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Meta-analysis

Meta-analysis

The combination of many independentThe combination of many independent 
studies on one topic to:

Get an overall effect
See how effect varies with “meta-factors” 
like geographic location, type of study

Focus on
Effect size/direction
Not on significance

The basic steps

1 Search of the literature1. Search of the literature
Commonly Web of Science or Google Scholar with 
keywords

2. Selection of literature
MUST have a priori selection criteria

Necessary data (p, r2, n) reportedy (p, , ) p
Quality factors (control, double blind, etc)

3. Calculate effect sizes
4. Analyze effect sizes

Overall
Vs meta-factors

Publication bias

A bi blA big problem
Meta-analysis assumes all study 
results included
In practice non-significant and 
contrary results often “file-drawered”
Ways to deal with:y

Measure
Funnel plot – n or 1/se vs. effect size

Estimates of non-significant results
E.g. research centers that record all results

Medicine leading to database of all studies
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Measuring effect sizes
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Adjust for size of study
Standardized Mean Difference:Standardized Mean Difference:
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The Weighted Mean Effect Size

Start with the effect sizeStudy ES w w*ES Start with the effect size 
(ES) and inverse variance 
weight (w) for 10 studies.
Next, multiply w by ES.
Repeat for all effect sizes.
Sum the columns, w and 
ES.

Study ES w w ES
1 -0.33 11.91 -3.93
2 0.32 28.57 9.14
3 0.39 58.82 22.94
4 0.31 29.41 9.12
5 0.17 13.89 2.36
6 0.64 8.55 5.47
7 -0.33 9.80 -3.24
8 0.15 10.75 1.61
9 -0.02 83.33 -1.67

Practical Meta-Analysis -- Analysis 
-- D. B. Wilson 7

Divide the sum of (w*ES) by 
the sum of (w).

10 0.00 14.93 0.00
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Practical Meta-Analysis -- Analysis 
-- D. B. Wilson 8
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Interpreting Effect Size 
Results

Cohen’s “Rules of Thumb”Cohen s Rules-of-Thumb
standardized mean difference effect size

small = 0.20
medium = 0.50
large = 0.80

l ti ffi i t

Practical Meta-Analysis -- D. B. 
Wilson 9

correlation coefficient
small = 0.10
medium = 0.25
large = 0.40

odds-ratio

Homogeneity Analysis (Q statistic)

Homogeneity analysis tests whether the assumptionHomogeneity analysis tests whether the assumption 
that all of the effect sizes are estimating the same 
population mean is a reasonable assumption.
If homogeneity is rejected, the distribution of effect 
sizes is assumed to be heterogeneous.

Single mean ES not a good descriptor of the distribution
There are real between study differences, that is, studies

Practical Meta-Analysis -- Analysis 
-- D. B. Wilson 10

There are real between study differences, that is, studies 
estimate different population mean effect sizes.
Two options:

model between study differences
fit a random effects model

Regression vs. meta-factors

ES~continent+phylum+body sizeES~continent+phylum+body_size

Use Q analysis

B i ll ti i i (ANOVA)Basically partioning variance (ANOVA)

Outputs
Effect Size ES

Cohen’s “Rules-of-Thumb”
standardized mean difference effect size

small = 0.20
medium = 0.50
large = 0.80

correlation coefficient
small = 0.10
medium = 0.25
large = 0.40

Q

Practical Meta-Analysis -- D. B. 
Wilson 12

Q
Homogeneity

Variation in effect sizes explainable by one underlying effect

Heterogeneity
Need additional factors to explain variation in effect size – due Q-mode 
(ANOVA) analysis
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Limitations of meta-analysis

GIGO garbage in garbage outGIGO – garbage in-garbage out
Is lumping a lot of bad studies better than 
one really good study?
Should lots of bad studies weigh equally to 
good studies?

