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Big 4 approaches
Traditional/ParametricTraditional/Parametric
Bootstrapping/Randomization/Monte Carlo
Likelihood
Bayesian

Frequentist philosophy &
Power

Frequentist approach
More properly called Neyman-Pearson orMore properly called Neyman Pearson or 
“hypothesis-testing” approach

Frequentist is name given by the Bayesians
Central idea is:

Test null hypothesis (H0) vs. alternative
Calculate a p-value (probability of null hypothesis 
b i tbeing true
Reject null, accept alternative if p “small”

Usually two flavors:
Normal and nonparametric

Null hypothesis logic
Example:

H no treatment effect ( )H0 no treatment effect (μcontrol=μtreatment)
Ha treatment (e.g. increased N) increases yield 
(μcontrol<μtreatment)

1. H0 null data
2. Observe ~ null data
3. ~H00

4. Ha

Step #4 is true ONLY if Ha is the true 
opposite (complement) of H0

True in this simple example ??
Only if state as μcontrol≠μtreatment
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4 cases

Reject null Accept null

Null correct Type I (α) Correct

Null wrong Correct Type II (β)

Classical approach
Used for experimentsUsed for experiments

Null and alternative simple, opposite
Specify p=α a priori
Run experiment
Reject null if observed effect exceeds critical 
value

=Accept alternative (what we were trying to 
prove)

Fits Popperian model: two hypotheses, try to 
falsify and accept Ha if reject “all” others

Only approximate since null is not really a 
hypothesis

Critical values
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Using one-tailed tests
One main reason: has more power (get aOne main reason: has more power (get a 
significant result more often)
Requirement: a priori specification of one-
tailed

In practice in addition to stating a priori, should 
argue why
E if H i >E.g. if Ha is μtreatment>μcontrol

H0 becomes μcontrol≤ μtreatment

Rice & Gaines
Intermediate x% of weight in left tail, 1-x% in 
right tail

Common misapplications
“opposite” null often very difficultopposite  null often very difficult

Quinn & Dunn
What is “opposite” of succession?

In principle
α specified a priori
Only report if above or below critical value (reject 

ll )null or not)
Failure to reject null is NOT accepting the null

What if want to prove equality
Ideal Free Distribution – organisms move so that 
fitness equal across heterogeneous environments

Null hypotheses
Extremely controversialExtremely controversial

Diamond found patterns in species distribution on 
islands and used them as evidence (observational 
data)
Various others claimed these patterns occurred by 
chance
VIGOROUS debate about the appropriate null 
modelmodel

Net:
There is no single correct null model
Null models vary in how much biological realism 
they contain
But reasoning from observational data without a 
null model is DANGEROUS!

My take
Three kinds of null hypothesis

Statistical null traditional H logical mathematicalStatistical null – traditional H0 – logical mathematical 
opposite of alternative
Randomized null

Used for cases where statistical null doesn’t exist
Has some sort of randomization (point of null is human’s 
overdetect patterns in random data)
Can incorporate more or less biology – no one right null
Randomized null should never incorporate so much biology it 
becomes a “theory” that might be true – science should 

if ll j t dprogress if null rejected
Neutral theory
Mid-domain effect

Carefully opposite models
Build “enough” realistic biology in but incorporate exact 
opposite assumption of what you are testing

Stochastic theories
Limit arguments
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Three examples
RandomizedRandomized

Diamond’s co-ocurrence

Careful opposite
Neutral theory (genetics)
Neutral theory (community ecology)Neutral theory (community ecology)
Random branching phylogeny

Appropriate α

Journal editors eventually settled onJournal editors eventually settled on 
p<0.05, but report actual p values
This is completely arbitrary!
Is p=0.06 really infinitely worse than 
p=0.05?p 0.05?
If 0.05<p<0.10 can I claim anything?

Appropriate α ΙΙ
Should I use the same α if:Should I use the same α if:

Irreplaceable habitat will be destroyed if no 
significant effect of habitat is found?
Chemical will be allowed into the environment 
until a significant result of harm is found?
Medicine may help and has little side effects but 
formal studies have been small?formal studies have been small?

Reject null Accept null

Null correct Type I (α) Correct

Null wrong Correct Type II (β)

A contrarian view
“[Researchers] pay undue attention to the results of [ esea c e s] pay u due atte t o to t e esu ts o
tests of significance they perform on their data, 
particularly data derived from experiments, and too 
little to the estimates of magnitudes of effects which 
they are investigating” Yates 1951
““We shall marshall arguments against [signficance] testing, 
leading to the conclusion that it be abandoned by all substantive 
science …” Guttman 1985
“The continued very extensive use of significance tests isThe continued very extensive use of significance tests is 
alarming” Cox 1986
“A little thought reveals a fact widely understood among 
statisticians: The null hypothesis, taken literally (and that’s the 
only way you can take it in formal hypothesis testing), is always 
false in the real world” Cohen 1990
“Are the effects of A and B different? They are always different -
--for some decimal place” Tukey 1991
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Contrarian view II
“…the primary product of a research inquiry is one or 

f ff t i t l ” C h 1990more measures of effect size, not p values” Cohen 1990
“Most statistician are all too familiar with the conversations 
[that] start:
Q: What is the purpose of your analysis?
A: I want to do a significance test.
Q: No, I mean what is the overall objective?
A: (with a puzzled look): I want to know if my results are 
significant
And so on…” Chatfield 1991
“…surely, god loves the 0.06 nearly as much as the 
0.05.” Rosnell and Rosenthal 1989
“Can you articulate even one legitimate contribution 
that significance testing made (or makes) to the 
research enterprise (i.e., any way in which it contributes 
to the development of cumulative scientific 
knowledge)? I believe you will not be able to do 
so” Schmidt 1996

