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Week 2 - Distributions

Statistics is the study of 
distributions Types of variables

Continuous (real)
Temperature, nitrogen concentration, time, steroid 
concentration

DiscreteDiscrete
Ordered, infinite

Number of individuals
Unordered, finite

Blue morph, green morph
Cooperative, uncooperative

Statistical tools available entirely dependent 
on types of variables

Tool depends on variables
Dependent
Discrete

Dependent
Continuous

Independent
Discrete

Contingency 
table/chi2

ANOVA
t-test

Independent
Continous

Logistic 
regression
CART

(linear) 
regression
CART

The top 10 things you need to 
remember from calculus
1. Derivatives=slope – A derivative is the slope of the 

line tangent to the function dy/dx
2. Differential=rate of change in variables – A 

differential represents how much y changes with a p y g
change in x: dy=df(x)dx. Note that for 
infinitesimally small dx, this is completely accurate, 
as dx gets bigger, this becomes less accurate (in 
fact it is a first order or linear approximation).

3. Derivatives and differentials are defined at a single 
point, but if we use this definition at every point, we 
get a new function. This is the derivative of f(x) and 
is denoted f'(x)

Top 10 (continued)

4. Simple rules for taking derivatives are:
f(x)=c f'(x)=0

f(x)=ax f(x)=a

f(x)=xn f'(x)=nxn-1

f(x)=exp(x) f(x)=exp(x)

f(x)=ln(x) f(x)=1/x

f(x)=g(x)*h(x
)

f(x)=g'(x)h(x)+g(x)h'(x)

f(x)=g(h(x)) f'(x)=g'(h(x))h'(x)

f(x)=1/g(x) f'(x)=-g'(x)/g(x)2
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Top 10 (continued)
5. Derivatives can be taken of derivatives. This 

yields second derivatives and so on. A 
second derivative tells how fast the slope is 
changing A positive second derivativechanging. A positive second derivative 
means the slope is increasing and hence is 
concave up.

6. An integral is an antiderivative
7. An integral is an area under a curve
8. An integral is an infinite sum (uncountable)

Top 10 (continued)

9. The geometric series: 
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Probability
1) Law of simultaneous events:

P(both A and B occur)=P(A∪B)= P(A)+P(B)–P(A∩B) 
1a) Law of addition

a special case of above: if A∩B=∅ ⇒ P(A∪B)= P(A)+P(B)
2) Conditional probability

A B

2) Conditional probability
P(A|B)=P(A∩B)/P(B)

3) Independence
If P(A|B)=P(A) then A & B are independent 

23a) Law of multiplication
combining 2 & 3
if A & B are independent then P(A ∩ B)=P(A)P(B)

4) Law of total probability
Let Ai be a disjoint set that spans Σ (i.e. Ai ∩ Aj = ∅ and ∪i Ai = Σ)
Then for any B, P(B)=ΣP(B∩Ai)=ΣP(B|Ai)P(Ai)

Concrete example
Roll a die

A={1,3,5} Odd numbers (3/6)
B={1,2,3} Low numbers (3/6)
C={6}       Highest number (1/6)
D={1,2}    Low numbers (2/6)

Law of simultaneous events:Law of simultaneous events:
P(A ∪ B) = P(A)+P(B)-P(A ∩ B)

=3/6+3/6-2/6=4/6
Law of addition

P(A ∪ C)=P(A)+P(C )=3/6+1/6=4/6 (P(A ∩ B)=0)
Independence

P(A|B)=P(A ∩ B)/P(B) = 2/6 / 3/6 = 2/3 ≠ P(A)
P(A|D)= P(A ∩ D)/P(D) = 1/6 / 2/6 = ½ = P(A)

Law of multiplication
P(A ∩ D)=P(A)*P(D)=3/6*2/6=1/6

Law of total probability
P(Low)=P(Low|Even)*P(Even)+P(Low|Odd)*P(Odd)
P(B)=P(B|~A)*P(~A)+P(B|A)*P(A)=1/3*1/2+2/3*1/2=1/2

Random variables
A random variable (X) takes on different 
values

may be continuous or discrete
May go form to + or just 0 to + orMay go form -∞ to +∞ or just 0 to +∞ or …

A random variable is defined by its 
distribution

E.g. X~N(0,1)
The probability that it takes on a given value 
is completely specified by a function:

