

Experimental design or why care about all this complexity?

- Experimental design is the development of plans for experimentation that recognize in advance statistical issues
- Good experimental design recognizes sources of uncontrolled variation and plans statistics around them
 - Increases power!

- Factors vs. levels vs. replicates
- Have a fixed # of measurements
 - One field season need to measure over two week period for consistency
 - Can do 10/day x 6 days/week x 2 weeks
 - → 120
- Could allocate to:
 - 40 levels by 30 levels in 2 factors w/ no replicates
 - One factor with two levels and 60 replicates
 - And ...
- # one missing thing from QE proposals

Hurlbert argues

- Interspersion more important than randomization usually
- Pseudoreplication is common multiple examples of non-independent entities
- Only pseudoreplication if use NHST statistics (no statistics OK)

Oksanen

- 20 years of history
 - Pseudoreplication like "communist" in the McCarthy era
- Agree
 - Non replicated experiments not always realistic, necessary for science
- Disagree
 - Statistics should be used even if pseudoreplication
 - Pseudoreplication pejorative

Designing factorial experiments

- Replicates 10 replicates/treatment harder but include replicates!
 - No interaction term without replicates
- Balanced same # of replicates per cell
- Full vs. partial
 - Usually an issue for 3+ factors can't do all combinations so do a carefully chosen subset

Fractional factorial X2 X3 X1 **2**³⁻¹ Two levels per factor, 3 -1 -1 -1 factors=8 +1 -1 -1 But do only 4 (2²) • Effect of X1 = (4+6)/2 - (1+7)/2-1 3 -1 +1 Must remain +1+1-1 Balanced (every variable at high 4 times) -1 -1 +1 Orthogonal -1 +1 Assumes weak or no +1interaction terms -1 +1+1 Saves cost/effort +1 +1 +1 Also response surface methodology Measures y as a function of continuous x variables

But debate is sub rosa

ANOVA – unbalanced or not fully crossed

- Unbalanced all cells have data, but some cells more than others
 - Plague of locusts
 - Observational (non-experimental data)
- Three choices
 - Randomly throw away a site everywhere else (best if have the power)
 - Add an average site (OK and more realistic)
 - Run calculations on unbalanced data

A factor that clearly is contained within another:

- Batches/brands of pesticide within pesticide type
- Genus within family
- Subplots within plots
- Really a spectrum
 - Fully crossed (balanced, orthogonal)
 - Balanced incomplete block (also orthogonal)
 - Unbalanced
 - Missing data
 - Nested

	(each field holds one breed										
Orthogonal/Balanced					<u>3 fields per breed $(0,+;0,++;+,++)$</u>						
	0N	+ N	+ + N			ON	+ N	+	- + N		
Wild	4	4	4		Wild	2	2	2			
Bred	4	4	4		Bred	2	2	2			
Unbalanced					Missing						
	0N	+N	+ + N				!Pass		Pass		
Wild	3	4	4		Aquat		20		0		
Bred	4	4	4		Terrest		23		102		

Nested is end of spectrum												
	DDT Roundup											
DDT Batch1	5	-										
DDT Batch2	5	-										
Roundup Batch 1	-	5										
Roundup Batch 2	-	5										
			DDT		Batch 1		5					
					Batch 2		5					
	Roundup		Batch 1		5							
					Batch 2		5					

Split plot design

- Two treatments + blocking + nesting
- Lump all levels of factor 1 within a block (site)
- Randomly assign sites to levels of factor 2
- Example (Gotelli)
 - Substrate: Cement/Slate/Granite
 - Predation: Control/PredInCage/PredExcludeCage
- Each site can have only one of Predation but can have all three substrates
- Y~P+B/S