Power

Purpose of power
A priori: how big does my experiment need toA priori: how big does my experiment need to 
be?
Post hoc: if we fail to reject the null 
hypothesis then:

Our sample size was too small/variance is very 
large making false rejection of large effectlarge making false rejection of large effect
The effect is nonexistent or real but trivially small
Want to differentiate

4 cases

Reject null Accept null

Null correct Type I (α) Correct (1- α)

Null wrong Correct Type II (β)
(1- β=Power)
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In practice
Five parametersFive parameters

Effect size (d)
Sample size (n)
Variance (s)
α (type I error)
Power (1-β, ranges from 0-1, close to 1 good)

In practice II
Given 4 can calculate the 5thGiven 4, can calculate the 5th

Usually
α specified (0.05)
Variance s/σ obtained from pilot study, related studies, 
generally similar studies

A priori ask:
Given d, n what is β (I can afford this experiment, what’s my 
chance of success?)
Gi β d h t i d d (t b 90% f l h bi dGiven β, d what n is needed (to be 90% successful, how big do 
I have to be?)

A posteriori ask:
Given β, n, what effect size (d) can be detected (could my 
experiment reject the null hypothesis in interesting cases?)
Warning: circular to ask what power of observed effect size is –
just a fancy restatement of p!
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R example
Suppose:

Pilot studies suggest s2=9, μcontrol=10
We think our treatment will lead to an increase well above 20% (Δμ=2)
How big a sample size do we need, assuming α=0.05, β=0.90, one-tailed test?

Background
Don’t know if n>30, use t
Under Ha t is “noncentral – 3rd parameter λ=Δμ/σ=Δμ/(s/√n)=Δμ/σ √n =d√n

Steps
1. Find critical value of t for p=0.95, n=guess=30
2. Find power (inverse CDF at critical value)

Repeat until find n that gives β 0 903. Repeat until find n that gives β=0.90
n<-30;1-pt(qt(0.95,n),n,2/3*sqrt(n))

Or …
power.t.test(delta=2,sd=3.5,power=0.8,alpha=0.05)

Also power.prop.test,power.anova

R example - easy
power.t.test(n,delta,sd=1,sig.level=0.05,power=NULL)p g p
#also options for one-tailed, paired t, etc

power.t.test(n=50,delta=2) # gives beta w/ delta in 
units of SD

power.t.test(delta=2, power=0.9) # gives required 
sample size

power.anova.testp

groupmeans <- c(120, 130, 140, 150)
power.anova.test(groups = length(groupmeans),

between.var=var(groupmeans),within.var=500,    
power=.90) # gives n = 15.18834

model.tables(npk.aovE, "means“|”effects” [,se=T])

Web tools for power
http://calculators stat ucla edu/powercalc/http://calculators.stat.ucla.edu/powercalc/
http://www.stat.uiowa.edu/~rlenth/Power/

Steidel’s confidence interval
In general an idea that captures powerIn general an idea that captures power 
is the confidence interval

High power=small confidence interval

Gives idea of range of possible effect 
sizes
Steidel argues for this
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Summary
Should ALWAYS do power analysisShould ALWAYS do power analysis 
before starting an experiment

Need estimate of s
Need to think about d that is interesting

Concept simple, calculations messy
U i i kUse a preexisting package
Always question failure to reject null 
hypothesis without high power

Bootstrapping & 
randomization

Bootstrapping
From the image of “pick yourself up by yourFrom the image of pick yourself up by your 
boot straps”
Classical statistics:

Population is abstract you have a sample
Data is normal (or known distribution)

Bootstrap approach:
You have data
You can resample it
Don’t need to know the distribution

When not to use boostrapping
To make 4 data points look like 50To make 4 data points look like 50
Bootstrapping doesn’t save you from 
too small a sample
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When to use bootstrapping
Data not normalData not normal

Alternative to non-parametric, transforms
More intuitive

No well developed statistical theory
Calculating a complicated “statistic”

A statistic is any calculation on the data
i i hBootstrapping can give the:

Mean sampling value of the statistic
Confidence intervals
The full distribution
Above 2 hypothesis tests

Bootstrap application #1 -
Randomization/reshuffling

Analogous to t testAnalogous to t-test
Continuous variable measured on binary
Eg measure # ant nests in forest vs grass

Steps
Randomly reassign category
Calculate difference in meansCalculate difference in means
Repeat to build distribution of differences
If actual difference lies outside 95% interval then 
significant

Example
Actual Random 1 Random 2

Forest 7
Forest 5
Forest 8
Forest 8

Forest 7
Grass 5
Forest 8
Grass 8

Grass 7
Forest 5
Grass 8
Forest 8

Grass 5
Grass 6
Grass 4

forest=7, grass=5
Dif=2

Forest 5
Forest 6
Grass 4

Grass 5
Forest 6
Forest 4

forest=6.5, grass=5.67
Dif=0.833

forest=5.75, grass=6.67
Dif=-0.917

Bootstrap replication
Histogram of d
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In R
t=factor(c("forest","forest","forest","forest","grassg

