* Generalized Linear Model (GLIM)

i Road map

Coding/ Normal->Exp Family
Discrete Linear->Link
oLS [GLm] GLIM
Linear
ErrorinY

Errors normal
Errors indepenent
Errors homoscedastic
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i GLIM

= Developed in 1970’s
= A generalization of GLM
= Uses likelihood

i To run a GLIM

= Must specify f
= Called the link function
= Must specify distribution of ¢
= Must be part of a group of distributions known as the
exponential family
= A finite list
= Likelihood can handle any f, ¢ but GLIM doesn’t
= Common choices for link, ¢
= Logit/binomial->logistic
= Probit/binomial->probit regression
= 1/x/ gamma -> gamma regression, michaelis-menton &
others
= Log /gamma > exponential growth
= Log / Poisson = Poisson regression (contingency tables) 4




i Solving the GLIM

No formulas

Have to run an iterative procedure

= IWLS (iterative weighted least squares)
Easy to do on a computer

= Why logistic only became popular in 1970’s
All I'm going to say about innards

GLIMinR

= m=gIlm(dep~indep,family=binomial|poisson]...,data="?)
= Returns coefficients, se, t
= Returns three more things:
= Null deviance (deviance w/ intercept only or Hy)
= Model deviance
= AIC
= Deviance is like Sum Squares
= Modeldev=-2 log L
= Nulldev-Modeldev~y?, is actually a Likelihood-Ratio Test
= R?=1-Modeldev/Nulldev
= Im(...)=glm(...,family=gaussian)

i Logistic regression

For binary (true/false or yes/no data)
Error (e) is binomial

Link is logistic

s 1=1/(1+exp(-(by+b X, +byX,+...)))

= Inverse: ©/(1-m)= by+b;X;+bX,+...

Final equation is

= Y~Bernoulli(1/(1+exp(-(by+b X, +byX,+...))))

i Logistic regression
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Running in R, analysis

= m=glm(y~x1+z,family=binomial)
= Y can be:
= Boolean variable (0/1, yes/no, true/false, good/bad)
= Two column matrix [nsuccesses nfailures]
= Ratio (%success), use weight=n option
= Also family=binomial(link=probit) or
family=binomial(link=loglog)
= summary(m)
= Looks a lot like Im except has AIC, deviances
= plot(m) gives standard diagnostics
= Don’t need anova(m1)
= anova(ml,m2 test="Chisq”)

= confidence.ellipse(m) # for GLM, GLIM in library(car)
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i Logistic curves

source(*’budworm.r*)

d=budworm()

d #warning ldose is a log2 scale

mfull=gIm(cbind(surv, 1-surv)*20 ~ldose*sex,family=binomial,data=d)

mful I=gIm(surv~ldose*sex, fami ly=binomial ,data=d,weights=rep(20,12))
#alternative y=%, weights=N

mred=gIm(cbind(surv, 1-surv)*20 ~ldose+sex,family=binomial,data=d)

summary(mful I)

summary(mred)

anova(mfull ,mred, test="Chisq")

x=seq(0,5,0.1) #log2 dose

#predict as fit on log2-scale

Id.fem=predict(mred,data. frame(ldose=x,sex="F"),type="response')

lines(x, ld.mal, lty=2)
text(d$ldose,d$surv, labels=as.character(d$sex)) #points() gives o
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Multinomial logistic

= What if dependent is trinary or more generally discrete with
n factors (not binary n=2)
= AB,C
= Three options:
= Baseline: A vs not-A, B vs not-B
= avoid C: prob(C)=1-prob(A)-prob(B)
= Coefficients (b) are probability not in baseline
= Can subtract coefficients for A-B gives probability in A vs B

= Nested
« AvsB+C,BvsC !
« Makes most sense when natural nesting ~ *°
= Proportional odds Zj
= Avs BCD, AB vs CD, ABC vs D o
= Makes most sense when ordinal o

= R has function “polr” in library MASS B x 11

Poisson Regression

Poisson distribution for counts

In principle use any time dependent
variable is counts (0,1,2,3,4,...)

