given site is not equal

among species, and abundance across sites is driven by

the frequency of underlying environmental conditions,

not drift. We suggest that the importance of adaptation

to environmental variation has been proven true at the

very smallest scales (sites for single organisms) or at the

global scales (tundra vs. tropics). It is possible, but

unproven, that neutrality to heterogeneity occurs in

intermediate scales. Another approach based on a well-

known result out of population genetics (Roughgarden

1979), is that selection dominates when 4Ns � 1 and

drift dominates when 4Ns � 1 (where N is population

size or J in our notation, and s is strength of selection or

variation in adaptation to environmental heterogeneity).

Thus the spatial scales at which neutrality dominates

may depend on population size, N. This can be

surprisingly restrictive—if one species is just 1% better

adapted to a particular site than another species, then

neutrality applies only if N � 25 individuals (see also

Fuentes 2004).

In summary, we do not believe, contrary to previous

claims, that there are good modeling grounds for

predicting which taxonomic groups will be neutral.

Further, neutrality should apply mostly to spatial scales

where the effects of environmental heterogeneity are not

important (if such scales exist) and where N is small

enough for 4Ns � 1.

HOW DO WE TEST LARGE-SCALE THEORIES

SUCH AS NEUTRAL MODELS?

The method of testing a theory in ecology is well

developed for small spatial and temporal scales: use

manipulative experiments with the obvious null hypoth-

esis that the manipulation has no effect. Appropriate

methods of testing large-scale theories where such

experiments are impossible are less clear (Diamond

1986, Brown and Maurer 1989). For example, Marquet

et al. (2003) identified more than 30 different mecha-

nistic explanations for SADs. All provide an adequate fit

to empirical data, and most have not been decisively

rejected. In particular, a number of theories based on

niche partitioning (Lewontin et al. 1978, Sugihara 1980,

Ginzburg et al. 1988, Tokeshi 1993, Chave et al. 2002,

Wilson et al. 2003) and neutral theory (Hubbell 2001)

both produce SADs that fit empirical data fairly well.

McGill (2003b) suggested that there are various levels

of rigor of testing macroecological theories. These levels

dealt exclusively with the scenarios of no null hypothesis

or a statistical null hypothesis. Here we extend this

framework to include modes of scientific inference based

on contrasting multiple plausible hypotheses (Platt 1964,

Hilborn and Mangel 1997). It has been argued that

statistical null hypotheses are ‘‘trivial’’ and necessarily

false and therefore provide a weak mode of inference

(Quinn and Dunham 1983, Yoccoz 1991, Anderson et

al. 2000). Stronger modes of inference involve multiple

potentially realistic alternate hypotheses (Platt 1964,

Hilborn and Mangel 1997, Burnham and Anderson

1998). Thus we propose four levels of increasing strength

of inference:

Level A) Single theory test.—This level tests whether

empirical data are consistent with or contradictory to a

theory. It contains two sublevels.

A1) Correct shape approach.— The model displays the

same general shape or relation as empirical data (e.g.,

the hollow curve of species abundance distributions).

A2) Curve-fitting approach.—The model fits the

empirical data well when the parameters are chosen

via curve fitting.

Level B) Null hypothesis test.—This level tests whether

the theory fits empirical data better than a null

hypothesis (H0) representing a simple scenario.

B1) Hypotheticodeductive approach.—The model fits

the empirical data significantly better than H0 after

penalization for number of parameters.

B2) A priori parameters approach.—The model fits the

empirical data significantly better than H0 after

penalization for number of parameters and when the

model parameters are chosen independently of the

empirical data.

Level C) Multiple, complex predictions approach.—A

single model is tested using multiple a priori predictions.

These predictions are more complex than the data-fitting

predictions tested in levels A and B. Two examples of

complex predictions are predictions of correlations and

predictions about dynamic processes. Each of the

complex predictions is then tested at least at level B

(i.e., against an appropriate H0).

Level D) Model comparison test.—Realistic alternate

models (as opposed to null hypotheses) are contrasted

against each other. Platt (1964) suggested this leads to

strong inference and rapid progress in science. Rejecting

a theory relative to a null hypothesis leads to little
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advancement in scientific knowledge (H0 is not then

accepted). By selecting among alternative theories, we

are necessarily progressing, even if further refinement is

needed (Platt 1964). In the context of neutral theory,

alternative models come from niche or adaptive theory.