","grass","grass"))
ct=c(7,5,8,8,5,6,4)
summary(lm(ct~t))
#
reps=1000
d=numeric(reps)
for (i in 1:reps) {
ts=t[sample(length(t))]ts t[sample(length(t))]
d[i]=mean(ct[ts=="forest"])-mean(ct[ts=="grass"])
}
d
hist(d,prob=T)
lines(density(d))
quantile(d,prob=0.95)

In R version 2 – using boot
library(boot)y
t=factor(c("forest","forest","forest","forest","grass",

"grass","grass"))
ct=c(7,5,8,8,5,6,4)
df=data.frame(habit=t,ct=ct)
df
b=boot(df,function(din,f)  #cheats & uses ct  
{d=din[f,];mean(ct[d$habit=="forest"])-
mean(ct[d$habit=="grass"])},R=1000) 

b=boot(df,function(din,f)   #self contained 
{d=din[f,];mean(din$ct[d$habit=="forest"])-
mean(din$ct[d$habit=="grass"])},R=1000,sim="permutati
on") 

b
summary(b)
boot.ci(b,conf=0.90,type="perc")
plot(b)

Bootstrap application #2 –
Complex statistic

You do some complex calculation onYou do some complex calculation on 
the data 

Don’t know the behavior of this
Contrast with mean (known ~ N(μ,σ/√n)

Examples:
R ti f t i blRatio of two variables
Species evenness
Coefficient of variation

Application #2.1
Have a large sample of individuals identified toHave a large sample of individuals identified to 
species
Want to estimate the H=Gini (Shannon-Weaver) 
measure of evenness

(Σpilog2 pi)/log2S
0=All individuals of one species
1=Every individual a new species

i l l l lVery simple to calculate H on a sample
How can I compare two sites?
How can I even assert that H is statistically different from 0 
or 1?

Don’t do this on S! (or max,min)
badly behaved on sample w/ replacement, no variation on 
sample w/o replacement



10/5/2009

11

Example in R
sid=read.table("/temp/sid.txt",h=T)
sid=sid$SID #just a vector
t(sid)  #transpose
table(sid) #crosstab
ct=as.matrix(table(sid))
hist(ct)
hist(log2(ct))
gini<-function(spid) {p<-table(spid)/length(spid);-

sum(p*log(p))/log(length(unique(p)))}(p g(p))/ g( g ( q (p)))}
gini(sid)
b=boot(sid,function(x,i) gini(x[i]),R=1000)
b
plot(b)
boot.ci(b,conf=0.95,type="perc")
#bbad=boot(sid,function(x,i) length(unique(x[i,])), R=1000)

R output
> b
ORDINARY NONPARAMETRIC BOOTSTRAP
C llCall:
boot(data = sid, statistic = function(x, i) gini(x[i, ]), R = 1000)
Bootstrap Statistics :

original      bias    std. error
t1* 0.7608427 0.008704316 0.005437653
> summary(b)

Length Class      Mode     
t0           1   -none- numeric  
t         1000   -none- numeric  
R            1   -none- numeric  
…
stype        1   -none- character
strata    4159   -none- numeric  
weights   4159   -none- numeric  
> boot.ci(b,conf=0.95,type="perc")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL : 
boot.ci(boot.out = b, conf = 0.95, type = "perc")
Intervals : 
Level     Percentile     
95%   ( 0.7585,  0.7807 )  
Calculations and Intervals on Original Scale

Application #2.2 (Tessier)
Hypothesis: plant is more patchy in distribution inHypothesis: plant is more patchy in distribution in 
more disturbed wetlands

Measure of patchiness is CV (σ/μ) of abundance in 100 
quadrats
Get three levels of disturbance, two plots x 100 quadrats

Tons of work (600 quadrats!) must have enough data
Oops – really only 2 replicates for 3 levels (6 data 
points) no power!points) – no power!

CV collapses 100 plots into 1 data point
Solution: bootstrap CV for each of 6 sites, now now 
confidence intervals around CV, can do hypothesis 
tests with power

Bootstrap application #3 –
Regression confidence intervals

Getting confidence intervals on parametersGetting confidence intervals on parameters 
easy for GLM – hard for:

Robust
Nonlinear

Two methods
Bootstrap null distribution – reshuffle data association
Bootstrap variability of parameter estimatesBootstrap variability of parameter estimates

Use bootstrapping on residuals
Take the x values of input set
Take the estimated (least square) y values
Repeatedly add a randomized sample of the residuals
Recalculate the coefficients (new regression with new y)
Get a distribution of the coefficients
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Example in R
library(quantreg)y q g
data(Mammals)
plot(speed~log10(weight),data=Mammals)
m=rq(speed~log10(weight),tau=0.9,data=Mammals)
m
abline(m)
dat=data.frame(weight=Mammals$weight, 

speed=Mammals$speed, fitted=m$y-resid(m), 
resid=scale(resid(m),scale=F))( ( ), ))

b=boot(dat,function(d,i) 
{dat=d;dat$speed=d$speed+d$resid[i]; 
coef(update(m,data=dat))}, R=1000)

plot(b,index=1)
plot(b,index=2)
boot.ci(b,conf=0.95,type="perc",index=1)
boot.ci(b,conf=0.95,type="perc",index=2)

Bootstrap application #4 –
Mantel test (Chapter 16 S&G)
Correlation of distance matrices
Example 1: A B C DExample 1:

4 sites
Distance (km) between sites
Change in mean temperature
Is distance related to temperature?