If a meta-analysis is needed are effect 
sizes too small to be biologically 
significant

Modeling

What is a model? A model is:

An abstraction of the real world into aAn abstraction of the real world into a 
domain where logical inference 
(deduction) can be applied to transform 
explicit assumptions into new 
predictions
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Modeling

Unknown Reality Predictions

Reality Abstract Domain

Logic

“Unpacking”

Known Reality Assumptions

Logic

Manfred Eigen

A theory has only the alternative ofA theory has only the alternative of 
being right or wrong. A model has a 
third possibility: it may be right, but 
irrelevant.“
Model has to accomplish something in p g
the REAL world or it is irrelevant

Huge number of models only accomplish 
things in the mathematical world

Domains of logical inference 
(types of models)

MathematicalMathematical
Algebraic formulas
Geometric

Graphical (isocline analysis)
Verbal/qualitative
Computer algorithm

Deterministic
Monte Carlo (random)

Checkered history of modeling 
in ecology & evolution

Sharon Kingsland (a historian of ecology)Sharon Kingsland (a historian of ecology) 
tension between modelers vs field workers
closely related general results vs. specific
Central theme in ecology

Many debates
Lotka Volterra 1920-1930’s
Much other mathematicization in 1930’s
1950’ Ni h l & B il (d it d d )1950’s Nicholson & Bailey (density dependence) vs 
Andrewartha & Birch
Late 1960’s and 1970’s MacArthur, May
1980’s backlash – emphasis on field experiments and 
advanced statistics
Restored balance now?
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Evolution & Behavior

Evolution has always been moreEvolution has always been more 
friendly to modeling

Harder to do experiments
Mendel’s laws give precise starting point

Behavior
Id f ti i ti i j th d fitIdea of optimization is a major thread, fits 
well into models
Somewhat controversial

Model goals
Purely predictivePurely predictive

Useful for management – will species X go extinct, will water 
levels rise in Everglades?

Explanatory
Claims to capture (or elucidate) underlying mechanism
Gets at causality
ANOVA/regression have simple explanation in mind: 
“temperature” causes “abundance”temperature  causes abundance

Phenomenological
More advanced models:

Fluid dynamics of stomach digestion rates
Group size optimizes reproductive rate
Temperature affects physiology affects resource acquisition 
affects abundance

Types of parameters
Mechanistic – have units directly definableMechanistic have units, directly definable, 
measurable independent of model

Maximum running speed
Reproductive output in a group of 7

Phenomenological – measured in context of 
model

Derived from regression
Lotka-Volterra competition parameters (α,K)
Parameters of Type II functional response

Is r a mechanistic or phenomenological 
parameter

Types of models
Reality Mechanistic

GeneralityPrecision

Phenomenological
Regression
Empirical

Analytical
(e.g. Lotka-Volterra)

(Optimization,
Physiological)

Levins 1966 – can only do 2 of 3 goals
May: strategic vs tactical models

(e.g. Lotka Volterra)
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Types of predictions
Exact:Exact:

Abundance next year will 42 indiv/ha
Group size will be 7 individuals

Qualitative
Abundance will go up
Groups will form
Evolution will increase body size

Relational
Abundance goes up when temperature goes up
Exact relational N=23*T/(15+T)

Rosenzweig’s dipswitch
One qualitative prediction has a 50/50 chance of being right
Four qualitative predictions have a 2-4=1/16=6% chance of 
being right

Sensitivity analysis
Any parameter that is not known very well shouldAny parameter that is not known very well should 
have sensitivity analysis
E.g.

If temperature goes from 20 to 22
Does abundance go from 100 to 101, 110, 150, 300?

Sensitivity analysis allows us to:
Focus on most critical parameters
Put extra effort into estimating sensitive parameters

Combinatorial explosion
5 levels of 3 parameters is 125 cases to explore!

Stochastic complexity
If use random numbers in model need replicates

Aviles
1993

Used ANOVA
Sexratio~ColonySize+
MigrationLevel+ 
ColonyMortality
Several MonteCarlo 
replicates/cellreplicates/cell
Gave p-values
Gave causality?
Familiar to ecologists

Calibration vs validation
Calibration=estimation=curve fittingCalibration estimation curve fitting

Post hoc twiddling of model parameters to make it fit data
Is a good way to get parameter estimates

Validation
A priori prediction (no part of model derived from data) 
tested against data not used for calibration
Can:

Get parameters from literatureGet parameters from literature
Calibrate on half the data, validate on half
Calibrate on past, validate on future
Calibrate on one site, validate on another

