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!’_ Week 2 - Distributions

Statistics is the study of
distributions

Types of variables

= Continuous (real)
= Temperature, nitrogen concentration, time, steroid
concentration
= Discrete
= Ordered, infinite
= Number of individuals
= Unordered, finite
= Blue morph, green morph
= Cooperative, uncooperative

= Statistical tools available entirely dependent
on types of variables

i Tool depends on variables

Dependent |Dependent

Discrete Continuous
Independent |Contingency |ANOVA
Discrete table/chi2 |t-test
Independent | Logistic (linear)
Continous regression | regression

CART CART

The top 10 things you need to
remember from calculus

1. Derivatives=slope — A derivative is the slope of the
line tangent to the function dy/dx

2. Differential=rate of change in variables — A
differential represents how much y changes with a
change in x: dy=df(x)dx. Note that for
infinitesimally small dx, this is completely accurate,
as dx gets bigger, this becomes less accurate (in
fact it is a first order or linear approximation).

3. Derivatives and differentials are defined at a single
point, but if we use this definition at every point, we
get a new function. This is the derivative of f(x) and
is denoted f'(x)

i Top 10 (continued)

4. Simple rules for taking derivatives are:
f(x)=c (x)=0
f(x)=ax f(x)=a
f(x)=x" f'(x)=nxn1
f(x)=exp(x) f(x)=exp(x)
f(x)=In(x) f(x)=1/x
f)=g(x)*h(x | f(x)=g'(x)h(x)+g(x)h"(x)
?(X)=9(h(><)) F()=g'(h(x))h'(x)
f(x)=1/g(x) (x)=-g'(x)/g(x)?
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i Top 10 (continued)

s. Derivatives can be taken of derivatives. This
yields second derivatives and so on. A
second derivative tells how fast the slope is
changing. A positive second derivative
means the slope is increasing and hence is
concave up.

6. An integral is an antiderivative

7. An integral is an area under a curve

s. An integral is an infinite sum (uncountable)

i Top 10 (continued)

9. The geometric series:
AL+ 1—(”1:20‘ dn(l_'m) am|f|r|<l,n

1. The Taylor expansion:

0 z (a)(H) ~Ha)+ Fax-a)+ F@-a +.

i Taylor’s series
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Probability

1) Law of simultaneous events:
= P(both A and B occur)=P(AUB)= P(A)+P(B)-P(AnB)
la) Law of addition
= aspecial case of above: if AnB=Z = P(AUB)= P(A)+P(B)
2) Conditional probability
= P(AIB)=P(A~B)/P(B)
3) Independence
= If P(A|B)=P(A) then A & B are independent
23a) Law of multiplication
= combining2 & 3
= if A& B are independent then P(A ~ B)=P(A)P(B)
4) Law of total probability
= LetAibe a disjoint set that spans X (i.e. AN A/ =& and U, A =I)
= Then for any B, P(B)=ZP(BNA)=2P(B|A)P(A)

Concrete example

= Roll a die
= A={1,3,5} Odd numbers (3/6)
= B={1,2,3} Low numbers (3/6)
= C={6} Highest number (1/6)
= D={1,2} Low numbers (2/6)
= Law of simultaneous events:
= P(AU B) = P(A)+P(B)-P(A N B)
- =3/6+3/6-2/6=4/6
= Law of addition
= P(A U C)=P(A)+P(C )=3/6+1/6=4/6 (P(A N B)=0)
= Independence
= P(A|B)=P(A N B)/P(B) = 2/6 / 3/6 = 2/3 # P(A)
= P(AID)= P(A A D)/P(D) = 1/6 / 2/6 = Y2 = P(A)
= Law of multiplication
= P(A ~ D)=P(A)*P(D)=3/6*2/6=1/6
= Law of total probability
= P(Low)=P(Low|Even)*P(Even)+P(Low|Odd)*P(Odd!
= P(B)=P(B|~A)*P(~A)+P(B|A)*P(A)=1/3*1/2+2/3*1/2=1/2