Example 2:
4 species
Genetic distance
Morphopmetric distance

A B C D
A 0 2 1 5
B 2 0 3 4
C 1 3 0 2
D 5 4 2 0

Are they the same
Method:

Randomly reshuffle column/row for one matrix
Compare to other unshuffled matrix
Treat each cell as datapoint & calculate r
Get distribution of r’s under null hypothesis of no special mapping 
of column to column (e.g. site to site)
Analytic version available but bootstrap often used

Bootstrap application #5 -
phylogenies

Site
1

Site
2

Site
3

Mandible 
Length

Crown 
Height

Phylogeny takes 
character matrix in
Produces phylogeny
Bootstrapping on 
character matrix

Species1 A G T 50 2.4

Species2 A G T 48 2.6

Species3 C T G 65 4

Species3 C A G 50 4.1

S1 S2 S3S4

Confidence intervals 
on branches (% time 
branch is included)

87 48

Terminology
Randomization – general termRandomization general term
Bootstrapping – form of randomization where 
you have one variable and you resample from 
it
Reshuffling or permutation – form of 
randomization where you have two (+) 
variables and you change their associations 
randomly
Monte Carlo – very general term that applies 
to any modeling using random numbers
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Bootstrap with constraints
Sometimes there is correlation betweenSometimes there is correlation between 
the data
Must incorporate these constraints into 
the sampling

Bootstrap summary
BootstrapBootstrap

Creates mean (bias), confidence intervals, 
distribution of a “statistic”

Useful when:
Statistic is complex
Statistic collapses lots of data
S i i i l b d lStatistic simple but data nonnormal 
(nonparametric is equally good alternative)

Don’t bootstrap
To hide small sample
On certain statistics (max,min, S)

Likelihood

Likelihood is one of big four
Frequentist/Likelihood/Bayesian/MonteFrequentist/Likelihood/Bayesian/Monte 
Carlo
Likelihood has features in common with 
both Frequentist & Bayesian
Inventor of likelihood is RA FisherInventor of likelihood is RA Fisher
Great unifier – every frequentist method 
can be derived from scratch using likelihood
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Likelihood
Turn probability on its headTurn probability on its head

Normally P(data|parameters)
Estimate parameters (e.g. μ,σ)
Then look at probability of observing data given 
estimates or null hypothesis parameters

P(data|H0:μ0=0)

Random variables are this way too – parameters areRandom variables are this way too parameters are 
assumed known although they never are

Likelihood:
L(parameters)=P(parameters|data)

Example

Binomial coin flipsBinomial coin flips
Know n=10, x=2 
heads, p unknown
What is L(p)
Binomial 0.4

0.6

0.8

1

Li
ke

lih
oo

d

x=2
x=5
x=7
x=10

L(p)=P(X=2)=(10 
choose 2)px(1-p)10-x

0 0.2 0.4 0.6 0.8 1
0

0.2

p

Practical application

M k tMark-recapture
Capture 25 and tag & 
release
Capture 60, 5 tagged
Naively 25*60/5=300
What is N population 0.15

0.2

0.25

Likelihood of N

el
ih

oo
d

What is N, population 
size
Hypergeometric 
distribution

0 200 400 600 800 1000 1200
0

0.05

0.1

N

Li
ke

How would you report N

The whole distribution?
Peak or maximum?
Confidence interval

Equal likelihood 0.2

0.25

Likelihood of N

oo
d

Not symmetric
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0

0.05

0.1

0.15

N

Li
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What if you have multiple points

Binomial many trials rolled into one numberBinomial many trials rolled into one number
What if we are looking at time to events 
(e.g. look at tree rings for fire scars, get 
times between fires for that tree)
Get a sequence of inter-fire intervals:Get a sequence of inter fire intervals:

2 2 3 3 4 4 6 7 9 12 20 28 39 70 110 200
Treat as exponential: p(x|λ)=λexp(-λx)

Use law of independent events
p(x & x2 & x3 & & x )=p(x1 & x2 & x3 & … & xn)= 

p(x1)*p(x2)* … p(xn) 
Iff independent

In likelihood very often assume independence
So

L(λ|2 2 … 200)=( | )
L(λ|2)*L(λ|2)*…*L(λ|200)
= λn exp(-λ 2)∗ exp(-λ 2)∗... ∗exp(-λ 200)
= λn exp(-λ∗(2+2+…+200))
= λn exp(-λ∗Σti)

Likelihood of λ|data
1 x 10-31

0 4

0.6

0.8

1

L(
λ)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

λ

Estimation
Makes sense to use the “maximumMakes sense to use the maximum 
likelihood estimate” (MLE) to estimate λ
Can find the maximum:

Visually
NumericallyNumerically
Calculus
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Maximum likelihood estimatof 
fire

Recall L(λ|{ti})= λn exp(-λ∗Σti)Recall L(λ|{ti})= λ exp( λ∗Σti)
Recall maximum wrt λ occurs where 
derivative=0
So d/dλ L(λ|{ti}) 

0= d/dλ λn exp(-λ∗Σti)
= n λn-1 exp(-λ∗Σti)+ λn exp(-λ∗Σti)*(- Σti)i i i

= exp(-λ∗Σti)* λn-1 *(n-λ Σti)
Or 0=(n-λ Σti)
Or λ=n/ Σti or 1/λ= Σti/n = average t