D1) Best theory approach.—The alternative models

are ranked according to their match to empirical

reality according to some score (such as r2), and the

best model is selected.

D2) Last standing approach.—Rigorous attempts are

made to falsify all models in a Popperian fashion until

only one model remains unfalsified, which is then

accepted as the best model. This is the approach

advocated by Platt (1964). It closely matches the

preferred modality for NSF proposals as well.

D3) Model weighting approach.—This level not only

involves multiple realistic theories, but assigns weights

to them according to their explanatory or predictive

power. The classical analysis of variance and parti-

tioning of sums of squares is a linear example of such

a technique. Akaike weights achieve a similar but not

identical result (Burnham and Anderson 1998).

D4) Conditional weights approach.—This approach

identifies how the model weights of D3 depend on the

scale or context. A theory may have greater explan-

atory power at large spatial scales or in marine

environments while another may be better for small

scales or terrestrial environments. This level of model

comparison answers the question, ‘‘under what

conditions is one model better than another in

explaining the data?’’

Note that within levels A–C, the levels of tests are

sequentially hierarchical; a model that does not show the

correct shape (i.e., is rejected at A1) would not be

supported in more rigorous tests (i.e., A2–C). The

strongest support for a theory is a test at level C, but the

strongest rejection of a theory is at level A1. Support for

a theory at level D is not directly comparable with

support for a theory at levels A–C. In our opinion, the

ultimate goal of science is to develop and test theories at

level D4. However, it is appropriate for a research

program to start at the lower levels and work upwards.

Nearly all of the evidence presented in early tests of

neutral theory (Caswell 1976, Hubbell 1979, 2001, Bell

2000, 2001, 2003) was presented at level A1 or A2, and

by our current proposal must be considered weak. We

give an illustrative example of exactly why we consider

level A tests to be weak evidence using the ZSM SAD

prediction. Specifically, level A tests (Bell 2001, Hubbell

2001) which have shown that the ZSM fits empirical

data well are a simple consequence of the power of curve

fitting. We demonstrate this in Fig. 1. The ZSM is

unusually flexible in its ability to fit SADs (and produce

successful level A tests) because each parameter is

independent. J sets the scale, h controls the shape to

the right of the mode and m controls the shape to the left

of the mode. Thus for any given empirical SAD, the

odds that h and m can be chosen to fit the data well are

very high. Clearly stronger tests are needed.

EMPIRICAL TESTS OF NEUTRAL THEORY

Given the large number of published but as yet

unsynthesized tests of neutral theory and the testing

framework above, it is opportune to assess the balance

of evidence. Because the tests cover many different

predictions, a true meta-analysis is not possible. We

limit ourselves to simply counting tests that support or

contradict neutral theory, but we do this in the context

of our testing hierarchy. This has two implications.

First, some tests are stronger and more important than

others (recall that support at high levels and rejections at

low levels are strongest). Second, level D of the

hierarchy makes it clear that we need to move towards

tests that simultaneously evaluate multiple theories

(such as neutral and niche). To date, almost all tests of

neutral theory have been below level D and involve only

a single hypothesis from neutral theory. We assess the

consequences of this limitation in the discussion.

We list in Table 2 all tests known to us that (1) apply

to the versions of neutral theory that include a

metacommunity (after year 2000); (2) are at least in

press or published as a dissertation and submitted for

review to a journal; and (3) are level B tests or above (or

rejections at level A). For sake of historical complete-

ness, we also include a few tests that violate conditions 1

and 3, but do not count them in the summary statistics.

A one-paragraph summary of each test listed in Table 2

is given in Appendix B. The outcomes are summarized

in Table 3. A perusal of Table 2 and Table 3 suggests

several patterns in the tests. Only the ZSM SAD

prediction had any empirical support—the other pre-

dictions were always rejected. The ZSM SAD only had

support in level B1 tests and there the support is mixed.

This highlights three holes in the tests: (1) level B1 tests

of the ZSM SAD prediction were very inconsistent, even

though they often used the same data; (2) higher (level

B2–C) tests of the ZSM SAD prediction were absent;

and (3) level D tests were underrepresented. We address

the first two holes by presenting new results in the next

three sections.