F(x)=P(X≤x)
E.g. if X~N(0,1) then F is hard to write down but 
know the picture
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Two cases
{x} discrete (1,2,3,4,…)

Usually specify p(x)=P(X=x)
Then

( ) ( ) ( )
x

F x P X x p x= ≤ = ∑
{x} continuous 

Sometimes easier to specify p(x)
No exact meaning (probability N(0,1)=0.134278=0)

But

E.g. Normal p(x)=1/sqrt(2π)σ*exp(-(x-μ)2/ σ2)
i.e. Density vs cumulative probability function

1i=

( ) ( ) ( )
x

F x P X x p x dx
−∞

= ≤ = ∫

Notation
alert

Throughout I will 
use:

P probability of
0
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Normal pdf vs cdf

pdf (p)
cdf (F)

P=probability of
F = cumulative 
distribution function
p = probability 
density
F=∫p
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Poisson pdf vs cdf

pdf (p)
cdf (F)

Expectation
Expectation is a fancy word for a weighted 
average

Specifically averaged weighted by p(x)

Gives the mean (μ=E(X) ) 
(x1+x2+x3)/n = 1/n x1+1/n x2+ 1/n x3

Example
Empirical distribution 1,1,3,3,4
1*.4+3*.4+4

( ) ( ) ( )i i
i
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∞

−∞
= =∑ ∫

Moments are a generalization 
of expectation

ith moment is μi=E(Xn)

Generally more useful is a “central moment)
( ) ( ) ( )n n n

i i
i

E x x p x x p x dx
∞

−∞
= =∑ ∫

Generally more useful is a central moment)
μi=E( (X-E(X))n )

The 2nd central moment is the variance
3rd is skew, 4th is kurtosis

Trick:
Var(X)=E((X-μ)2)=E(X2-2μX+μ2)= 
E(X2)-2μE(X)+μ2  =  E(X2)-E(X)2

Beware E(f(X)) ≠ f(E(X))
Exception E(a+bX)=a+bE(X)

Bivariate distributions
So far univariate: p(x) and P(X ≤ x)

Bivariate p(x,y), P(X ≤ x & Y ≤ y)
Regression, correlation derive from this viewRegression, correlation derive from this view

Multivariate – n-way
Useful conceptualization of multivariate data

,

1, 1
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Bivariate distributions
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Bivariate expectiations
Conditional expectation 

E(Y|X) is well defined
Average value of X if we know Y happened
Analog with regression E(Y|X) or y=a+bx

Covariance
Cov(X,Y)=E( (X-μx)(Y-μy) ) = 1/n Σ (xi-μx)(yi-μy) 

Shortcut calculation: Cov(X,Y)=E(XY)-E(X)E(Y)
Note: Var(X)=Cov(X,X)
σxy

2=Cov(X,Y)
Cov(X,Y)=0 ⇔ X & Y independent

General regression/correlation
ρ=σxy/σxσy

b=σxy/σx
2

Some important limits
Law of large numbers

Sample average population average
1/nΣxi = μ as n ∞
Samples must be independent

More generally,
Sample distribution population

Central limit theorem
Take any random variable (continuous, discrete)
Take a large sample (independent!)
Sum together

Normal
ΣX ~N(nμ,√nσ)  for any X

The 13 most important 
distribution functions

Normal group (5)
Combination Distribution Range 
Sample mean from n normals N(μ,σ) N(μ,σ/√n) (-∞,∞) 
Sum n normals squared: N(0 1) Chi squared χ [0 ∞)

Recall t Normal as n large

Sum n normals squared: N(0,1) Chi-squared χn [0,∞)
N(0,1)/√χn (found in sample distribution of variance) t-distribution (-∞,∞) 
χn/χm (found in ANOVA tests) Fisher [0,∞) 
log N(0,1) 
 (found as central limit of product of many variables) 

Log-normal (0,∞) 

 

Lornormal
Ranges from nearly normal (low CV) to 
nearly hyperbolic (high CV)

0.5
Lognormal
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Finite range group (2)
Uniform
Beta is a generalization

Two parameters
1 1p(x)=Cxp-1(1-x)q-1

C is a constant such that sum(p)=1
p controls behavior left side (p>1, then like x2, 
p<1 hyperbolic, p=1 horizontal)
q controls right side