MLE λ=1/32.43=0.0308

A trick
log is monotonic so log(f(x)) has a maximum atlog is monotonic so log(f(x)) has a maximum at 
the same place as maximum of f(x)
l(params|data)= log L(params|data)
Almost always makes calculations much easier 
for likelihood

starts with product of likelihoods which is hard to take 
a derivative of and turns it into sums which is easy to 
take derivative oftake derivative of
L(λ|{ti})=λn exp(-λ∗Σti)
l(λ|{ti}) = log L(λ|{ti}) = n log λ – λ Σti
So:

d/dλ l(λ)=n/λ- Σti = 0 MLE λ = n/Σti

Finishing the trick

S ti l t kSometimes also take     
–log L

Then we minimize instead 
of maximize (just like 
least squares)
Very small numbers 
(1x10-31) turn into 100

110

120

130

( λ
)

(1x10 31) turn into 
numbers like +31 or 
+71.38

This is called “support” 
or just l 0 0.05 0.1 0.15 0.2

70

80

90

100

λ

-l(

Works for the normal too
L(μ σ|x)=1/(σ√2π)exp(-(x-μ)2/(2σ))L(μ,σ|x)=1/(σ√2π)exp(-(x-μ)2/(2σ))
L (μ,σ|{xi})=1/(σ√2π)n * exp(-(x1-μ)2/(2σ2)) * 
exp(-(x2-μ)2/(2σ2))* …
L (μ,σ|{xi})=1/(σ√2π)n exp(-Σ(xi-μ)2/(2σ2)) 
l (μ,σ|{xi})= log L = -nlog σ√2π − Σ(xi-μ)2/(2σ2)
Max of l

0=d/dμ l = -2 Σ(xi-μ)/(2σ2)=[2nμ-Σxi]/2σ μ=(Σxi)/n
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Likelihood ratio
Say we had a null hypothesis of λ=0.05=1/20 (fireSay we had a null hypothesis of λ 0.05 1/20 (fire 
every 20 years)
How can we contrast this to observed λ=0.0308?
Use a likelihood ratio

L(λ1)/L(λ2)=c
Can say λ1 is c times more likely than λ2

L(0.05)/L(0.0308)=8.2e-033/7.5e-032=0.109408
Or L(0.0308)/L(0.05)= 7.5e-032/ 8.2e-033=9.14

Note log[L(p1)/L(p2)]=l(p1)-l(p2)
For large sample:

–2*log[L(p1)/L(p2)]=-2[l(p1)-l(p2)]~χn
2

n is difference in degrees of freedom (e.g. n=1)

Confidence intervals
Hudson’s profile likelihood method

–2*log[L(p1)/L(p2)]=-2[l(p1)-l(p2)]~χn
2

Critical value c2
1,0.95=3.84

-log likelihood difference of 3.84/2=1.92
80

0 0.018 0.031 0.049 0.1
70

71.671

73.591

75

λ

2-parameter confidence 
intervals

Option 1 find CI holding other parameters fixedOption 1 – find CI holding other parameters fixed
Option 2 – use integration to get contour intervals

Likelihood very general
Can use likelihood in much moreCan use likelihood in much more 
complicated situations
Dynamical models
Phylogenies
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Likelihood & dynamic models
N = λ N exp( cN )+ε (Ricker)Nt+1= λ Nt exp(-cNt)+εt  (Ricker)
Given N, model for ε, can calculate 
estimates for λ, c, ε
Often assume ε~Lognormal(0,σ)

Nt 1= λ Nt exp(-cNt+εt) (Ricker)Nt+1= λ Nt exp( cNt+εt) (Ricker)

Likelihood & phylogenies

P(X|v,π,Θ)=πC μCA(ϖ1|Θ)+ πA *μAC(v4|Θ)*μAC(v2|Θ)

Likelihood ratio test
Use for nested models

Recall nested = one set of independent variables is subset of another set
Recall likelihood ratio c=L1/L2 is “how many times more likely” is 1 than 2

For a nested model
If parameters are MLE estimates
Then -2 log (L1/L2) ~ χ2

p2-p1

Usually LH0/LHA, reject if –2 log(LH0/LHA)> χ2
pa-p0,0.95

Example
Null hypothesis of λ 0 05 1/20 (fire every 20 years)Null hypothesis of λ=0.05=1/20 (fire every 20 years)
Observed λ=0.0308?
L(0.05)/L(0.0308)=8.2e-033/7.5e-032=0.109408

- 2 log (L/L)=4.4253>3.84= χ2
1-0,0.95

Reject null hypothesis

AIC (Akiake information 
criteria)

Extension of likelihood ratio test for non-Extension of likelihood ratio test for non
nested models
Repeat NON-NESTED models
Can compare any two models that share a 
common dataset and error model
AIC=-2log(L)+2pg( ) p
The +2p comes out of deep mathematical 
reasons (information theory)
AIC is a “badness of fit” (smaller AIC better)
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AIC variations
AIC=2k+n*log(RSS/n)AIC=2k+n*log(RSS/n)
AICc=AIC+2k(k+1)/(n-k-1)

Corrects for small sample size

Model comparison
Three levels of approachThree levels of approach

Null hypothesis HA vs H0
Nested with null at bottom H3 vs H2 vs H1 vs H0
Comparison – non-nested models, all biologically 
realistic

AIC makes model comparison possibleAIC makes model comparison possible
Revolutionizing statistics

AIC frees from nestedness

AIC continued
Smallest AIC is best modelSmallest AIC is best model

(least bad fit)
Absolute AIC irrelevant (smaller AIC with bigger 
sample size)
Delta (difference) matters
Δi=AICi-AICmin

χ2 distributed – can get p-valuesχ g p
Δi>3.84 is significant

Also likelihood ratio>1.92
Burnham & Anderson

Δi 0-2 Substantial support (relative to base)
Δi 4-7 Considerably less
>10 Essentially no support