Very common fatal error – no validation!
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A good model does (Aber):
Gives an explicit list of parametersGives an explicit list of parameters

Gives units of each parameter
Gives sources of estimates for parameters
Describes sensitivity analysis of parameters

Calibrates the model
Estimates unknown parameters and demonstrates how 
much our understanding depends on them (sensitivity)

M k l di tiMakes novel predictions
Predictions must be testable

Validates the model
Tests predictions vs. INDEPENDENT data (not used in 
calibration)

The fundamental modelling 
decision

How complex should the model be?How complex should the model be?
Einstein Principle: “A scientific theory should 
be as simple as possible, but no simpler”
Every model is missing real complexity

Not a valid criticism of a model
M t th t i i i th t b t ti llMust argue that missing a piece that substantially 
changes results
Only full model is the size of the universe!

Interpretation of results

The backend - interpretation

I’ve done the experimentI ve done the experiment
I’ve done the statistics
Now I have to write the conclusion
What does my experiment really tell me
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Central issue

Multiple causalityMultiple causality
Physics: one force explains 90%+

2nd usually explains 8% more

Ecology: A 28%, B 19%, C 12%, D 3%, 
miscellaneous 38%miscellaneous 38%
Easy for balance between forces to shift 
with context

Keep in mind

When interpreting results keep in mindWhen interpreting results keep in mind
Scale of experiment vs scale of conclusions
Scope of experiment vs scope of conclusions
Homogeneity of experiment vs homogeneity of 
conclusions
Sense vs. referential meaningg
Hidden treatment effects
Correlation vs. causation

Scale
Ecology/evolution exists on many scales

5-6 orders of magnitude
Scale of time: minutes-geologic eras
Scale of space: mm2-globe
Scale of taxon: 
individuals/populations/species/genera/etc
Compare with cell biology

S i l l f i l i l f i l ll (2Spatial scale fairly constant, time scale fairly small range (2-
3 orders magnitude), taxon irrelevant

Compare with physics
Laws hold across enormous scales (e.g. law of gravity)
Only two scale breaks – three scale domains

Subatomic (quantum mechanics), Cosmological (General 
relativity), In between (Newtonian)

Scale and process
Just as in physics, critical processes change with 
scale
But in EEBB critical processes change with every 
order of magnitude in scale
What controls productivity

Square meter – what plants growing there
Hectare – soil & drainage, disturbance (e.g. fire)
Km2 topography slope aspect riversKm2 – topography, slope aspect, rivers
1000 km2 – climate
Globe – CO2 levels, size of ice cap

What controls population level over time
Less than a generation – stochastic deaths
A generation – controls on fecundity (food), predation
Many generations – climate, productivity
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Scales often change in synch
Processes important to small space are p p
often short time, limited taxon
Large space, large time, large taxon

Airmasses
Global climate

Space

Time

Gusts

Microcells/Clouds
Fronts

Tradeoff
No a priori “best” scaleNo a priori best  scale
Arguably scales of most importance to 
humans are large (conservation, global 
warming)
Yet experiments become harder, more 
expensive as increase scale

How often do you run experiment on 20 species 
just to see if it generalizes?
Krebs 1 km2 enclosures - $7,000,000
How often are experiments done on 1-100 m2

Can we extrapolate to km2’s from m2’s?

Transmutation
Dominant processes change with scale butDominant processes change with scale, but 
even the same process takes on different 
forms as you aggregate
O’Neill 1979 – Transmutation principle
If aggregate across individuals, changes
Minimum food threshold for individual to 
mature
Threshold varies normally
Mortality vs food for whole population looks 
logistic

Closure and scale

Most theories assume the system isMost theories assume the system is 
closed from external influences 
(immigration, influx of nutrients)

Systems become less closed at smaller 
scales

Most theories assume system atMost theories assume system at 
equilibrium

True most of the time for long time scales, 
large spatial scales (averaging) 
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Implications of scale I
Unproven that you can generalize resultsUnproven that you can generalize results 
beyond the spatial, temporal, taxonomic scale 
of experiment
If you want to make a general claim burden 
of proof is on you to justify extrapolation or 
“transmutation”
Sometimes appropriate

