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Regression

Regression
Dependent=endogenous=y continuousDependent=endogenous=y continuous
Independent=exogenous=x=explanatory 
continuous
y=a+bx
We’re doing statistics now=need errorWe re doing statistics now=need error 
model

y=a+bx+ε where ε is ∼Ν(0,σ)

Regression

I d i dIs overdetermined
3 variables to estimate (a,b, σ)
Usually dozens of data points

Regression of 2 points
a b line going through piontsa,b line going through pionts
3 points estimate sigma too

What criteria to use?

Least squares

Gauss 1794
Σεi ?

But + & - cancel

Σ|εi|?
But not nice math

Σεi
2

Bingo!

εi
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Solving OLS
y=a+bx+εy a+bx+ε
ε =y-(a+bx)
Σε2 =Σ (y-(a+bx))2 = Σy2-2y(a+bx)+(a+bx)2

=Σ y2-2ya-2ybx+a2+2abx+(bx)2

Minimize ε2 wrt β (take derivative, set to zero, solve)
dΣε2/db=−Σ2yx+Σ2ax+Σ2bx2=0 Σx[y-a+bx]=0

b=cov(x y)/var(x)b cov(x,y)/var(x)

dΣε2/da=-Σ2y+Σ2a+Σ2bx=0
Σy-Na-Σbx=0  Na=Σy-Σbx goes through bxya −= ),( yx

A second justification
P{y|x}=P{ε1, ε2, ε3, ε4,…}

=P{ε1}P{ε2}P{ ε3}P{ε4}…

ε is ∼Ν(0,σ) 
~c exp(-k(yi-a-bxi) 2/σ2)

So P{y|x}=c exp(-k(yi-a-bxi) 2/σ2)*c exp(-k(yi-a-bxi) 2/σ2)*…
=cN exp(-Σk(yi-a-bxi) /σ2)

So ln P{y|x}=ln [cN Πexp(-k(yi-a-bxi) 2/σ2)]
=N ln c -Σk(yi-a-bxi) 2/σ2

Fortunately maximizing P same as maximizing ln P
Take derivative with respect to a, b and set to zero
Constants fall out – get least squares!

Least squares is maximum probability! Assuming ε
Normal
Independent
Constant σ

Results summary
b=cov(x y)/var(x)b=cov(x,y)/var(x)

b=cor(x,y)std(y)/std(x)
(cor(x,y)=cov(x,y)/std(x)std(y))

a, b each have a t-distribution

Sum of squares
SS = = unexplained variance
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SSresid=             = unexplained variance
SSmodel =           = explained variance
SStotal =            =n Var(y)

SStotal = SSresid + SSmodel !
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r2= SSmodel/SStotal = % variance explained
SSresid/SStotal= 1-SSmodel/Sstotal= 1-% unexplained

In linear univariate case SSmodel/SStotal = r2= 
cor(x,y) 2 !
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Hypothesis testing
b=0b=0

Use t-test with 95% confidence interval around 
estimated b

Model explains more than residuals
(SSmodel/1) / (SSresid/(n-2)) >> 1
F-test with 1 n-2 degrees freedomF test with 1,n 2 degrees freedom

Recall F is ratio of sums of normals!

For univariate linear case two are equal
More generally first tests 1 coefficient, 2nd tests 
whole model

Assumptions of OLS
1 Structural:1. Structural:

Y is continuous
Y depends on 1 variable x
Linear relationship

2. Normality: εi~N(0,σi)
3. Independence: Cov(εi,εj)=0
4. Homoscedasticity: σi=σj

5. (Non-collinearity: Cov(xi,xj)=0)

Residual plots for regression
Check 3 other assumptionsCheck 3 other assumptions

Independence of error terms
Homoscedasticity
Linear model appropriate

Two main plots
εi vs. yi

Detect heteroscedasticity, nonlinearity, some independence
ε vs εεi vs. εi-1

Detect independence
Also Durbin-Watson statistic

Also
εi vs. time of collection, collateral variables

Sample residual plots (εi vs. yi)
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Resid vs. Resid (εi vs εi-1)
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If heteroscedastic
ANOVA is robust if design is nearlyANOVA is robust if design is nearly 
balanced
Regression moderately robust, but one 
side of regression figures more heavily 
into estimates - bias
Often a good transformation will fix the 
problem

Transformation
Can apply to dependent or independentCan apply to dependent or independent
Common transformations:

Y’=log(y) – extremely common in biology
Body mass, abundance, etc
Many stats programs use ln, but log10 easier to plot

Y’=sqrt(y) – if expect y to be a Poisson count
Y’=1/Y (reciprocal) – common for rates (e.g. # 
offspring/female)o p g/ a )
Y’=arcsin(sqrt(y)) – for proportions (0-1)
Box-Cox: y’=(yλ-1)/λ matches 3 above if λ=0, ½, -1) –
most stats packages can calculate “best” λ

Report backtransformed parameters

Diagnostics for normality
Histogram plot of residualsHistogram plot of residuals
QQPlot (quantile-quantile plot)
Residual plots

Should be a symmetric oval with thinning 
at edges – w/ 20-30+ points edges shouldat edges w/ 20 30+ points edges should 
be well traced

Applies to ANOVA & regression
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Normal plots
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Non-normal (needs log transform)
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If non-normal
As long as you have a peak withAs long as you have a peak with 
reasonable symmetry, you’re probably 
OK – very robust
If data is heavily skewed