LEVEL B1 TESTS OF THE ZSM SAD:

NEUTRAL VS. NULL LOGNORMAL

Given the power of curve fitting to provide successful

level A tests, one important and seemingly simple test is

whether the ZSM fits empirical SADs at level B1 (i.e.,

better than a null hypothesis). Unfortunately, this

seemingly simple test has in fact proved complicated.

Seven different papers (McGill 2003a, Volkov et al. 2003,

Alonso and McKane 2004, Etienne and Olff 2004, 2005,

Olszewski and Erwin 2004, He 2005) have used seven

different methods and obtained conflicting results. Even

within one paper with consistent methods (Volkov et al.

2003, Etienne and Olff 2005, He 2005), the results
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differed, for example finding the lognormal superior for

Pasoh but the ZSM superior for BCI (Volkov et al. 2003).

These contradictory results might be because some

data sets are non-neutral and some are neutral, but we

suggest they are due to methodological issues. In this

section we summarize similarities and differences in

methods used, propose a set of best practices, and

analyze the BCI tropical tree data set with these best

practices. We summarize the issues here in the main text

and provide additional technical details in Appendix C.

All authors used the lognormal distribution as a null

hypothesis, but there are important differences in

methods on five other points.

1) Hubbell (2001) and McGill (2003a) used the Monte
Carlo ZSM (mcZSM), while the remaining authors used

the anZSM.
2) Different authors used different measures of

goodness of fit to empirical data. McGill (2003b)
pointed out that there is no a priori best measure of
fit. All commonly used measures of goodness of fit

contain biases by emphasizing goodness of fit in some
regions of the curve over others—choosing a measure
biased in the region where a given theory fits especially

well will change the results. In particular, the use of
binned data on a log2 scale (Volkov et al. 2003) pays
undue attention to fits of one to eight individuals at the

cost of the rest of the distribution. At the same time, the

TABLE 2. Tests of the neutral model known to the authors.

Reference Organism
Sedentary

trophic guild? Prediction tested

Zhang and Lin (1997),
Yu et al. (1998), Fuentes (2004)

NA (model) NA genericness of neutrality

Terborgh et al. (1996),
Pitman et al. (2001)

tropical trees yes dispersal limitation (nonexistence
of everywhere abundant species)

Pandolfi (1996) coral reef invertebrates yes reassembly events should be random
sample of species pool

Fuller et al. (2004) invertebrate pool detritivores no ZSM fits empirical SAD
Harpole and Tilman (2005) temperate grassland plants yes ZSM fits empirical SAD
Condit et al. (2002) tropical trees yes dispersal limitation (shape of decay

of similarity with distance curve)
McGill (2003a) tropical trees yes ZSM fits empirical SAD

birds no ZSM fits empirical SAD
Volkov et al. (2003) tropical trees yes ZSM fits empirical SAD
He (2005) tropical trees, insects, birds, fish yes/no ZSM fits empirical SAD
Etienne and Olff (2005) tropical trees, fish yes/no ZSM fits empirical SAD
Ricklefs (2003) tropical trees yes speciation rates
Adler (2004) temperate grassland plants yes SAR and STR
Wootton (2005) marine intertidal invertebrates yes neutral model parameters from full

community should predict abundances
in community with dominant
species removed

Clark and McLachlan (2003) temperate trees yes? dispersal limitation (increasing variation
with space and time)

Fuller et al. (2004) temperate trees no dynamics of SAD
McGill et al. (2005) small mammals no constancy of community structure

in space and time
Fargione et al. (2003) temperate grassland plants yes invasion by seeding should be equally

successful (neutral) in all guilds despite
preexisting guild structure

Harpole and Tilman (2005) temperate grassland plants yes neutral abundances uncorrelated
with plant traits and with site traits

Gilbert and Lechowicz (2004) temperate trees and understory yes dispersal limitation (distance explains
community structure better
than environment)

This paper tropical trees yes ZSM fits empirical SAD
This paper tropical trees yes parameters meaningful
This paper various no correlations in community structure

Notes: The first three rows are tests of pre-2000 neutral theories without metacommunities. The column ‘‘Sedentary trophic
guild’’ is explained in How general are neutral models? The column ‘‘Test level’’ is addressed in How do we test large-scale theories
such as neutral models? Abbreviations are: NA, not applicable; ZSM, zero-sum multinomial; SAD, species abundance distribution;
STR, species–time relationship.

