

32.9

Useful in "metaanalysis"

Which advances science the most?

	р	r ²	Effect
1	0.0001	0.10	1%
2	0.06	0.9	10%
3	0.06	0.2	150%
4	0.50	0.9	100%
5	0.05	0.9	150%

Plotting formulae

plot(Mass~Passerine,data=birds)
boxplot(log(Mass)~Passerine,data=birds)
plot(TotalAbund~Mass,data=birds)
interaction.plot(birds\$Invasive,birds\$Aqua
tic,log(birds\$Mass))

Solving formulae

- Use the "Im" function
- m <-lm(y~diet+mass)</pre>
- Usually work with a dataframe, so
 - m<-lm(y~diet+mass,data=mydata)</p>
- What can you do with m
 - print(m)
 - plot(m)
 - summary(m)
 - predict(m,newdata)

R continued

- summary.aov(m) # factor p
- summary.lm(m) #regression & overall model p, r2, effect sizes
- anova(m) #same as summary.aov(m)
- anova(m1,m2)
- Anova(m1,m2) #library CAR allows type II, III Sum-Squares