AIC continued
WeightsWeights

wi=exp(-Δi/2)/Σjexp(-Δj/2)
wi=probability for that model
Can use for blending of models

μ=μ1w1+μ2w2+…
Predicted y also

Other related measuresOther related measures
BIC (Bayesian Information Criteria)
Small sample AIC
QIC
TIC
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Species area example
Likeli

K
Likeli
hood AIC Δi wi R2

aAb 3 221.64 227.64 813.12 0 0.962

a+blog(A) 3 85.56 91.56 677.04 0 0.986

a(1-e-bA) 3 526 17 529 17 1114 65 0 0 624a(1 e ) 3 526.17 529.17 1114.65 0 0.624

a(1-e-bA)c 4 -50.85 -42.85 542.63 0 0.995

A[1-e-b(x-c)^d] 5 -575.48 -585.48 0.00 1 0.999

Likelihood Summary
p(parameter|data)
V lVery general

Includes normal frequentist as special case
Extends to much more complicated scenarios

Usually –log Likelihood
Plot likelihood surfaces
MLE (maximum likelihood estimate)
Likelihood ratio

Tests nested models
AIC

Tests non-nested models

In R
x=c(1,2,3,4)
y=c(0,2,3,5)
plot(x,y)
summary(lm(y~x))
library(bbmle)
reg_nll<-function(b0,b1,sig) -sum(dnorm(y,mean=b0+b1*x,sd=sig,log=T))
m<-mle2(reg_nll,list(b0=1,b1=1,sig=1))
summary(m)
p<-profile(m)
plot(p)
confint(p)
AIC(m)

Bayesian analysis
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Bayesian approach
Calculate p(θ|data) (like likelihood)Calculate p(θ|data) (like likelihood)

Get probability distribution for θ, not 
probability of data given null θ

Use a “prior”
Prior expectations about θp
Makes Bayesian very controversial – loss of 
objectivity!?

Bayes Theorem
p(θ|data)=p(θ)*p(data|θ)/p(data)p(θ|data)=p(θ)*p(data|θ)/p(data)

=p(θ)*p(data|θ)/∫p(θ)p(data/θ)dθ
Posterior=prior*”likelihood”/c
Likelihood is not the same sense as 
used by likelihood school
Posterior & prior are:

Probability distributions for θ
Sum up to one across θ

Mike West - Duke

What prior
InformativeInformative

Have previous data previous expectation

Uninformative
Well known distribution (e.g. normal) but with very high 
variance

Improper uninformative:
uniform – all values equally likely
N i bl iNot integrable->improper

Conjugate –prior chosen so that calculations are easy
Well-known pairs (beta/binomial, Gaussian/inverse-Chi2, 
etc)
Can be informative or unininformative
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Result
Posterior = distribution of θPosterior = distribution of θ
Can get expected value, confidence intervals 
on θ
Solution of Bayes formula, 2 methods:

By calculus (usually need conjugate prior)
By computer

Gibbs distribution & Markov Chain Monte Carlo (MCMC)
Can simulate random sample from posterior without 
knowing formula
Many replicates gives approximation to distribution

Clark’s example (S&G ch 17)
Estimating mortality rate of Acer rubrum in southernEstimating mortality rate of Acer rubrum in southern 
Appalachians
127/132 trees survive in study site μ=0.962
But:

mortality rare, how much confidence do we have?
Frequentist approach:

Binomial distribution with μ=p=0.962μ p
Derive confidence intervals on μ
Alternatively compare μ=p=0.962 vs. μ0

Likelihood approach:
Derive likelihood surface

p(data|q)=(n,k)θkθn-k (i.e. binomial)

Uniform (noninformative) prior
Prior uniform 2

Uniform prior

Prior uniform 
(p(x)=1)
Note: 
posterior= 
likelihood 
rescaled
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Informed prior
Choose 40

Informed prior
Choose 
conjugate (beta)
USFIA gives 
137/142 for 
larger area
Prior(q)= 
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(q)
Beta(137,142)
Posterior much 
narrower
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MCMC
Recall: p(θ|data)=p(θ)*p(data|θ)/p(data)Recall: p(θ|data) p(θ) p(data|θ)/p(data)

=p(θ)*p(data|θ)/∫p(θ)p(data/θ)dθ
Can be a tough integral
Monte Carlo integration

∫=area=%points under f(x)*area of box
Breaks in many dimensions

MCMCMCMC
Points are random walk w/ rejection rule
Gibb’s sampler, Metropolis Hastings

In practice
Ignore beginning (burn in)
Run for a long time!
Run a couple of times with different seeds

Bayesian hypothesis testing
Use posteriorUse posterior

But p(b=0) is 0 

Credible intervals
Similar to confidence intervals

BIC/Schwarz=-2log(L)+k*log(n)
cf log(n) vs 2 (in AIC)

DICDIC
Deviance D(θ)=-2log(p(y|θ))+C
Dbar=Eq[D(θ)) badness of fit
pD=Dbar-D(θbar)  model complexity
DIC=pD+Dbar
Easy to calculate from MCMC/Winbugs

Net net
Uninformative priorUninformative prior

Likelihood (data) dominates
Weakly informative may modify somewhat
In limit with uniform prior, large data, 
same as likelihood
MCMC allow solution of complex modelsMCMC allow solution of complex models