Random variables

= A random variable (X) takes on different
values
= may be continuous or discrete
= May go form -oo to +oo or just 0 to +w or ...
= A random variable is defined by its
distribution
= E.g. X~N(0,1)
= The probability that it takes on a given value
is completely specified by a function:
= F(X)=P(X<x)
= E.g. if X~N(0,1) then F is hard to write down but
know the picture




i Two cases

= {x} discrete (1,2,3,4,...)
= Usually specify p(x)=P(X=x)

= Then X
FOO=P(X<x)=>p(x)
. i=1
= {x} continuous
= Sometimes easier to specify p(x)
= No exact meaning (probability N(0,1)=0.134278=0)

"B (X <x)= j p(x)dx

= E.g. Normal p(x):1/sart(2n)cs*exp(-(x-p)2/ c?)
= i.e. Density vs cumulative probability function
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Normal pdf vs cdt

— cdf ()

Notation .
alert

= Throughout I will
use:
= P=probability of N T2
= F = cumulative oo ihe el
distribution function

= p = probability o4 W o ()
density RN

n F=Jp

12 3 4 56 1

i Expectation

= Expectation is a fancy word for a weighted
average
= Specifically averaged weighted by p(x)

E() =2 %p(x) =] xp(x)dx

= Gives the mean (u=E(X) )
= (XX HXa)/n = 1/n X +1/n X+ 1/n X5
= Example
= Empirical distribution 1,1,3,3,4
= 1*.4+3*.4+4

Moments are a generalization
of expectation
= it moment is w=E(X")

n n n
E(X") =2 x"p(x) = [ x"p(x)dx
= Generally more useful is a “central moment)
= p=E( (X-E(X))")
= The 2" central moment is the variance
= 3 s skew, 4t is kurtosis
u Trick:
= Var(X)=E((X-p)2)=E(X>-2uX+p2)=
« E(X®)-2uE(X)+p2 = E(X?)-E(X)?
= Beware E(f(X)) # f(E(X))
= Exception E(a+bX)=a+bE(X)

i Bivariate distributions

= So far univariate: p(x) and P(X < x)
= Bivariate p(x,y), PX<x &Y <y)
= Regression, correlation derive from this view
= Multivariate — n-way

= Useful conceptualization of multivariate data
i=x,j=y
Fx,y)=P(X<xY<y)= p(x,y)

i=1,j=1

i Bivariate distributions

0,=0.5, 6,=1.0, p=0.8 (6,,=p*c,*5,=0.4)
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i Bivariate expectiations
= Conditional expectation

= E(Y|X) is well defined
= Average value of X if we know Y happened
= Analog with regression E(Y|X) or y=a+bx
= Covariance
v COVX,Y)=E( (X~ (Y-11) ) = 1/n T (X1 )(Yioity)
= Shortcut calculation: Cov(X,Y)=E(XY)-E(X)E(Y)
= Note: Var(X)=Cov(X,X)
= 6,,?=Cov(X,Y)
= Cov(X,Y)=0 < X & Y independent
= General regression/correlation
= p=0,/c,G,
= b=c, /5,2

i Some important limits
= Law of large numbers

= Sample average - population average
= 1/nZx;= pas n>w
= Samples must be independent
= More generally,
= Sample distribution - population
= Central limit theorem
= Take any random variable (continuous, discrete)
= Take a large sample (independent!)
= Sum together
= >Normal
« X > ~N(nu,Vno) for any X

The 13 most important
distribution functions

= Normal group (5)

Combination Distribution Range
Sample mean from n normals N(1,6) N(u,/\n (-0,0)
Sum n normals squared: N(0,1) Chi-squared 2,  [0,c)
[N(0.1)N, (found in sample distribution of variance) edistribution | (o0r)
20/ 27 (found in ANOVA tests) Fisher [0,0)
log N(0,1) Log-normal (0,0)
found as central limit of product of many variables;

= Recall t>Normal as n large

Lornormal

= Ranges from nearly normal (low CV) to
nearly hyperbolic (high CV)

Lognormal

—p=2,6=0.1
,0=1
- ,6=2

- ,6=5

2 4 6 8 10 12 12 1 18

i Finite range group (2)

= Uniform
= Beta is a generalization
= Two parameters
= p(X)=CxP1(1-x)a!
= Cis a constant such that sum(p)=1