Energetics and life history of mammals are very 
similar (albeit some well known scalings with body 
size)

Implications of scale
Larger scalesLarger scales

Highly relevant to humans
Often more appropriate for theories

Growing trend to large scale ecology
Doesn’t replace, just supplements smaller scales

Yet hard to experiment
Techniques for large scalesq g

Metaanalysis – statistics on top of dozens of papers with 
statistics
Comparative biology – study of data on many species 
(usually from many papers)
Ecoinformatics – ecology + databases
GIS

Scope
What piece of scaleWhat piece of scale
If I do an experiment at Mt St Hillaire station 
on deer, what other space/taxonomic units 
does it apply to?
Spatial

Mt St Hillaire, S. Quebec, Canada, Globe
Taxonomic

Your species, your genus, all mammals, all 
organisms?
Model organism?

Homogeneity
Dominant processes can change with amount ofDominant processes can change with amount of 
environmental heterogeneity
Egs

Highly disturbed environments colonization controls 
community composition, but competition/predation control 
in static environments
Variability on scale > generation phenotypic plasticity, 
variability on scale<<generation physiological y g p y g
homeostasis

Contradiction
Experiments try to minimize variance
Understanding real world often needs heterogeneity
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Microcosms
Laboratory work, bottle experiments, microcosmsabo ato y o , bott e e pe e ts, c ocos s
Famous examples

Gause’s paramecium
Park’s Tribolium beetles
Cushing et al Tribolium
Drake – metacommunities
Lenski, Bohannan, Bell - evolution
Davis et al – Drosophila in growth chambers for species ranges and 
global warmingglobal warming

Often criticized for applicability to field
My opinion – highly generalizable except need special attention 
to homogeneity issue

eg. competitive exclusion in Gause, Park would never happen with 
spatial heterogeneity
Is this a good thing or bad thing?

Correlation vs. causation

Correlation does not demonstrate causalityCorrelation does not demonstrate causality
Could go either direction
Could be co-correlated with 3rd factor

Often cited as reason to do experiments
Other ways around

T t f i i h thTest of a priori hypotheses
Observational controls
Natural experiments

Hidden treatment effects
Huston
T t t i t ff tTreatment can incorporate many effects

Can you really isolate one process if treatment changes many 
processes

Simple treatments (eg. +Nitrogen)
One sprayer/manure spreader spreads contaminants, bacteria, 
water, etc
Process controls & interspersion/no psuedo-replication both help

Complex treatments much subtler
Enclosure effects

Stability increases with diversity
Tilman: plots seeded with random subsets of species with S 
increasing true
Huston: probability of including basic fundamental groups (nitrogen 
fixing, C3 vs C4, etc) goes up
Current consensus: Huston right but not clear if this is a criticism or 
mechanism supporting, other factors also at work

Sense vs. referential
PsychologyPsychology
Sense – we know what something means 
even if abstract concept (eg “happy”)
Referential – we don’t measure happy, we 
measure score on a test battery, hormone 
level, etc
Need to think carefully about fact 
experiments deal with referential 
measurments
Is ecology different?

Stability? Diversity? – dozens of measures of each



13

The ultimate goal
To be able to:To be able to:

Identify the list of forces
To assign relative strength (% variance) to each
To explain how the strengths vary with:

Scale
Scope

“[one should erect a] two- or three- way classification of[one should erect a] two or three way classification of 
organisms and their geometrical and temporal 
environments, this classification consuming most of the 
creative energy of ecologists. The future principles of the 
ecology of coexistence will then be of the form ‘for 
organisms of type A, in environments of structure B, such 
and such relations will hold’ ” Robert MacArthur 1972

Wrapping up …

Scientific inference
Deduction (Logic - Aristotle) vs Induction ( g )
(Empirical data - Bacon)
Falsification (can’t prove, only disprove –
Popper) vs. Accumulation of evidence 
(Lakatos)
Objective (Bacon,Popper) vs Social process 
(Kuhn Lakatos)(Kuhn, Lakatos)
Instant disproof (Popper) vs. gradual 
(Lakatos) vs gradual with instantaneous 
bursts (Kuhn)
Experiment (better) vs. observation (better 
than nothing, first step)