In practice, easier to treat as
continuous if counts are high

m=glm(ct~contl+discl+...,family=pois
son,data="?)
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d<-read.table("spec_rich.txt"” ,h=T)
names(d)

library(lattice)
xyplot(Species~Biomass|pH,data=d)
int<-gIm(Species~Biomass*pH,data=d, poisson)

call:
gin(formula = Species ~ Biomass * pH, family = poisson, data = d)

Deviance Residuals:
Min 1Q  Median 30 Max
-2.49779 -0.74845 -0.04023 0.55745  3.22975

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) ~ 3.76812  0.06153 61.240 < 2e-16 ***
Biomass -0.10713 0.01249 -8.577 < 2e-16 ***
pHlow -0.81557  0.10284 -7.931 2.18e-15 *
pHmid -0.33146  0.09217 -3.596 0.000323 *
Biomass:pHlow -0.15503 0.04003 -3.873 0.000108 ***
Biomass:pHmid -0.03189  0.02308 -1.382 0.166954

Signif. codes: 0 “**** 0.001 “**” 0.01 “*” 0.05 “.” 0.1 * ~ 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 452.346 on 89 degrees of freedom
Residual deviance: 83.201 on 84 degrees of freedom

AIC: 514.39

Number of Fisher Scoring iterations: 4

continued

msimp<-gIm(Species~Biomass+pH,data=d, poisson)
summary(msimp)

anova(mint,msimp, test="Chi'")

Analysis of Deviance Table

Model 1: Species ~ Biomass * pH
Model 2: Species ~ Biomass + pH
Resid. Df Resid. Dev Df Deviance P(>|Chi])
1 84 83.201
2 86 99.242 -2 -16.040 0.0003288 ***

Signif. codes: 0 “***”> 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ~ 1
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i Contingency tables
Counts vs. discrete variables
= One of discrete variables is usually the “dependent”
variable
= Alternatively measure of association (correlation)
= Traditional test is 2 but G test is usually preferred
= Poisson regression same as G-test on contingency
= Also called log-linear due to log link function
Dioecious |Monoecious
Berry |50 34
Other |27 112
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i Contingency log linear in R

d=expand.grid(ecy=c('Dioecious", " "Monecious"),fruit=c
(""Berry","0Other™),subclass=c(*'Dicot", ""Monocot'))

d

ct<-c(50,34,27,112,15,15,15,15)

d=cbind(d,ct)

d

xtabs(ct~ecy+fruit+subclass,data=d) #omit ct also

m=gIm(ct~ecy*fruit*subclass,family=poisson,data=d)

summary (m)

mns=gIm(ct~ecy*fruit,family=poisson,data=d)

summary(mns)

Anova(m)
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i Gamma

= Gamma for asymmetric errors that
increase with the mean
(heteroscedastic)
= y=exp(at)
= mg=glm(yn~t,family=Gamma(link=log))
= But log transformed y is almost as good
» y=ax/(b+x) (Michaelis-Menton)
= 1/y=b/a*1/x+1/a
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i Summary

GLIM is generalization of GLM

= Allows error term to be from “exponential family”
instead of just normal

= Allows a nonlinear “link” function (again from a
subset) — but relationship between x; is still linear

Logistic/binomial regression for binary
dependent variables

= Poisson regression for count dependent
variables
= Especially contingency tables

Gamma regression also useful
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i Deviance

= Measure of goodness of fit

u 'Z(Imode'lfulll)
s =RSS for normal
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i Overdispersion

= Overdispersion = too much variance

= Impossible for normal since p & o are
independent

= Possible for binomial (np(1-p))
= Common for Poisson p=c=A
= Diagnosis
= Rule of thumb — deviance should =~ df
= If deviance >> df then overdispersion