Informative prior
Balance depends on amount of data in 
prior vs likelihood – a form of weighted 
average
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Bayesian tools
BUGSBUGS

http://www.mrc-
bsu.cam.ac.uk/bugs/Welcome.html

BATS (time series)
http://www.stat.duke.edu/~mw/bats.htmlp

Bayesian in WinBugs (Poisson, 
Poisson Lognormal)
#Quercus rubra trees per quadrat counted, Poisson distribution, want to estimate lambda (mean density)
#box 3.4 in McCarthy's book Bayesian Methods for Ecology
model
{

1. Open Winbugs
2. New file, enter,save
3. Model/specification…

1 Dblclick on model Check Model

{
for (i in 1:10) {

y[i]~dpois(lambda)  #each data point is sampled from poisson w/ mean lambda
}
lambda~dlnorm(0.0,1.0E-6) #uinformative prior - lognormal since lambda>0, 1.0E-6=precision, var=1/precision

}

list(y=c(6,0,1,2,1,7,1,5,2,0))

list(lambda=5) #ball park initial value for lambda 

#Poisson but lambda should vary across quadrats - wet, dry, etc
#let lambda be lognormal across quadrats
model
{

for (i in 1:10)
{

lambda[i]~dlnorm(mu,tau)
1. Dblclick on model, Check Model
2. Dblclick on data, Load data
3. Compile model
4. Load or generate initial values

4. Model/Update…
5. Inference/Samples…

1. Set variables to track

6. Run updates (from #4)
7. View history, distribution, 

stats (from #5)

y[i]~dpois(lambda[i])
}
mu~dnorm(0,1.0E-3) #prior on lognormal mu 1.0E-6 makes too diffuse - cannot bracket error
sd~dunif(0,10)
tau<-1/(sd*sd)  #tau is precision for lognormal, precision=1/var, sd is uniform on 0-10

}

list(y=c(6,0,1,2,1,7,1,5,2,0))

From a leading advocate of 
Bayesian methods in ecology

This importance of philosophy seems to be reinforced by examples aimed at p p p y y p
demonstrating, comparing, and/or contrasting classical vs. SB. Such examples 
show that, with similar underlying assumptions (e.g. vague priors), classical 
methods and SB yield near identical confidence envelopes –with a lot more 
work, one can expect to obtain a Bayesian credible interval (CI) that is not 
importantly different from a classical confidence interval. … If one gets 
essentially the same answer, philosophy must be the motivation. Despite the 
counsel to start from one’s view of probability, ecologists having no 
philosophical axe to grind might question the point; if Bayes requires more work 
to arrive at the same interpretation, why bother with Bayes? 
Those already possessing a healthy scepticism of classical hypothesis tests can 
continue to estimate classical confidence intervals without offending many 
Bayesians. The focus of this paper stems from an alternative view that the 
emergence of modern Bayes has little to do with philosophy, but comes rather 
from pragmatism. ….
A growing number of practitioners are willing to let the choice between 
frequentist and Bayes rest on complexity…. The power of HB comes from a 
capacity to accommodate complexity.
Clark 2005 Ecology Letters

Bayesian summary
Prior+likelihood(of data) PosteriorPrior+likelihood(of data) Posterior
Posterior is a probability distribution of 
parameter
Various types of priors
Benefits:

Allows increase of power with prior dataAllows increase of power with prior data
Allows balance of one experiment vs. world of 
known data
No silly null model

Even uninformative prior gets enhanced by data
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Comparison summary
Parametric distribution of parameter (parametric e.g. t), emphasize p

1. Normality assumed for model (usually)
2. Estimator has a formula
3. SE of estimator has a distribution
4. P values, Confidence Intervals

Monte Carlo distribution of statistic, emphasize p
1. Define statistic
2. Define randomization
3. Calc statistic over many randomizations
4. Compare observed statistic to distribution

1. Likelihood likelihood distribution of parameter (often complex), emphasize whole distribution
1. Define probability model
2. Write likelihood
3. Maximize, confidence interval, likelihood ratio

2. Bayesian Posterior distribution of parameter (may be MCMC), emphasize whole distribution
1. Define prior
2. Define model
3. Likelihood
4. Calculate posterior =likelihood*prior
5. Credible intervals, Bayes factors, BIC/DIC

Is there a difference?
All get distribution of a parameter/statistic, butAll get distribution of a parameter/statistic, but 
calculate/describe it different ways
Tendency to use it different ways

=philosphy
But not required! Get a p-value in Bayesian, a distribution in 
parametric

Frequentist (p)
(p(data|param)

“Distributional” (CI)
(p(param|data)

Model
Selection

Subjective 
Prior

Dist 
(statistic)

Parametric √ √ (distribution, e.g. t) =likelihood

Monte Carlo √ √ (histogram) √* (r2) √

Likelihood √ √ (l surface) √ (IC)

Bayesian √+ √ (MCMC or conjugate
posterior)

√ (IC) √

*=cross validation, jacknife correct for overfitting
+=one-tailed test on posterior

Pros/cons
Pros Cons Use when

Parametric Familiarity
Analytical solutions

Normal assumption
Simple models only

Whenever you can 
(i.e. simple enough)

Monte Carlo Extremely flexible 
(computer solve any 
model)
Intuitive

Requires 
programming
No theoretical 
framework

Too complicated
Summary statistic 
that boils down lots 
of data
Interesting null

Likelihood General (others often Requires advanced Medium complexity
special cases)
Powerful

math

Bayesian Allows prior
Extremely flexible 
(computer solve any 
model)

