

Solving the GLIM

- No formulas
- Have to run an iterative procedure
 - IWLS (iterative weighted least squares)
- Easy to do on a computer
 - Why logistic only became popular in 1970's

5

All I'm going to say about innards

GLIM in R

- m=glm(dep~indep,family=binomial|poisson|...,data=?)
- Returns coefficients, se, t
- Returns three more things:
 - Null deviance (deviance w/ intercept only or H₀)
 - Model deviance
 - AIC
- Deviance is like Sum Squares
 - Modeldev=-2 log L
 - Nulldev-Modeldev~ χ^2_p is actually a Likelihood-Ratio Test

6

- R²=1-Modeldev/Nulldev
- Im(...)=glm(...,family=gaussian)

- anova(m1,m2,test="Chisq")
- confidence.ellipse(m) # for GLM, GLIM in library(car)

d<-read.table("spec rich.txt" ,h=T)	
names(d)	
library(lattice)	
xyplot(Species~Biomass pH,data=d)	
<pre>mint<-glm(Species~Biomass*pH,data=d,poisson)</pre>	
summary(mint)	
Call:	
glm(formula = Species ~ Biomass * pH, family = poisson, data = d)	
Deviance Residuals:	
Min 1Q Median 3Q Max	
-2.49779 -0.74845 -0.04023 0.55745 3.22975	
Coefficients:	
Estimate Std. Error z value Pr(> z)	
(Intercept) 3.76812 0.06153 61.240 < 2e-16 ***	
Biomass -0.10713 0.01249 -8.577 < 2e-16 ***	
pHlow -0.81557 0.10284 -7.931 2.18e-15 ***	
pHmid -0.33146 0.09217 -3.596 0.000323 ***	
Biomass:pHlow -0.15503 0.04003 -3.873 0.000108 ***	
Biomass:pHmid -0.03189 0.02308 -1.382 0.166954	
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1	
(Dispersion parameter for poisson family taken to be 1)	
Null deviance: 452.346 on 89 degrees of freedom	
Residual deviance: 83.201 on 84 degrees of freedom ATC: 514 39	
ALC: J17.39	
Number of Fisher Scoring iterations: 4	

Summary

- GLIM is generalization of GLM
 - Allows error term to be from "exponential family" instead of just normal
 - Allows a nonlinear "link" function (again from a subset) but relationship between x_i is still linear

18

- Logistic/binomial regression for binary dependent variables
- Poisson regression for count dependent variables
 - Especially contingency tables
- Gamma regression also useful