20




i Solutions to overdispersion

= Use negative binomial (has more
variance)
= Can be use in place of Poisson (but not
really binomial)
= library(MASS) glm.nb instead of gim
= Good approach — still a well-known
probability distribution
= Use quasilikelihood
= var()=¢*var
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Quasibinomial

g<-read.table('germination.txt",h=T)

names(g)

y<-g$count/g$sample

y

mint<-
gIm(y~Orobanche*extract,data=g, family=binomial ,weigh
ts=g$sample) #weight=sample — not count

33.278/17

summary(mquas<-
gIm(y~Orobanche*extract,data=g, fami ly=quasibinomial,
weights=g$sample))

#note, no AIC, report on dispersion parameter, change s
of significance, use F-statistic to compare

anova(mint,mquas, test="F") 22

i Zero-inflation

= One causes of overdispersion is too
many zeros.
= Zeros show up for lots of reasons
= True absence

= Outside of range
= Observation error

= Model zeros explicitly
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i Z1 models — two approaches

= Two-part/hurdle
= binomial zero vs. non-zero
= Poisson or negbin truncated for 1+
= Mixture
= binomial zero vs. non-zero (same)
= Poisson or negbin NOT truncated (0-N)
= Two sources of zero
= Think about causes of zeros

= If the process that causes 1-N variation can also

cause a zero then use mixture
24




InR

library(pscl)

m<-
zeroinfl (formula(y~x),dist="negbin", link="logit",data
=.)

m<-
hurdle(formula(y~x),dist="negbin", link="logit",data=..
)
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* Censored data and event times
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Time to flower — two
i populations: Cal & Washington

0 5 10 15 20 25 30

Flowering date 27

i Censoring

= Don’t follow all possible points to the
end
= The event is never observed

= The time to event recorded is just the
length of study

= Often times the long right tail is important
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Means are a bad way to study
i this due to censoring

Mean flower date
10
1

Censor date 29

More generally

= When we study times to events

= Already learn that this is modeled by exponential and
Weibull

= We often end up with censoring — “long right tail” omitted
from study

= Extremely common in medical

= Effect of cancer drug on increasing lifespan for a 5 year
study — some patients live longer than 5 years

= Important in ecology too:
= Spermatogenesis in C. elegans decreases life span
Do birds have sensecence?

L

= Time to mortality of pesticide

= Other time to event measures (flowering, germination, etc)
= Could be used in space - dispersal 30

i Ecological life history theory

Log S
=-H()

Time 31

Ways to study times to events

= T arandom variable of time to event
= p - The pdf function (% dying in time t-t+dt)
= F - The CDF function (% dead at time t)
= S(t) - The survivorship function (1-F)
= h(t) - The hazard function

= Fraction of those alive at time t that die

= P(death at time t|alive at time t)

= Per capita rate

= h(t)=p(t)/S(t)=F(t)/S(t)=S'(t)/S(t)

» Cf with 1/N dN/dt — per capita growth rate
= For exponential: have constant hazards h(t)=A

= H(t) — Cumulative hazard function (=[th(t)dt)
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Studying survivor curves

= Usually plot S
= S estimated using Kaplan-Meier method (non-
parametric)
= Confidence intervals
= Can compare S (basically a probability distribution)
using x?
= Usually study effects of independent variables
on hazard function:
= Parametric or proportional hazards h(t) is
exponential or Weibull:
- hregress(t):hintercept(t)eXp(BX+8)
= Less parameteric:
= Same equation but don’t need formula for h(t)
= Cox propotional hazards 33

i Hazard functions
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Plots for two populations
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ilnR

fd=read.table(""flowdate.csv",sep=",",head=T)
summary (fd)
library(survival)
= Key is “Surv(time[,censored])” wrapper
= Censored=0/1 or T/F for “died in study” or O=right censored
= Plotting
plot(survfit(Surv(fd)~pop,data=Ffd))
= Checking for significant differences
survdi ff(Surv(fd)~pop,data=Ffd)
= Fitting a model

(m=survreg(Surv(fd)~pop,data=fd,dist="exponential'))

= Also coxph
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