= p controls behavior left side (p>1, then like x?,
p<1->hyperbolic, p=1 - horizontal)

= ( controls right side

= Uniform is p=q=1

= Beta is solution of distribution of allele
frequencies under drift (+selection)

$ Beta distribution

3

0.2 0.4 0.6 0.8




i Counting process distributions (6)

= Imagine you are sitting some where
= Events occur

= You study the # of events, the time between
events

= This is a counting process

= Now time can be:
= discrete (e.g. did the event occur this year)
= continuous (e.g. Geiger counter)

= These all assume events at time t are
independent of all other times
= Memoryless
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6 Counting process

distributions

Discrete Time

Continuous Time

Time=n, rate at single
interval=p

Time=t, instantaneous rate=A

i Gamma

= Gamma is highly plastic and therefore
useful for functions on interval (0,)

i Poisson

= Law of rare events
= Like central limit theorem

As long as events independent ->Poisson
A good model of counted numbers
E.g. deaths by horse kick in the Prussian army

= If your data are counts think Poisson
= Note E(X) for Poisson is At
= Poisson in space as well!

= 1,2, 3 dimensions

= Random placement in space

= N=LA

Distribution | E(X) | Var(X) Distribution | E(X) | Var(X)
time to next | Geometric 1p [ (@-p)p’ Exponential |1/o [1/3*
event shape=1 (u=1)
time to the | Negative n/p [n(1-p)/p° |Gamma | ni? El g
nth event binomial — 05
expected Binomial np np(1-p) Poisson At At
(mean) # 2
events in
given time Al
% 1 2 3 4 5
i Poisson i Generalizations
0.4 o = Binomial
] =1 = Hypergeometric (finite # of successes possible —
0.3 :10 _ i.e. no independence of events)
- = Multinomial (more than 2 outcomes)
= Exponential
0.2 - = Power or Pareto or 1/f or hyperbolic
= X¢instead of c* for exponential
0.1 R = Weibull — wait times with memory
= Exponetial+Pareto
= Shape parameter
oG 1=exponential
0 10 20 30 >1=recur quickly or wait a long time

<1= consistent waiting interval
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i Weibull

A=1,shape=1 -
shape=3

Summary — 16 distributions

= Normal group (5)

= Normal, Lognormal & stats (t, F, x?)
= Finite interval (2)

= Uniform c Beta

= Counting processes (x6)

= Time to 1 event, time to n events, # events in
time t

= Binary/discrete
= Exponential ¢ Gamma, Poisson

= Counting process generalizations (3)
= Binomial-> hypergeometric, multinomial
= Exponential->Weibull, Pareto

What distribution?

= Time between sightings of rare bird

= # of rare birds seen in x hours

Time between fires

# of tent caterpillar nests in a tree

Time between encounters with prey items

Abundances over time in stochastic
environment

Allele frequencies
Body sizes
# of years with killing frost in November

!’_ Arithmetic on distributions

Combining distributions

s If know X~?, Y~?, what is:
= X+Y~
= X*Y~
= Why care:
= Often encountered in data analysis
= Mean food intake =?? Mean prey weight * mean
kcal/g

= Know N~ , M~, what is distribution of
reproductive effort (N*M)

= Life history:
E(Time to reproduction) =?? E(germination time)
+ E(maturation time)

i Practical example

« E(N)=12/5=2.4

N M RE
= E(M)=13/5=2.6
4 1 4 = E(RE)=25/5=5
2 = E(M)*E(N) =6.24 =
3 6 5=E(RE)
2 3 6
2 D) 2 = Would be true if N, M
indepdenent
1 5 5 = But in this example
there is a well-known

inverse tradeoff —
NEVER independent




Combining distributions -
answer

= Generally a hard question
= Uses “generating functions”
= Some well known:
= Sum of N(a,b)+N(c,b)=N(a+c,b)
= Sum X, N(a,b)~N(n*a,b*n/2)
= Sum exponentials and/or gamma is gamma
= Sum of Poisson is poisson

= Generally hard to solve
= Evans, Hasting & Peacock a good summary
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Can we at least answer for
moments?