Uniform is p=q=1
Beta is solution of distribution of allele 
frequencies under drift (+selection)

Beta distribution
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Counting process distributions (6)
Imagine you are sitting some where

Events occur
You study the # of events, the time between 
eventsevents

This is a counting process
Now time can be:

discrete (e.g. did the event occur this year)
continuous (e.g. Geiger counter)

These all assume events at time t are 
independent of all other times

Memoryless

6 Counting process 
distributions

 Discrete Time Continuous Time 
 Time=n, rate at single 

interval=p 
Time=t, instantaneous rate=λ 

Distribution E(X) Var(X) Distribution E(X) Var(X)Distribution E(X) Var(X) Distribution E(X) Var(X) 
time to next 
event 

Geometric 1/p (1-p)/p2 Exponential 1/λ 1/λ2  

time to the 
nth event 

Negative 
binomial 

n/p n(1-p)/p2 Gamma n/λ n/λ2 

expected 
(mean) # 
events in 
given time 

Binomial np np(1-p) Poisson λt λt 

 

Gamma

Gamma is highly plastic and therefore 
useful for functions on interval (0,∞)
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Poisson
Law of rare events

Like central limit theorem
As long as events independent Poisson
A good model of counted numbersA good model of counted numbers
E.g. deaths by horse kick in the Prussian army
If your data are counts think Poisson

Note E(X) for Poisson is λt
Poisson in space as well!

1,2, 3 dimensions
Random placement in space
N=λΑ

Poisson

0.3

0.4
λ=3
λ=1
λ=10

0 10 20 30
0

0.1

0.2

Generalizations
Binomial

Hypergeometric (finite # of successes possible –
i.e. no independence of events)
Multinomial (more than 2 outcomes)Multinomial (more than 2 outcomes)

Exponential
Power or Pareto or 1/f or hyperbolic

X-c instead of c-x for exponential
Weibull – wait times with memory

Exponetial+Pareto
Shape parameter

1=exponential
>1=recur quickly or wait a long time
<1= consistent waiting interval
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Weibull

1

1.2 λ=1,shape=1
     shape=3

shape=0 5
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0.4
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0.8
     shape=0.5
λ=3,shape=1

Summary – 16 distributions
Normal group (5)

Normal, Lognormal & stats (t, F, χ2)
Finite interval (2)

Uniform ⊆ BetaUniform ⊆ Beta 
Counting processes (x6)

Time to 1 event, time to n events, # events in 
time t
Binary/discrete
Exponential ⊆ Gamma, Poisson

Counting process generalizations (3)
Binomial-> hypergeometric, multinomial
Exponential->Weibull, Pareto

What distribution?
Time between sightings of rare bird
# of rare birds seen in x hours
Time between fires
# of tent caterpillar nests in a tree
Time between encounters with prey items
Abundances over time in stochastic 
environment
Allele frequencies
Body sizes
# of years with killing frost in November

Arithmetic on distributions

Combining distributions
If know X~?, Y~?, what is:

X+Y~
X*Y~

WhWhy care:
Often encountered in data analysis
Mean food intake =?? Mean prey weight * mean 
kcal/g
Know N~ , M~, what is distribution of 
reproductive effort (N*M)
Life history: 
E(Time to reproduction) =?? E(germination time) 
+ E(maturation time)

Practical example
E(N)=12/5=2.4
E(M)=13/5=2.6
E(RE)=25/5=5
E(M)*E(N) 6 24

N M RE

4 1 4
E(M)*E(N) =6.24 ≠
5=E(RE)

Would be true if N, M 
indepdenent

But in this example 
there is a well-known 
inverse tradeoff –
NEVER independent

3 2 6

2 3 6

2 2 4

1 5 5
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Combining distributions -
answer

Generally a hard question
Uses “generating functions”
Some well known:

Sum of N(a,b)+N(c,b)=N(a+c,b)
Sum ΣnN(a,b)~N(n*a,b*n-1/2)
Sum exponentials and/or gamma is gamma
Sum of Poisson is poisson

Generally hard to solve
Evans, Hasting & Peacock a good summary

Can we at least answer for 
moments?

