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Generalized Linear Model (GLIM)
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Road map

OLS GLM

1 Linear

Coding/
Discrete

GLIM

Normal->Exp Family
Linear->Link
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1. Linear
2. Error in Y
3. Errors normal
4. Errors indepenent
5. Errors homoscedastic

GLIM
Developed in 1970’sDeveloped in 1970 s
A generalization of GLM
Uses likelihood
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To run a GLIM
Must specify fMust specify f

Called the link function
Must specify distribution of ε

Must be part of a group of distributions known as the 
exponential family

A finite list
Likelihood can handle any f, ε but GLIM doesn’t

Common choices for link, ε
Logit/binomial logistic
Probit/binomial probit regression
1/x / gamma gamma regression, michaelis-menton & 
others
Log /gamma exponential growth
Log / Poisson Poisson regression (contingency tables) 4
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Solving the GLIM
No formulasNo formulas
Have to run an iterative procedure

IWLS (iterative weighted least squares)

Easy to do on a computer
Why logistic only became popular in 1970’sWhy logistic only became popular in 1970 s

All I’m going to say about innards
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GLIM in R
m=glm(dep~indep family=binomial|poisson| data=?)m glm(dep indep,family binomial|poisson|…,data ?)
Returns coefficients, se, t
Returns three more things:

Null deviance (deviance w/ intercept only or H0)
Model deviance 
AIC

Deviance is like Sum Squares
Modeldev=-2 log L
Nulldev-Modeldev~χ2

p is actually a Likelihood-Ratio Test
R2=1-Modeldev/Nulldev

lm(…)=glm(…,family=gaussian) 6

Logistic regression
For binary (true/false or yes/no data)For binary (true/false or yes/no data)
Error (e) is binomial
Link is logistic

π=1/(1+exp(-(b0+b1x1+b2x2+…)))
Inverse: π/(1-π)= b0+b1x1+b2x2+…

Final equation isFinal equation is
Y~Bernoulli(1/(1+exp(-(b0+b1x1+b2x2+…))))
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Logistic regression
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Running in R, analysis
m=glm(y~x1+z family=binomial)m glm(y x1+z,family binomial)

Y can be:
Boolean variable (0/1, yes/no, true/false, good/bad)
Two column matrix [nsuccesses nfailures]
Ratio (%success), use weight=n option
Also family=binomial(link=probit) or 
family=binomial(link=loglog)

summary(m)y( )
Looks a lot like lm except has AIC, deviances

plot(m) gives standard diagnostics
Don’t need anova(m1)
anova(m1,m2,test=“Chisq”)
confidence.ellipse(m) # for GLM, GLIM in library(car)
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Logistic curves
source("budworm r")source( budworm.r )
d=budworm()
d #warning ldose is a log2 scale
mfull=glm(cbind(surv, 1-surv)*20 ~ldose*sex,family=binomial,data=d)
mfull=glm(surv~ldose*sex,family=binomial,data=d,weights=rep(20,12))

#alternative y=%, weights=N
mred=glm(cbind(surv, 1-surv)*20 ~ldose+sex,family=binomial,data=d)
summary(mfull)
summary(mred)
anova(mfull,mred,test="Chisq")
x=seq(0,5,0.1) #log2 dose
#predict as fit on log2-scale
ld.fem=predict(mred,data.frame(ldose=x,sex="F"),type="response")
ld.mal=predict(mred,data.frame(ldose=x,sex="M") ,type="response")
#plot on log2 scale but label
plot(x,ld.fem,type="l",xlab="log2(dose)")
lines(x,ld.mal,lty=2)
text(d$ldose,d$surv,labels=as.character(d$sex)) #points() gives o
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Multinomial logistic
What if dependent is trinary or more generally discrete with 

f t ( t bi 2)n factors (not binary n=2)
A,B,C

Three options:
Baseline: A vs not-A, B vs not-B

avoid C: prob(C)=1-prob(A)-prob(B)
Coefficients (b) are probability not in baseline
Can subtract coefficients for A-B gives probability in A vs B

Nested
A vs B+C, B vs C
Makes most sense when natural nesting

Proportional odds
A vs BCD, AB vs CD, ABC vs D
Makes most sense when ordinal
R has function “polr” in library MASS -0.2
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Poisson Regression
Poisson distribution for countsPoisson distribution for counts
In principle use any time dependent 
variable is counts (0,1,2,3,4,…)
In practice, easier to treat as 
continuous if counts are high
ct~Poisson(b0+b1x1+b2x2+…)
m=glm(ct~cont1+disc1+…,family=pois
son,data=?)