� Fit for 100 m to 50 km but did not fit for longer and shorter distances. The curve was fit to the data and therefore was likely to
show a good fit for some subset of the data, which the authors conclude is best interpreted as contradicting neutral theory.

� ZSM fit worse than lognormal for Pasoh data; ZSM fit better than lognormal for BCI.
§ He (2005) showed that his version of the ZSM fit best for birds and fish, the Volkov version fit best on BCI, and the lognormal

was best for aphids, but that both his neutral theory and the lognormal fit well and should not be differentiated on these results.
} There was no clear winner for ZSM vs. lognormal for BCI tropical trees, but tropical fish clearly fit ZSM better than the

lognormal.
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ZSM does exceptionally well in the area of one to eight

individuals due to the flexibility of the m parameter
focused precisely on this region (Fig. 1).

3) Parameter estimation is usually based on varying

parameters to maximize some goodness of fit measure to
the data. There is a certain circularity if this same

measure of goodness of fit is then used to evaluate how

well the curve using these parameters fits the data. One
may be testing the flexibility of the distribution more

than the quality of the underlying model (Fig. 1).

4) Several different versions of the lognormal have
been used.

5) The authors used different burdens of proof

ranging from slightly better to statistically significantly
better.

Among all of these differences, we pick out the most

desirable approaches, statistically speaking, and suggest
current best practices:

1) use the analytical ZSM over the Monte Carlo ZSM

due to the large number of simulations required to attain

accuracy in the tails of the mcZSM;
2) explore goodness of fit on a variety of measures on

a variety of different scales of abundance to lead to a

more robust test of overall fit;

3) use parameter estimation methods that do not rely

on maximizing fit according to the measures of fit used

for testing to avoid valuing the flexibility of the function

being fit;

4) use data collected at a single point in time without

time averaging (or at least a time span small relative to

the generation time);

5) assign confidence intervals to parameter estimates

and/or P values to null hypothesis tests, and;

6) use the continuous, untruncated lognormal rather

than Preston’s approximation or the Poisson lognormal.

We note that although the method of Etienne and Olff

(2004, 2005) does not conform to all of these require-

ments, it also seems like a very robust method that

should be explored further.

To date, no test has been performed following all of

these best practices. The BCI tropical tree data set (Pyke

et al. 2001, Condit et al. 2002) was the subject of six

tests, of which two (McGill 2003a, Etienne and Olff

2004) favored the lognormal, two (Volkov et al. 2003,

He 2005) favored the ZSM (but the lognormal for data

sets other than BCI), one found a tie (Etienne and Olff

2005), and one did not make an explicit comparison

(Alonso and McKane 2004), but all of these violated at

least one best practice. Here we performed a test on the

BCI data using all five best practices. We implemented

MATLAB computer code to replicate the Volkov et al.

(2003) version of the analytical ZSM and their

estimation methods (the algorithm and issues are

described more fully in Appendix D and the source

code is available in the Supplement). However, to meet

best practice 3 we estimated parameters by maximizing

generalized likelihood (Hubbell 2001:292) rather than

the v2 score on Preston bins (Volkov et al. 2003); this

had only minor effects on the outcomes. We derived

very similar parameters to Volkov et al. (m¼ 0.09335 vs.

Volkov’s m ¼ 0.1 and h ¼ 47.879 vs. 47.226). This

method actually provided a slightly better fit by the

Volkov v2–criteria than Volkov’s original estimates

(3.11 vs. 3.20) and is thus more favorable to the ZSM.

We used eight different measures of goodness of fit

originally reported by McGill (2003a), and now that an

analytical formula for the ZSM is available, we added

log-likelihood (Hilborn and Mangel 1997, Alonso and

McKane 2004). We found that using a variety of scales

(arithmetic, logarithmic, data-driven or likelihood, and

mixed or 10 þ 1 bin) and hence arguably robust, the

analytical ZSM performed worse than the lognormal on

eight out of nine measures (Table 4). The measure of

goodness of fit that Volkov et al. reported (v2 on Preston

bins) was the only measure where the anZSM does

better than the lognormal. Following best practice 4, we

tested whether the anZSM performed statistically

significantly better than the lognormal for each measure

(Table 4). Necessarily P . 0.5 for eight measures, and P

¼ 0.18 (i.e., not significantly better) for the one Preston

v2 measure. The overall conclusion is that neither

distribution is significantly better than the other

TABLE 2. Extended.

