

Tool dep	pends on	variables
	Dependent Discrete	Dependent Continuous
Independent Discrete	Contingency table/chi2	ANOVA t-test
Independent Continous	Logistic regression CART	(linear) regression CART

The top 10 things you need to remember from calculus

- Derivatives=slope A derivative is the slope of the line tangent to the function dy/dx
- 2. Differential=rate of change in variables A differential represents how much y changes with a change in x: dy=df(x)dx. Note that for infinitesimally small dx, this is completely accurate, as dx gets bigger, this becomes less accurate (in fact it is a first order or linear approximation).
- Derivatives and differentials are defined at a single point, but if we use this definition at every point, we get a new function. This is the derivative of f(x) and is denoted f'(x)

То	n 10 (oc	antinued)	
10		ontinued)	
4.	Simple rule	s for taking derivati	ves are:
	f(x)=c	f'(x)=0	
	f(x)=ax	f(x)=a	
	f(x)=x ⁿ	f'(x)=nx ⁿ⁻¹	
	f(x)=exp(x)	f(x)=exp(x)	
	f(x)=ln(x)	f(x)=1/x	
	f(x)=g(x)*h(x	f(x)=g'(x)h(x)+g(x)h'(x)	
) f(x)=g(h(x))	f'(x)=g'(h(x))h'(x)	
	f(x)=1/g(x)	f'(x)=-g'(x)/g(x) ²	

- Derivatives can be taken of derivatives. This yields second derivatives and so on. A second derivative tells how fast the slope is changing. A positive second derivative means the slope is increasing and hence is concave up.
- 6. An integral is an antiderivative
- 7. An integral is an area under a curve
- 8. An integral is an infinite sum (uncountable)

Counting process distributions (6)

- Imagine you are sitting some where
 - Events occur
 - You study the # of events, the time between events
- This is a counting process
- Now time can be:
- discrete (e.g. did the event occur this year)continuous (e.g. Geiger counter)
- These all assume events at time t are independent of all other times
 - Memoryless

	ountir tributio	<u> </u>		ess		
	Discr	ete Ti	me	Continu	ious Ti	me
	Time=n, inte	rate at erval=p		Time=t, insta	ntaneou	is rate=λ
	Distribution	E(X)	Var(X)	Distribution	E(X)	Var(X)
time to next event	Geometric	1/p	(1-p)/p ²	Exponential	1/λ	$1/\lambda^2$
time to the nth event	Negative binomial	n/p	n(1-p)/p ²	Gamma	n/λ	n/λ^2
expected (mean) # events in	Binomial	np	np(1-p)	Poisson	λt	λt

 $E(X) = \mu$

R	e	pea	ted 1	tests		
	k	p	Wrong psig	Bonf Psig	B&H psig	Result
	6	0.006	0.05	0.05/6= 0.00833	0.05*6/6 =0.05	S
	5	0.01	0.05	0.00833	0.04167	S
	4	0.02	0.05	0.00833	0.3333	S
	3	0.03	0.05	0.00833	0.025	NS
					0.1667	NS
	2	0.04	0.05	0.00833	0.1007	11/2