12
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d<-read.table("spec_rich.txt" ,h=T)
names(d)
library(lattice)
xyplot(Species~Biomass|pH,data=d)
mint<-glm(Species~Biomass*pH,data=d,poisson)
summary(mint)
Call:
glm(formula = Species ~ Biomass * pH family = poisson data = d)glm(formula = Species ~ Biomass * pH, family = poisson, data = d)

Deviance Residuals: 
Min        1Q    Median        3Q       Max  

-2.49779  -0.74845  -0.04023   0.55745   3.22975  

Coefficients:

Estimate Std. Error z value Pr(>|z|)    
(Intercept)    3.76812    0.06153  61.240  < 2e-16 ***

Biomass       -0.10713    0.01249  -8.577  < 2e-16 ***
pHlow -0.81557    0.10284  -7.931 2.18e-15 ***
pHmid -0.33146    0.09217  -3.596 0.000323 ***

Biomass:pHlow -0.15503    0.04003  -3.873 0.000108 ***
Biomass:pHmid -0.03189    0.02308  -1.382 0.166954    

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 452.346  on 89  degrees of freedom
Residual deviance:  83.201  on 84  degrees of freedom
AIC: 514.39

Number of Fisher Scoring iterations: 4
13

continued
msimp<-glm(Species~Biomass+pH,data=d,poisson)p g ( p p , ,p )
summary(msimp)
anova(mint,msimp,test="Chi")
Analysis of Deviance Table

Model 1: Species ~ Biomass * pH
Model 2: Species ~ Biomass + pH
Resid. Df Resid. Dev Df Deviance P(>|Chi|)    

1        84     83.201                          
2        86     99.242 -2  -16.040 0.0003288 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Contingency tables
Counts vs discrete variablesCounts vs. discrete variables
One of discrete variables is usually the “dependent” 
variable

Alternatively measure of association (correlation)

Traditional test is χ2 but G test is usually preferred
Poisson regression same as G-test on contingency

Also called log-linear due to log link function

Dioecious Monoecious
Berry 50 34
Other 27 112
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Contingency log linear in R
d=expand.grid(ecy=c("Dioecious","Monecious"),fruit=cp g ( y ( , ),

("Berry","Other"),subclass=c("Dicot","Monocot"))
d
ct<-c(50,34,27,112,15,15,15,15)
d=cbind(d,ct)
d
xtabs(ct~ecy+fruit+subclass,data=d) #omit ct also
m=glm(ct~ecy*fruit*subclass,family=poisson,data=d)g ( y , y p , )
summary(m)
mns=glm(ct~ecy*fruit,family=poisson,data=d)
summary(mns)
Anova(m)

16
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Gamma
Gamma for asymmetric errors thatGamma for asymmetric errors that 
increase with the mean 
(heteroscedastic)
y=exp(at)

mg=glm(yn~t,family=Gamma(link=log))
B t l t f d i l t dBut log transformed y is almost as good

y=ax/(b+x) (Michaelis-Menton)
1/y=b/a*1/x+1/a
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Summary
GLIM is generalization of GLMGLIM is generalization of GLM

Allows error term to be from “exponential family” 
instead of just normal
Allows a nonlinear “link” function (again from a 
subset) – but relationship between xi is still linear

Logistic/binomial regression for binary 
dependent variablesdependent variables
Poisson regression for count dependent 
variables

Especially contingency tables
Gamma regression also useful
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Deviance
Measure of goodness of fitMeasure of goodness of fit
-2(lmode-lfulll)
=RSS for normal
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Overdispersion
Overdispersion = too much varianceOverdispersion = too much variance

Impossible for normal since μ & σ are 
independent
Possible for binomial (np(1-p))
Common for Poisson μ=σ=λ

Diagnosis
Rule of thumb – deviance should ≈ df
If deviance >> df then overdispersion