Test
level Spatial scale Temporal scale

Favors
neutral?

NA NA hundreds of
generations

no

A1 thousands
of km

point in time no

C tens of km 100 000 yr no

A2 tens of cm point in time no
A2 several m2 point in time no
B1 thousands

of km
point in time yes/no�

B1 50 ha point in time no
B1 40 km point in time no
B1 50 ha point in time yes/no�
B1 hectares point in time yes/no§
B1 varies point in time yes/no}
B2 250 000 km2 evolutionary time no
B2 1 m2 to 0.1 ha dozens of years no
B2 0.36 m2 9 yr no

C hundreds
of km

10 000 yr no

C tens of cm 9 yr no
C thousands

of km
hundreds of

thousands of years
no

C 9 m2 4 yr no

C typically
several m2

point in time no

D3 10 km2 point in time no

B1 50 ha point in time no
B2 50 ha point in time no
C various various no
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although the null lognormal tended to be a better fit.

This means that the ZSM SAD prediction failed a

robust, best-practice level B1 test. In general level B1

tests have done little to improve our understanding of

mechanisms of the SAD (Marquet et al. 2003, McGill

2003a, Etienne and Olff 2004), and so we turn to higher

level tests in the hope that they provide clearer results.

LEVEL B2 TEST OF THE ZSM SAD:

A PRIORI PARAMETERS?

A stronger test of a hypothesis is to compare empirical

data to model predictions using realistic, a priori

parameter estimates (i.e., without using model parame-

ters to maximize fit). The most desirable way to develop a

priori estimates is to have a mechanistic model that gives

specific meaning to the parameters and allows for

independent, direct measures of the appropriate param-

eters. The ability to do this is claimed as a strength of

neutral theory (Hubbell 2001, Bell 2003, Alonso and

McKane 2004). In fact, it is surprisingly difficult to

measure a priori parameters for neutral theory. The

parameter J, local community size, is simple to calculate.

The parameter m, the percentage of born individuals

whose parents reside outside the local community, is

clearly defined. But it is very hard to measure m directly

and there is considerable debate about the accuracy of

attempts to measure m (or the equivalent for gene flow)

indirectly by molecular sequencing (Whitlock and

McCauley 1999). It is also well understood that m is

scale dependent. Similarly, the third parameter, h, is

dimensionless, but has a direct interpretation h ¼ 2JMm
where JM is the population size of the metacommunity

and m is the speciation rate (but see Volkov et al. 2003

where JM ¼ ‘ and h ¼ SMP0m/b). Thus in principle it

should be possible to estimate h. In practice, m is rarely

known and extraordinarily difficult to measure. More-

over, JM is ill defined.While the idea of ametacommunity

or regional pool is useful, it is impossible to give a precise

FIG. 1. Effect of parameters. This figure shows why the curve-fitting approach for the zero-sum mulitnomial (ZSM) is so
successful. Both graphs use the BCI (Barro Colorado Island, Panama) tropical tree data set. The first parameter, J (local
community size), sets the scale of the x-axis (and is held at J¼20 000 throughout this figure). (A) The second parameter, h, is varied
to obtain a good fit of the data on the right-hand side. Note that even if S is used as a parameter and h is implicitly calculated
(Volkov et al. 2003), the effect is the same. (B) The third parameter, m (migration), is varied to obtain a good fit on the left-hand
side (with h held constant at 47.88, the value for the BCI tropical tree data). The fit on the left-hand side (abundances of one
individual to about four to eight individuals are especially well fit due to the use of m as a curve-fitting parameter). Hubbell (2001)
was the first to suggest this basic approach of fitting h to the right-hand side and then m to the left-hand side. Even if h (or S) and m
are fit simultaneously using minimization of some criterion, the effect is the same. Note the log2 x-axis scale.
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physical interpretation to it—it is in reality a continuum

with much contribution from nearby and little contribu-

tion from far away.Attempts to estimate h (Ricklefs 2003,

2006) generate estimates of m that are impossibly high.