Complex
Propaganda
Priors subjective

Too complicated
Have a prior

General setup 
Do all 4 styles of regression in 4Do all 4 styles of regression in 4

x=c(1,2,3,4)
y=c(0,2,3,5)
plot(x,y)

(l ( ))summary(lm(y~x))
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Regression I - Parametric
Parametric: Assume e~NormalParametric: Assume e~Normal

Use least-squares(=MLE) estimator
estimates for β=cov(x,y)/var(x) and 

σ=RSS/df
β and σ ~ t-distribution
MSS/RSS~F

Parametric in R
xin<-cbind(1,x)
temp< chol2in (chol(t( in)%*% in)) #%*% matri m lttemp<-chol2inv(chol(t(xin)%*%xin)) #%*%=matrix mult
bhat<-temp%*%t(xin)%*%y
res<-as.vector(y-xin%*%bhat)
df<-(nrow(xin)-ncol(xin))
sse<-as.numeric(res%*%res)
tss<-sum((y-mean(y))^2)
seb=sqrt(diag(sse*temp)/df)
b1_ci=bhat[2]+c(qt(0.025,df=df),qt(0.975,df=df))*seb[2]
r2<-1-sse/tssr2 1 sse/tss
F<-((tss-sse)/1)/(sse/df)
pF<-pf(F,df1=1,df2=df)

curve(dt((x-bhat[2])/seb[2],df=df),0,4)#plot t-
distribution of b1

Regression II - Likelihood
LikelihoodLikelihood

Use maximum-likelihood estimate
( least-squares)

Likelihood surface of β and σ
Likelihood ratio test

(=F-test)

Likelihood In R
reg_nll<-function(p) -sum(dnorm(y,mean=p[1]+p[2]*x,sd=p[3],log=T))

o<-optim(c(1,1,1),reg nll)p ( ( , , ), g_ )
o$par

o$val

# 1-d plot of support surface (-log) for sigma

vals=seq(0.05,1,0.01)
z<-matrix(NaN,1,length(vals))

for (i in 1:length(vals)) {

z[i]=reg_nll(c(o$par[1],o$par[2],vals[i]))

}
plot(vals,z,type="l")

plot(vals,exp(-z),type="l") #actual likelihood

#2-d plot of b0 vs b1
vals<-seq(-5,5,0.1);

z<-matrix(NaN,length(vals),length(vals))

for (i in 1:length(vals)) {
for (j in 1:length(vals)) {

z[i,j]=reg_nll(c(vals[i],vals[j],o$par[3]))

}

}
image(vals,vals,z,col=rainbow(12),xlab="b0",ylab="b1")

contour(vals,vals,z,add=T)



10/5/2009

27

Likelihood in R II
#Confidence interval
uniroot(function(x)reg_nll(c(o$par[1],o$par[2],x))-

1.92,c(0,o$par[3]))
uniroot(function(x)reg_nll(c(o$par[1],o$par[2],x))-

1.92,c(o$par[3],2))

#null test (likelihood ratio)
null_ll<-function(p) -sum(dnorm(y,mean=p[1],sd=p[3],log=T))
on<-optim(c(1,1,1),null_ll)
on
lik=prod(dnorm(y,mean=o$par[1]+o$par[2]*x,sd=o$par[3]))
nullik=prod(dnorm(y,mean=on$par[1],sd=on$par[3]))
lr<- -2*log(nullik/lik)
pchisq(lr,2)

Regression III - Bootstrap
#variation around null – significance testing
library(boot)
boot.regr <- function(data, indices){

y <- data[indices,1]
x<-data[,2]
mod<-lm(y~x) 
coefficients(mod) # return coefficient vector

}
df<-data.frame(cbind(y=y,x=x)) #boot likes a dataframe input
b=boot(df,boot.regr,R=1000)
plot(b,index=1)
plot(b,index=2)
boot.ci(b,conf=0.95,type="perc",index=1)
boot.ci(b,conf=0.95,type="perc",index=2)

#variation around parameter estimate w/ residuals – distribution generation
m<-lm(y~x)
resid<-scale(resid(m),scale=F) #center but do not rescale residuals
df<-data.frame(x=x,y=y,resid=resid)
b=boot(df,function(d,i) {dat=d;dat$y=d$fitted+d$resid[i]; coef(lm(y~x,data=dat))}, R=1000)
plot(b,index=1) #note variance fairly low since bootstrapping doesn’t create data!!

plot(b,index=2)
boot.ci(b,conf=0.95,type="perc",index=1)
boot.ci(b,conf=0.95,type="perc",index=2)

Bayesian in R
post<-function(beta,x,y) {post function(beta,x,y) {

if (beta[3]<0) beta[3]=0
llik<- sum(dnorm(y,x%*%beta[1:2],sd=beta[3],log=T)) 
prior<- sum(dnorm(beta,0,10,log=T))
llik+prior

}

library(MCMCpack)library(MCMCpack)
out <- MCMCmetrop1R(post, c(1,1,1), mcmc=10000,x=xin,y=y)
plot(out)
summary(out)

Bayesian in winbugs
model
{

#note: in dnorm 1E-6 is precision=1/var
b0~dnorm(0,1.0E-6) #prior for intercept 
b1~dnorm(0,1.0E-6) # prior for slope
sig~dgamma(0.1,0.001) #prior for sigma - gamma since must be >0

for (i in 1:4) {
mean[i]<-b0+b1*x[i]   #linear component
y[i]~dnorm(mean[i],sig)  #error component

}
}

list(x=c(1,2,3,4),
y=c(0,2,3,5))


