

Regression

- Dependent=endogenous=y continuous
- Independent=exogenous=x=explanatory continuous
- y=a+bx
- We're doing statistics now=need error model
 - $y=a+bx+\varepsilon$ where ε is $\sim N(0,\sigma)$

Hypothesis testing

∎ b=0

- Use t-test with 95% confidence interval around estimated b
- Model explains more than residuals
 - (SS_{model}/1) / (SS_{resid}/(n-2)) >> 1
 - F-test with 1,n-2 degrees freedom
 - Recall F is ratio of sums of normals!
- For univariate linear case two are equal
 - More generally first tests 1 coefficient, 2nd tests whole model

Assumptions of OLS

- 1. Structural:
 - Y is continuous
 - Y depends on 1 variable x
 - Linear relationship
- 2. Normality: $\varepsilon_i \sim N(0, \sigma_i)$
- 3. Independence: $Cov(\varepsilon_i, \varepsilon_i) = 0$
- 4. Homoscedasticity: $\sigma_i = \sigma_i$
- 5. (Non-collinearity: $Cov(x_i, x_i) = 0$)

If heteroscedastic

- ANOVA is robust *if* design is nearly balanced
- Regression moderately robust, but one side of regression figures more heavily into estimates - bias
- Often a good transformation will fix the problem

Regression summary

- OLS = Ordinary Least Squares
 - Minimize sum of squares to fit line through cloud
 - = maximum probability
 - Simple equations for a, b
 - Sum of squares → variance partitioning
 - Two null hypotheses converge in this case (t-test vs. ANOVA)
- 5 assumptions
 - Test with QQ plots, histograms & residual plots
 - Transform can help meet requirements

Making R repeatable

- Results (variables)
 - List results: ls()
 - Save results: save.image("c:/path/name")
 - Load results: load("file")
- Commands (things typed)
 - Save commands: savehistory("file")
 - Edit commands:edit(file="c:/temp/class.r")
 - Run commands from file: source("/851/birds.r", echo=TRUE,print.eval=TRUE)

A dataframe is a "fancy" array for holding stats data Has column (=variable) & possible row (=case/data point) labels

- Loading data have a comma separated text file (can be on URL)
- birds<-read.csv("c:/851/birds.csv",header=TRUE) #load data into datatframe; also sep=';'
- Looking at a data frame

summary(birds) #summary statistics on data names(birds) #quick way to see variables

Getting one variable/column

birds\$SpeciesName #one way to access a variable birds\$Mass $% \left({{{\rm{S}}_{\rm{A}}} \right) = {\rm{A}}_{\rm{A}} \right) = {\rm{A}}_{\rm{A}} \left({{{\rm{A}}_{\rm{A}}} \right) = {\rm{A}}_{\rm{A}} \left({{{\rm{A}}}} \right) = {\rm{A}}_{\rm{A}} \left({{{\rm{$

attach(birds) # a quick way to make all variables accessible Mass detach(birds)

Plotting with formulas

plot(Mass~Passerine,data=birds)
boxplot(log(Mass)~Passerine,data=birds)
plot(TotalAbund~Mass,data=birds)
interaction.plot(birds\$Invasive,birds\$Aqua
tic,log(birds\$Mass))