20
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Solutions to overdispersion
Use negative binomial (has moreUse negative binomial (has more 
variance)

Can be use in place of Poisson (but not 
really binomial)

library(MASS) glm.nb instead of glm

Good approach – still a well-known 
probability distribution

Use quasilikelihood
var()=φ*var
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Quasibinomial
g<-read.table("germination.txt",h=T)g read.table( germination.txt ,h T)
names(g)
y<-g$count/g$sample
y
mint<-

glm(y~Orobanche*extract,data=g,family=binomial,weigh
ts=g$sample) #weight=sample – not count

33 278/1733.278/17
summary(mquas<-

glm(y~Orobanche*extract,data=g,family=quasibinomial,
weights=g$sample))

#note, no AIC, report on dispersion parameter, change s 
of significance, use F-statistic to compare

anova(mint,mquas,test="F") 22

Zero-inflation
One causes of overdispersion is tooOne causes of overdispersion is too 
many zeros.

Zeros show up for lots of reasons
True absence
Outside of range

bObservation error

Model zeros explicitly
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ZI models – two approaches
Two part/hurdleTwo-part/hurdle

binomial zero vs. non-zero
Poisson or negbin truncated for 1+

Mixture
binomial zero vs. non-zero (same)
Poisson or negbin NOT truncated (0 N)Poisson or negbin NOT truncated (0-N)

Two sources of zero

Think about causes of zeros
If the process that causes 1-N variation can also 
cause a zero then use mixture

24
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In R
library(pscl)y(p )
m<-

zeroinfl(formula(y~x),dist="negbin",link="logit",data
=…)

m<-
hurdle(formula(y~x),dist="negbin",link="logit",data=…
)
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Censored data and event times

26

Time to flower – two 
populations: Cal & Washington
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Censoring
Don’t follow all possible points to theDon t follow all possible points to the 
end

The event is never observed
The time to event recorded is just the 
length of study
Often times the long right tail is important

28
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Means are a bad way to study 
this due to censoring
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More generally
When we study times to eventsWhen we study times to events

Already learn that this is modeled by exponential and 
Weibull
We often end up with censoring – “long right tail” omitted 
from study

Extremely common in medical
Effect of cancer drug on increasing lifespan for a 5 year 
study – some patients live longer than 5 yearsy p g y

Important in ecology too:
Spermatogenesis in C. elegans decreases life span
Do birds have sensecence?
Time to mortality of pesticide
Other time to event measures (flowering, germination, etc)
Could be used in space - dispersal 30

Ecological life history theory

Type II

Type III

Log S

Type I

=-H(t)

Time 31

Ways to study times to events
T a random variable of time to eventT a random variable of time to event
p - The pdf function (% dying in time t-t+dt)
F - The CDF function (% dead at time t)
S(t) - The survivorship function (1-F)
h(t) - The hazard function

Fraction of those alive at time t that die
P(death at time t|alive at time t)P(death at time t|alive at time t)
Per capita rate
h(t)=p(t)/S(t)=F’(t)/S(t)=S’(t)/S(t)

Cf with 1/N dN/dt – per capita growth rate
For exponential: have constant hazards h(t)=λ

H(t) – Cumulative hazard function (=∫th(t)dt)
32
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Studying survivor curves
Usually plot SUsually plot S

S estimated using Kaplan-Meier method (non-
parametric)

Confidence intervals
Can compare S (basically a probability distribution) 
using χ2

Usually study effects of independent variables 
on hazard function:on hazard function:

Parametric or proportional hazards h(t) is 
exponential or Weibull:

hregress(t)=hintercept(t)exp(βx+ε)
Less parameteric:

Same equation but don’t need formula for h(t)
Cox propotional hazards 33

Hazard functions
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Plots for two populations
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In R
fd=read.table("flowdate.csv",sep=",",head=T)( , p , , )
summary(fd)
library(survival)

Key is “Surv(time[,censored])” wrapper
Censored=0/1 or T/F for “died in study” or 0=right censored

Plotting
plot(survfit(Surv(fd)~pop,data=fd))

Checking for significant differencesChecking for significant differences
survdiff(Surv(fd)~pop,data=fd)

Fitting a model
(m=survreg(Surv(fd)~pop,data=fd,dist="exponential"))

Also coxph
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