A second, less desirable (but still at level B2), method

for a priori parameter measurement is to estimate the

parameters through curve fitting on one set of data and

then apply them to a second, consistent set of data. Adler

(2004) and Wootton (2005) have done this for non-SAD

predictions of neutral theory. We attempt this for the

ZSM SAD prediction using the BCI tropical tree data

(Pyke et al. 2001, Condit et al. 2002). Using the source

code described above, we have estimated h and m for

each of 50 1-ha plots, 10 (nonoverlapping) 5-ha plots, five

10-ha plots, and two 25-ha plots contained within the 50-

ha BCI plot. The results are shown in Fig. 2.

Could the 50 1-ha plots be fit by the same parameters

with some random variation? Assume a null hypothesis,
H0, that all 50 plots are from the ZSM with h and m are

chosen by taking the mean across the plots, giving h ¼
36.33 and m¼ 0.929. Allow J to vary to the actual value
for each 1-ha plot. We then estimated the fit of the ZSM

with mean parameters to the empirical data using a v2

statistic on Preston-binned data (the measure of fit

found most favorable to neutral theory above). We

found that seven of the 50 plots could reject the null
hypothesis at a¼ 0.05 level (or six at the a¼ 0.01 level).

The odds of this number or more rejections of the null
hypothesis in 50 trials by chance according to the

binomial distribution is P , 0.005 (or P , 0.0000001 for

a ¼ 0.01). We conclude that the individual 50 ha plots
are not random samples from the ZSM with a constant

set of parameters. Interpretation of this as a determin-
istic response to spatial heterogeneity would also

contradict neutral theory.

An examination of Fig. 2 also shows that h system-
atically increases with scale while m systematically

decreases with scale. The changes in h and m with scale

are each significant in an unbalanced, one-way ANOVA
analysis on effect of plot size at P , 0.001. Does this

change in parameters with scale contradict neutral
theory? It certainly does for h. Recall that h ¼ 2JMm or

equivalently m ¼ h/(2JM). The fact that h changes

significantly between 1 ha and 50 ha (36.33 vs. 47.57) is
equivalent to saying that the 50-ha plot experiences a

31% higher rate of speciation in the metacommunity than
do the 1-ha plots. Yet both the 1-ha and 50-ha plots are

small enough that they should have nearly identical

metacommunities, since Ricklefs (2003) estimated the
metacommunity for tropical trees to be roughly

25 000 000 ha or 1 3 1010 individual trees. Unlike h, m
should change with scale, and it changes in the right
direction in our analysis (m gets smaller, meaning fewer

individuals come from outside the local community as

TABLE 4. Comparison of lognormal and ZSM distributions for nine different measures of goodness of fit on the BCI tropical tree
data.

Measure Lognormal ZSM
anZSM better
than lognormal? P

anZSM statistically
significantly better?

r2 0.9996 0.9992 no 0.5004 no
r2 mean corrected 0.9960 0.9923 no 0.5039 no
r2 correlation 0.9966 0.9955 no 0.8410 no
K (Kolmogorov-Smirnov) 0.0565 0.0805 no N/A no
ln(likelihood/AIC) �1157.01 �1161.08 no 0.9956 no
v2 arithmetic 12.61 27.21 no 0.8342 no
v2 Preston log2 5.83 3.11 yes 0.1812 no
v2 10 þ 1 bins 10.26 17.31 no 0.7465 no
v2 arithmetic 5 bins 4.57 10.93 no 0.7054 no

Notes: Measures are the same as McGill (2003a) with ln(likelihood) added. The first two columns give the measures of fit for the
lognormal and analytical ZSM (zero-sum multinomial). The third column indicates whether the ZSM had a score indicating a
better fit. The fourth column gives statistical significance (probability that this difference could be observed if lognormal is correct).
These are stated so that P , 0.05 indicates the anZSM was statistically significantly better than the lognormal, while a P . 0.95
indicates the lognormal was statistically significantly better than the anZSM. A P ¼ 0.50 indicates that the theories are equally
likely. Note that this P statistic begins to take on the flavor of a level C3 test although it is not a true partitioning of variance.
Values of P were calculated using the F statistic for ratios of v2 and r2, using the v2 asymptotic distribution of the AIC
for likelihood, and using the Fisher z transformation for correlation for the r2 correlation statistic.

TABLE 3. Summary of results of empirical tests of neutral
theory listed in Table 2 and their level of support.