Statistics
The study of conclusions about probabilisticThe study of conclusions about probabilistic 
data
Necessary because humans are bad at 
probability
Four approaches:

Frequentist (null hypothesis)
Liklelihood (and AIC & model comparison)
Data randomization/Boostrap/Reshuffle
Bayesian (likelihood+informative? prior) 
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GLM (OLS)
Regression/ANOVA/ANCOVARegression/ANOVA/ANCOVA

Discrete variables are “coded” (0/1 w/ n-1 columns)
Interactions with discrete variables if slopes change

Y=X*b+N(0,σI)
Assumptions:

Linearity
Errors are normal
Errors are homoscedastic
X is not collinear
Errors are independent

OLS is fairly robust to most violations
All the rest of statistics are about breaking one or 
more of these assumptions

3 modes

FrequentistFrequentist
Bayesian
Monte Carlo/boostrap

S t l l ti f i fSeparate calculation from inference 
mode

Inference modes: p vs null, confidence 
intervals on parameters, model selection

GLIM

Nonnormal errors with nonlinearNonnormal errors with nonlinear 
relationships

Only certain combinations
Poisson/log
Binomial/logistic
Gamma/log or 1/x

Uses likelihood/AIC

GLS & LMM
GLSGLS

Correlation in the errors
Covariance matrix instead of σI
Can’t estimate n*n/2 parameters
Need a structure with a few parameters

Correlation: block, AR1, exp(-kd), phylogeney
Covariance: WLS (heteroscedastic)

LMMLMM
Data has hierarchical structure
Experimental design=split plot
Observational=hierchical models
At a minimum the errors to avoid pseudoreplication
More interestingly: predictors at multiple levels

Bayesian hierarchical models
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Experimental design
Thinks about the types of variables and typesThinks about the types of variables and types 
of statistics before starting!
Think about hypotheses before starting!
Replicates more important than # of 
treatments
Calculate power!p
Blocking & repeated measures increase 
power by isolating known, uninteresting 
sources of variance

Modern regression
Robust regressionRobust regression

nonnormality & outliers
Quantile regression or envelope regression 
(95 percentile line)

One way to address multiple causality
Local regression or smoothing

Puts a line through the data with no underlying 
model
Subjective degree of smoothing

Nonlinear regression
If models are nonlinear

Modern regression 
multivariate

Predict y as function of many xPredict y as function of many x
Local
GAM – sum of local regression in each x
Neural Nets
CART

Tree
Balance of interpretability and generality
Beware circular testing

Multivariate

Many continuous x variables linearMany continuous x variables, linear
Extensions of GLM

Multiple Y’s

Data reduction methods
Visualization
PCA ( d MDS/PC A)PCA (and MDS/PCoA)

Finds major axes of variation, collinear redundancy –
reduces data dimensionality

Clustering – lumps data into groups
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Time and space

GLS error terms are correlatedGLS – error terms are correlated
Key assumption correlation is a function 
of distance between points

Normally assume exponential decay of 
correlation to zero

Decomposition 
Trend/Periodicity/Residuals

Generalizability & modeling

For a given result how general can weFor a given result how general can we 
conclude:

Think about scales (time, space, taxon)
Think about scope
Mechanism important?

ModelingModeling
Stepping into the abstract domain where we can 
use deduction to make predictions
Distinction between calibration and validation

A model y=f(x,ε):
prediction, hypothesis test, exploration
Frequentist, Bayesian, Likelihood & Monte Carlo interpretations

GLS
Errors covary LocalNonnormality

Nonlinear

LMM
Estimate variance rather 

than mean for:
random factors,

repeated measures

GLIM
y=f(b0+b1x1+b2x2+…,ε)
y can be non-continuous
Errors can be nonnormal 

but from a list
Logistic (binary) regression,
Poisson/Log-linear, Gamma

Space, time,
phylogeny GEE

GLMM
Errors covary

as in GLS

Robust
Median instead of 

Quantile
Any percentile

Can be nonlinear
Modern

f algorithmic
CART,

Neural nets

f freehand
GAM

on
-in

de
pe

nd
en

ce

Noncontinuous y

GLM
y=b0+b1x1+b2x2+…+ε

Includes discrete variables (ANOVA, 
t-test) through “coding”