= E(a+bX+cY)=a+bE(X)+cE(Y)

= E(XY)=E(X)E(Y)+Cov(X,Y)
= Simple case only if X,Y independent

n E(1/X) =1/E(X)+Var(X)/E(X)?

= E(X/Y) various (See Welch et al)

= Var(aX)=a?Var(X)

= Var(X+Y)=var(X)+var(Y)+2*Cov(X,Y)
= Simple case only if X,Y independent

i Distribution of g(X)

= If know distribution of random variable:
X~?, what is distribution of g(X)
= Why care:
= X is prey density, g(X) is intake rate
= X is age of reproduction, g(X) is fitness
= X is nitrogen concentration, g(X) is yield

Pl

Solving g(X)~?

= Few cases (mostly if X normal)
= If X is normal, exp(X) is lognormal
= If X is normal, X2 is Chi-squared
= General solution hard mathematically:
= Let p be pdf of X, f be pdf of g(X)
= Then f(x)=p(g™(y)) dg™*(y)/dy
= Need to be able to calculate g*

i Jensen’s inequality

= E(9(X)) = g(E(X)) unless g is linear
= If g convex up, E(g(X)) < g(E(X))

E(g(X)HE(E(X)):

E(X)=p

i How about moments?

= Delta method approximation for E(g(X))
= 900=9(W)+g' (W) (W) +g" (W) (x-p)?/ 2+ ...

= E(QOO=E(G(1)+E(Q () (x-0)+E(Q" (W) (x-
W22)+...

= =g(W+G (WEX-1)+9"(W/2E((x-p)?)+...
= ~g(m)+g”(m)Vvar(X)/2
= No simple method for Var(g(X))
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Delta example — Bet-hedging

= In a fluctuating environment: i.e. A varies year-to-
year : e.g. desert annuals (wet/dry years)
N= 225 Ny
S0 hongterm=(haha- )Mt OF 109 Migngrerm=1/1 (Z log 2;)
l.e. fitness = E(log ;)
Say we know distribution of %; (50% good/50% bad
or lognormal or ...), what is average fitness?

= Jensen'’s inequality: 109(Aiongterm) <109 E(A)=10g(hayerage)

= Delta method approximates how much less: g'(x)=1/x so:

W ~g(m)+g"(m)Var(X)/2 = 10g kayg—Var(haug)/ Aoy’

-> Bet-hedging reduce variance even if a reduced
mean:

= 4/6 off spring better than 0/12 offspring in good/bad years

i Limit
= Take n samples from a distribution
= As n gets large:
= Sum(X)>N(np,oVn)
= Prod(x;)->Lognormal
= Max(x;)>Extreme value (log-Weibull)

= Example coldest frost temperature
= Min(x;)>-Extreme value

Spurious correlations (Brett)

Study of p(X,X+Y), p(X/Z,Y/Z), etc
These are almost always somewhat
correlated

Traditional testing methods assume
independence which fails here!

= p values from traditional approaches useless
Brett presents method — Monte Carlo
Are these correlations spurious?

= No often interesting biology

= But if you report an r or p value you need to do
the Monte Carlo

i Repeated tests (Garcia)

= Say | measure 20 traits of a flower
in two distinct populations

= | want to suggest that the .
populations “are morphologically
distinct

= What if:
= 1 trait is significant at p<0.05?
= 18 traits are significant at p<0.05?
= 3 traits are significant at p<0.05?

= Net:

= Bonferroni (p<a/n) is overly
conservative and overused

= But do have to think about this issue

i Repeated tests

6 0.006 0.05 0.05/6= 0.05*6/6 S
0.00833 =0.05

0.01  0.05 0.00833 0.04167 S
0.02  0.05 0.00833 0.3333 S
0.03  0.05 0.00833 0.025 NS
0.04  0.05 0.00833 0.1667 NS
0.06 0.05 0.00833 0.008333 NS

BN WS o

i Summary

= Can sometimes avoid issue by just doing
calculations on sampled data (item by item)
= But for any theoretical work/expectations
need more sophisticated approach
= Distribution of X*Y complicated (even (X+Y)
= Moments are simple IF independent

= Distribution of g(X) complicated
= E(g(X)) delta approximation