Parameter A2 B1 B2 C D All levels

ZSM SAD 0/2 5/11 5/13
Dispersal limitation 0/1 0/1 0/6 0/8
Miscellaneous 0/1 0/9 0/10
All predictions 0/2 5/11 0/2 0/10 0/6 5/31

Notes: The columns indicate the level of the test. The rows
indicate the prediction tested. The cells contain the notation x/y
to indicate that x out of y tests supported the neutral theory. All
pre-2000 tests were omitted from this table. The tests given in
this paper were included, but leaving them out did not change
the results qualitatively. Similarly, breaking out tests in
sedentary, single-trophic-level guilds from tests in other
organisms was uninformative. The level B1 tests of the ZSM
SAD (zero-sum multinomial, species abundance distribution)
were counted individually (if a paper tested trees and birds it was
counted as two tests). Several other papers also contain multiple
tests on different groups of organisms (six in Gilbert and
Lechowicz [2004], four in Fargione et al. [2003]) or on different
types of gradients (three in Harpole and Tilman [2005]) and were
also counted as separate tests.
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the local community gets bigger). An exact calculation of

m requires knowledge of the average dispersal kernel for

trees at BCI and a fairly complicated model. However, a

simple and crude geometric model (Fig. 3) suggests that

m does not scale correctly. Specifically, stepping from 25

ha to 50 ha, then (1 – m) should go from 83% to less than

87% (m¼0.17, f¼0.75) when in fact it goes to 91% (more

than twice as high). In short, (1 – m) seems to increase in

this case faster than a literal physical interpretation of m

would allow. Thus, neutral theory fails to have param-

eters that remain constant across consistent data. This

makes it impossible for neutral theory to have successful,

confirmatory test at level B2 (at least for the BCI tropical

tree data used herein).

LEVEL C TESTS OF THE ZSM SAD

Continuing with our objective of adding higher level

tests for the ZSM SAD prediction, we suggest that there

are obvious level C tests of neutral theory that use

previously published empirical data and have been

overlooked. Specifically neutral models predict that

any given species trait (e.g., body size) should be

uncorrelated with abundance in the local community

since abundance in the local community is determined

entirely through drift. Instead, the distribution of any

species trait (e.g., body size) should be merely a random

sampling from the metacommunity distribution (Dol-

man and Blackburn 2004, Harpole and Tilman 2005),

which in turn, under the metacommunity neutral model,

should show no correlation with metacommunity

abundances. There are a number of well known studies

that falsify these predictions. Body mass in local

communities is not a random sample of the metacom-

munity (Brown and Nicoletto 1991, Marquet and Cofre

1999). Body mass is correlated significantly with

abundance at both local (Damuth 1981, 1991, Enquist

et al. 2001) and metacommunity scales (Nee et al. 1991).

Likewise, assembly rules cause local assemblages to have

a taxonomic structure that is not representative of the

taxonomic structure of the metacommunity (Diamond

1975, Fox 1987, Gotelli and Graves 1996, Kelt and

Brown 1999, Weiher and Keddy 1999). These patterns

are all in clear contradiction of the neutral theory

prediction that species traits will be random within a

local community (within the constraints of the meta-

community).

CONCLUSIONS AND PROSPECTUS

We set out a context in which to test neutral theory

and then analyzed published empirical tests within this

context. We suggested that although there are a diversity

of neutral theories, they make similar predictions and

that two nearly universal predictions are the ZSM SAD

and dispersal limitation. We also argued that based on

model assumptions, the neutral theory should apply to

all organisms but the relevant spatial scales are hard to

FIG. 2. Variation in parameters with sample plot size. These
plots are all from within the 50-ha BCI tropical tree plot
(Condit et al. 1996, Pyke et al. 2001). Parameters were
calculated for 50 1-ha subplots, 10 5-ha subplots, and so on.
Both plots are box plots with the top and bottom of the box
describing the upper and lower quartile markers of the data, the
horizontal line representing the median, and the bars describing
the range of the data. Plus marks represent outliers. (A)
Estimates of h. (B) Estimates of the migration parameter, m.