Non-paremetric testsp
Transform the data (e.g. log)
GLIM

Outliers
The normal distribution assumes tails areThe normal distribution assumes tails are 
“small” – extreme outliers (~3+ standard 
deviations out) “shouldn’t” occur
Can heavily skew estimates
Detecting outliers

Obvious in residual plots
Numeric lists as well

Outside the whiskers in Box plots
Also calculate leverage or influence

Degree of effect on regression slope
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What to do about outliers
Revisit the paper trail for that data point

M t ft d t t th hMost often a data entry or other human error
Simply correct

Revisit notes about that site/experiment/data 
point
Remove if:

Has high leverage and care about estimating 
parameters
Obvious experimental issueObvious experimental issue

If you remove – it is grossly unethical to 
fail to report this – OK to report and 
explain why
A priori filter criteria can also be helpful

Regression summary
OLS = Ordinary Least SquaresOLS = Ordinary Least Squares

Minimize sum of squares to fit line through cloud
= maximum probability
Simple equations for a, b
Sum of squares variance partitioning
Two null hypotheses converge in this case (t-testTwo null hypotheses converge in this case (t test 
vs. ANOVA)

5 assumptions
Test with QQ plots, histograms & residual plots
Transform can help meet requirements

R Introduction

R basics
A simple calculationp

storagename<-expression;
x<-3+4
Inf NaN # not a number

Building vectors
V<-c(1,3,4) #vector
V<-seq(lo,hi,step)     v<-(length=n, from=lo, by=step)
V<-rep(3,times=10)

Boolean vectors
V>3V>3
V>3 & v<10
v1[v2>3] # picks out elements of v that are true

Statistical vectors
v=ordered(v,levels=c(“first”,”second”,”third”))
v=factor(v) #unordered discrete
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Making R repeatable
Results (variables)Results (variables)

List results: ls()
Save results: save.image(“c:/path/name”)
Load results: load(“file”)

Commands (things typed)
Save commands: savehistory(“file”)
Edit commands:edit(file="c:/temp/class.r")
Run commands from file: source("/851/birds.r", 
echo=TRUE,print.eval=TRUE)

R intro II - dataframes
A dataframe is a “fancy” array for holding stats data

H l ( i bl ) & ibl ( /d t i t) l b lHas column (=variable) & possible row (=case/data point) labels

Loading data – have a comma separated text file (can be on URL)
birds<-read.csv("c:/851/birds.csv",header=TRUE) #load data into 

datatframe; also sep=‘;’

Looking at a data frame

summary(birds)  #summary statistics on data
names(birds) #quick way to see variables

Getting one variable/column

birds$SpeciesName #one way to access a variable
birds$Mass

attach(birds) # a quick way to make all variables accessible
Mass
detach(birds) 

More data frames
General syntax

dataframename$varname[row subscripting]
d[1:10] # all variables, 1st 10 rows
d$Mass[3] #3rd row
d$Mass[3:9] #7 rows starting at 3
d$Mass[-1] #last row
d$Mass[d$RangeSize>1000]
d$L M l (d$M ) # dd ld$LnMass=log(d$Mass) #add new column

Group calculations
table(d$var1,d$var2) #crosstab
tapply(d$numericvar,list(d$factor1,d$factor2),mean/std) #gives 
stats by group

R intro III –
plotting/summarizing  data
summary(birds)summary(birds)
pairs(birds)
hist(birds$Mass)
hist(log(birds$mass))
plot(density(log(bird$Mass),na.rm=TRUE))
#
#plotting relationships
#
pairs(birds)
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Formulas in R
Key concept in R is the formulay p
Written as “dependent~independents”
“+” includes additional terms
Constant term automatically included

-1 omits constant (e.g. y~x-1) (or +0)
Interactions via : & *

“:” interaction only Y~x:z
“*” includes subterms y~x*z = y~x+z+x:z

Polynomial:
(var1+var2)^2 or even (a+b)*(c+d)(var1+var2)^2 or even (a+b)*(c+d)
poly(var1,var2,2)

Arithmetic
log(var)  etc. allowed
I(x+y) does actual arithmetic

Usually can specify dataframe after formula

Plotting with formulas
plot(Mass~Passerine data=birds)plot(Mass~Passerine,data=birds)
boxplot(log(Mass)~Passerine,data=birds)
plot(TotalAbund~Mass,data=birds)
interaction.plot(birds$Invasive,birds$Aqua

tic log(birds$Mass))tic,log(birds$Mass))

Solving OLS with formulas
Use the “lm” functionUse t e u ct o
m<-lm(y~mass)
Usually work with a dataframe, so

m<-lm(y~mass,data=mydata)
What can you do with m

print(m)
plot(m)
summary(m)
predict(m,newdata)
resid(m) or m$resid
coef(m)
fitted(m) # predicted
model.matrix(m)
abline(m) #after plot of formula)

R examples
#
#fitting models
#
ma<-lm(Mass~Aquatic,data=birds) #run a model
summary(ma) #summarize it
plot(ma) #plot it
ma<-lm(log(Mass)~Aquatic,data=birds) #oops - need log transform
summary(ma) #despite enormous variance, is a significant difference
plot(ma)
ma<-lm(log(Mass)~Invasive data=birds) #no differencema<-lm(log(Mass)~Invasive,data=birds) #no difference
summary(ma)
ra<-lm(Rangesize~TotalAbund,data=birds)
summary(ra)
plot(ra)
fitted(ra)