Errors 1) independent, 2) normal, 3) constant variance
Y 4)continuous, 5) linear function of x

p
blocking, hierarchical models mean

Outliers OK
NLS

f general

N
o

Multivariate
Ordination, clustering
No model, Exploratory
Embraces collinearity

Multivariate
Hotelling t, MANOVA, RDA

Multiple Y

Path Analysis
PCA Regression
a priori subsets

Co
lli

ne
ar

ity

Road map

1. Linear
2. Error in Y only
3. Errors normal
4. Errors independent
5. Errors homoscedastic

Coding/
1: Linear->Link
3: Normal >Exp Family

Survivorship
Analysis

OLS GLM

Coding/
Discrete GLIM

3: Normal->Exp Family

GLS

3: exp
φ exp

Quasi
likelihood

4, 5: σ2I Σ

Zero
Inflation

3: exp fam
0+exp fam

Analysis

Path
Analysis

Multiple y 
(simultaneous)

64

GEE

LMM

2: Random
effects

GLMM

2: Random
effects

1: Linear->Link
3: Normal->Exp Family

HBM
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Road map

1. Linear
2. Error in Y only
3. Errors normal
4. Errors independent
5. Errors homoscedastic

Non-linear
H th i

Machine
L i

OLS GLM GLIM

Survivorship
Analysis

Hypothesis
(NLS, 
Breakpoint)

Not OLS/MLE
(still errors)

Learning

- Robust (median, 
quantile) error models
- Linear

- No error model
- No functional form

- Normal error
- A priori nonlinearity

65

GLS Quasi
likelihood

GEE

Zero
Inflation

Path
Analysis

LMM GLMM

HBM

Multivariate 
analysis

Multivariate summary

NMDS
(Rank distances only)

PCA Regression
(1 Y, collinear X)

Clustering

Mantel correlation of distance matrices
PermANOVA/Adonis on distance matrices

Multivariate lm
Dimension
Reduction

PCA

PCoA
(Distances only)

(Rank distances only)

Redundancy Analysis (RDA)
(many Y

Hotellings-T
(Multivariate Y, binary X)

MANOVA
(Multivariate Y, categorical X)

Factor
(Latent 

variables w/ 
errors)

/

(Ordination)
(many Y,

Two sets variables – causality)

Correspondence
Analysis (CA)

(Gaussian response –
Have large portion of gradient

High beta diversity)

Canonical CA (CCA)
(Gaussian)

66
Indirect
Ordination

Direct
Ordination

Spatial summary
Nature located Human located

rescale
1-D

transect

rescale by σ2

grid +d W

rescale by 2

covariance 
difference

covariance 
difference
γ(d)=σ 2 (1 ρ(d))

∫ and
rescale by 2πr

Cumulative in d
Geary’s c
(0,2) vs 1

Semi-variogram γ(d)
(0,σ2)

Ripley’s K(d)
(0,dmax) vs πd2

Point data Gridded dataGeospatial data

Variogram V(d)
(0,2σ2)L(d)=d-√K(d)/π

(-∞,∞) vs 0
PQV

grid +
d W

rescale by λ

γ(d)=σ 2 (1– ρ(d))

Local in d
Moran’s I

(~-1,~1) vs -1/(n-1)
Correlogram ρ(d)

(-1,1) vs 0
pair correlation g(d)
= Condit Ω(d)

(0,∞) vs  1

O-ring(d)
(0,∞) vs  λ

Covariogram C(d)
(-σ2, σ2) vs 0

rescale by σ2

7 things to remember
1. There are a lot of ways to do science

Usually a balance of approaches is best
2. Statistics does not have one right way

You have to think & justify
3. You know more techniques than 90% of ecologists

Balance cutting edge vs. familiarity
4. Prepare for your experiment

A priori hypotheses, what statistics, power, interspersion & replication
5. Find strong tests

Avoid circular reasoning (calibration w/o validation)
Use some form of alternative hypotheses (model comparison or null)

6. Likelihood & boostrapping can deal with more complex cases
7. Our field is complex enough you may need collaborations
8. “There are worse things for a scientist than to be wrong. One of them 

is to be trivial.”