FIG. 3. Crude geometric model for scaling of m. Imagine we
have a rectangular plot of width w and length l. Assume that
this is adjacent to a second plot of the same shape. Note that
tan(h) ¼ (w/2)/(l/2) ¼ w/l. Because alternate exterior angles are
congruent, the interior angle for the two rays (AOB) will be 180
þ 2h ¼ 180 þ 2arctan(w/l ). The fraction of the external
propagule rain that comes from outside the second, adjacent,
rectangular plot will be greater than the fraction f ¼ (180 þ
2arctan(w/l))/360. Now take m1 as the fraction of individuals in
the target plot that arrive from outside the plot. Then (1� m1)
individuals are born from inside the target plot. The fraction of
individuals arriving in the target plot from the adjacent plot ¼
madj , m1(1 � f ). Then the estimate for m2, the fraction of
individuals born outside the combined plot of two rectangles,
can be derived from looking at the fraction of individuals that
come from inside the combined plots (1 � m2). But (1 � m2)¼
2([1� m1]þmadj)/2¼ (1� m1)þmadj , (1� m1)þ (1� f )m1.
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determine. Empirical testing should be helpful in

identifying what subsets of organisms and spatial scales

show neutrality. We proposed that there are varying

levels of strength of prediction and test, and we have

argued that neutral theory started with weak tests and is

now progressing to stronger tests. Finally we showed

that published empirical tests overwhelmingly reject

neutral theory predictions other than the ZSM SAD.

Weaker tests were more likely to support the predictions

of neutral theory.

What should ecologists do with neutral theory at this

point given the current negative balance of evidence? We

are in agreement with Lakatos (1978) ‘‘so-called

‘refutations’ are not the hallmark of empirical failure,

as Popper has preached, since all programmes grow in a

permanent ocean of anomalies.’’ But in the next

sentence, Lakatos suggests, ‘‘What really counts are

dramatic, unexpected, stunning predictions: a few of

them are enough to tilt the balance.’’ Originally, it

appeared that the good fit of the empirical data (level A

tests) was such a stunning prediction. But with careful

analysis we see that neutral theory falls far short of

dramatic on this front. Indeed there is very little weight

of empirical support for neutral theory to date. The

primary research program for neutral theory is to

develop these ‘‘dramatic, unexpected, stunning predic-

tions’’ (Nee and Stone 2003).

Another important research direction (Condit et al.

1996, Fuller et al. 2005) for neutral theory is to move

towards level D tests. It is one thing to falsify neutral

theory, but science advances more if we show that

adaptive niche theory (or some alternative) can explain

where the neutral fails (a level D test). Rejecting neutral

theory at levels A–C does not in itself support niche

theory; a level D test is needed. Clark and McLachlan

(2003) and McGill et al. (2005) have come close to a

level D test, but neither study produced quantitative

estimates of the niche model predictions. Gilbert and

Lechowicz (2004) are unique to date in producing a

Level D3 test. Their results suggest that neutral theory

explains a very small percentage of variance in

comparison to niche theory. Should this result prove

general, then there may be little point in advancing to

Level D. More work at these more sophisticated model-

testing levels is needed.

Despite all of this, neutral theory remains an

extraordinarily and perhaps uniquely elegant ecological

theory. Such elegance is indicative that neutral theory

will have some important role in ecology. Debate over

the ‘‘correct’’ null hypothesis (Gotelli and Graves 1996)

has made several important research programs such as

assembly rules (Weiher and Keddy 1999) and nestedness

(Wright et al. 1998) so complex that few dare to use

these tools. We suggest that even should neutral theory

turn out to explain a relatively small fraction of

variance, it is still an extraordinarily good null

hypothesis for a very wide variety of questions. We

emphatically note that we use the term ‘‘null’’ theory

here in its strict, statistical sense of the H0, a hypothesis

to be rejected by an alternative theory under study; we

explicitly do not mean the wider sense of ‘‘null’’
hypothesis which has come to mean a mechanistic

theory based on stochastic principles. Using the neutral

theory as an alternative to niche theory in a level D test

accomplishes much the same effect. For neutral theory
to succeed as either a null (Enquist et al. 2002) or

alternative theory, research needs to focus on standard-

izing tools for implementing it, understanding the
implications of assumptions behind the analytical ZSM

solutions, and the publication of computer code so that

a public debate can be held about the merits of

approaches. To this end we have provided computer
code that implements the spatially explicit metacom-

munity (McGill et al. 2005), the mcZSM (McGill 2003a),

and the anZSM in the Supplement.
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