E(a+bX+cY)=a+bE(X)+cE(Y)
E(XY)=E(X)E(Y)+Cov(X,Y)

Simple case only if X,Y independentp y , p

E(1/X) ≈1/E(X)+Var(X)/E(X)3

E(X/Y) various (See Welch et al)
Var(aX)=a2Var(X)
Var(X+Y)=var(X)+var(Y)+2*Cov(X,Y)

Simple case only if X,Y independent

Distribution of g(X)

If know distribution of random variable: 
X~?, what is distribution of g(X)
Why care:Why care:

X is prey density, g(X) is intake rate
X is age of reproduction, g(X) is fitness
X is nitrogen concentration, g(X) is yield

Solving g(X)~?

Few cases (mostly if X normal)
If X is normal, exp(X) is lognormal
If X is normal X2 is Chi-squaredIf X is normal, X is Chi squared

General solution hard mathematically:
Let p be pdf of X, f be pdf of g(X)
Then f(x)=p(g-1(y)) dg-1(y)/dy
Need to be able to calculate g-1

Jensen’s inequality
E(g(X)) ≠ g(E(X)) unless g is linear
If g convex up, E(g(X)) < g(E(X)) 

E(X)=μ

g(E(X))E(g(X))

How about moments?

Delta method approximation for E(g(X))
g(x)=g(μ)+g’(μ)(x-μ)+g’’(μ)(x-μ)2/2+…
E(g(X)=E(g(μ))+E(g’(μ)(x-μ))+E(g’’(μ)(x-E(g(X)=E(g(μ))+E(g (μ)(x μ))+E(g (μ)(x
μ)2/2)+…
=g(μ)+g’(μ)E(X-μ)+g’’(μ)/2E((x-μ)2)+…
≈g(m)+g’’(m)Var(X)/2

No simple method for Var(g(X))
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Delta example – Bet-hedging
In a fluctuating environment: i.e. λ varies year-to-
year : e.g. desert annuals (wet/dry years)
Ντ= λ1λ2…λt Ν0

So λlongterm=(λ1λ2…λt)1/t or log λlongterm=1/t (Σ log λi)longterm ( 1 2 t) g longterm / ( g i)
I.e. fitness = E(log λi)
Say we know distribution of λi (50% good/50% bad 
or lognormal or …), what is average fitness?

Jensen’s inequality: log(λlongterm)<log E(λi)=log(λaverage)
Delta method approximates how much less: g’(x)=1/x so:

W ≈g(m)+g’’(m)Var(X)/2 = log λavg –Var(λavg)/λavg
2

Bet-hedging reduce variance even if a reduced 
mean:

4/6 off spring better than 0/12 offspring in good/bad years

Limit

Take n samples from a distribution
As n gets large:

Sum(X ) N(nμ σ√n)Sum(Xi) N(nμ,σ√n)
Prod(xi) Lognormal
Max(xi) Extreme value (log-Weibull)

Example coldest frost temperature

Min(xi) -Extreme value

Spurious correlations (Brett)
Study of ρ(X,X+Y), ρ(X/Z,Y/Z), etc
These are almost always somewhat 
correlated
Traditional testing methods assume 
independence which fails here!

p values from traditional approaches useless
Brett presents method – Monte Carlo
Are these correlations spurious?

No often interesting biology
But if you report an r or p value you need to do 
the Monte Carlo

Repeated tests (Garcia)
Say I measure 20 traits of a flower 
in two distinct populations
I want to suggest that the 
populations  are morphologically 
d
p p p g y
distinct
What if:

1 trait is significant at p<0.05?
18 traits are significant at p<0.05?
3 traits are significant at p<0.05?

Net:
Bonferroni (p<α/n) is overly 
conservative and overused
But do have to think about this issue

Repeated tests

k p Wrong
psig

Bonf
Psig

B&H 
psig

Result
psig Psig psig

6 0.006 0.05 0.05/6= 
0.00833

0.05*6/6 
=0.05

S

5 0.01 0.05 0.00833 0.04167 S

4 0.02 0.05 0.00833 0.3333 S

3 0.03 0.05 0.00833 0.025 NS

2 0.04 0.05 0.00833 0.1667 NS

1 0.06 0.05 0.00833 0.008333 NS

Summary
Can sometimes avoid issue by just doing 
calculations on sampled data (item by item)
But for any theoretical work/expectations y p
need more sophisticated approach 

Distribution of X*Y complicated (even (X+Y)
Moments are simple IF independent
Distribution of g(X) complicated

E(g(X)) delta approximation


