* Space and time

i Spatial data

Temporal data
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i Are time & space unique?

= Or can we just do a model:
= y=f(lat,lon)+¢
= y=f(temp(lat,lon),precip(lat,lon))+¢
= y=f(t)+¢
= y=f(temp(t))+¢

i Space & time different

Key assumption of GLM is independence of
data points

In space/time there is a particular form of

nonindependence:

= Nearby points are very similar

= Called autocorrelation (self-correlated)
World’s simplest weather forecast:

= Tomorrow’s weather the same as today

= Actually has a high degree of accuracy
Also have a well-defined sense of “distance”
between points

Three components of a time
series

= A time series has:
= Trend
= Seasonality (or cyclicity)
= Noise

i Mauna Loa CO,
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Stationarity

= To analyze a time series, want to assume stationarity

= Stationarity=
= Mean constant over time
= Variance constant over time
= Covariance structure constant
= Must remove trend & seasonality to make stationary
= Removing trend:
« Fit model (e.g. straight line)
« Diff (t-t.;)
= Removing seasonality
= Use routine

InR

d=read.table("/temp/dickabund.csv®,h=T)
dts=ts(d$Abund, start=1966)

Plotting
plot(dts)

Subscripting
window(dts, start=1980,end=1989)
window(dts,start=1980,end=1989, freq=0.5)

= Decomposing
data(co2)
dec=stl(co2,s.window="“periodic”)#s.window=12
Str(dec)
plot(dec$time.series)
plot(window(co2,1990,c(1991,6)) #Jan90-Jun9l

Aggregating
aggregate(co2,1,sum) #1 period/year=yearly
aggregate(co2,4,sum) #4/year=quarterly

Covariance structure

= Removing trend/seasonality makes
= Mean constant
= Variance constant (we hope)
= We hope we have a simplified covariance structure
= Key simplification
= cov(e;,&)=f(|i-j|) (i.e. depends only on time separation)
= cov(e,€)=C
= Called the ACF (Autocorrelation or autocovariance function)
= Recall cor(x,y)=cov(x,y)/c,o,
= Proportional — same shape, different heights
= Covariance is usually useful in later calculations
= Correlation easier to interpret (scaled —1 to 1)
= Plot in autocorrelogram/autocovariogram

Calculating covariance

= For lag (distance in time) = t
= Have multiple pairs
» If N=8, t=4, then have 5 (N-t-1) pairs
= # pairs fewer as t bigger > big CI for large t
= Calculate covariance or correlation of these pairs:
= COV4=COV(X;,X;4)=1/NZ (X n) (X 1)
= COr=CoV,/COV,
= Repeat for each t

= Gives vector for ACF
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iInR

co2.diff=diff(co2)
plot(co2.diff)
acft(co2.diff)
act(co2)

act(dts)

co2.diff
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i Significance tests

= acf draws significance bands

= Problem of multiple tests

= Is 1 point outside enough? 20?

= Portmanteau test

= Q=NZp(j)? for j=1..K (N=length ts,
K=test, e.g. 20)

= Q is Chi-square distributed with K df

Cofactors

= Endogenous

= The time series itself

= Self generating

= Population dynamics, weather

= Autocorrelation — can predict future from past
= Exogenous

= External factors

= E.g. weather or food for population dynamics

= Need future of exogenous factors to predict
= Usually handled via regression with

autoregressive & exogenous variables

= YevYertYeo e te




Other fancy stuff

NAO_SST <- read.table('Scottish_SST.txt"”, header = T,sep="\t")

SST=ts(NAO_SST$SST,start=1945, freq=12)

NAO=ts(NAO_SST$NAO, start=1945, freq=12)

ccF(stI(NAO,s.window="period") $time.series[,3], stl(SST,s.window="period")
$time.series[,3])

ducks <- read.table(ducks.txt”, header = T, sep = "\t", dec = ".")
library(lattice)
xyplot(Gadwall + Goldeneye + Goosander + Mallard +

Pochard + Pintail ~ Year, data = ducks,
type = "I, outer = T, layout = c(3, 2),
scales = list(x = list(relation = "same™),

y = list(relation = "free")),
ylab = "Abundance™, xlab = "Time (years)"™)
library(vegan)
ducks_pca <- rda(ducks[, -c(1, 2)], scale = T)
plot(ducks_pca, scaling = 2, type = "n", xlab = "axis 1", ylab = "axis 2")
segments(x0 = 0,
yo = 0,
x1 = scores(ducks_pca, display = "species"”, scaling = 2)[, 1],
yl = scores(ducks_pca, display = "species", scaling = 2)[, 2])
text(ducks_pca, display = "sp", scaling = 2, col = 2)
1 = wa = 11 caling = 2, pch = 10)

ARIMA

= A pre-fractal approach
= Autoregressive
= Random walk analog
= Y=B1Ye1t+BaYrater
= Moving average
= White noise analog
= Ve=fiee e te
= AR(2)MA(2)
= Yi=B1Ye1+BaYeot e et &
= Has a well-defined covariance structure (mostly 0,
band along diagonal) — use GLS

= ARIMA = ARMA+differencing

i GLM vs GLS

GLS Timeseries

= GLM assumes: c 0 0
= Y=Xb+e w/ e~N(0,cI) 0 c 0
= CoV(g;g)=0 0 0

= COV(g,E)=0

= GLS relaxes

= Y=Xb+e w/ SNN(O,Z)

= cov(g;,g;)oc cor(e;e;) #0
= In practice:

= TOO many parameters in X
= Usually put some structure on X

= Observe one variable over time (say
population size): yy,Y,,Y3,---Yi
= Want y~temp+precip, but ¢ autocorrelated
= Assume cov(g, &;)=p!tsl

= AR1 & & & & &
= Use correlation e (1 p p2 p* pt
» 2 parameters: ¢,p % P 1o o
|2 p 1 p P
g P P2 p 1 p
&5 \L;ﬁ P op 1




i Regression with timeseries

d<-read.table("Hawaii.txt",h=T)

str(d)

d$N<-sqrt(d$Moorhen.Kauai)

plot(d$N~d$Year)

m<-Im(N~Rainfal I+Year ,data=d,na.action=na.omit)

plot(m)

plot(residuals(m))

acf(residuals(m))

#uh oh!

m.gls<-
gls(N~Rainfall+Year,na.action=na.omit,data=d,correlation=corAR1(
form=~Year))

summary(m.gls)
AlIC(m)
AIC(m.gls)

i Example

d=read.table("dickabund.csv”®,h=T, sep=",")

dts=ts(d,start=1966)

acf(dts, lag.max=20)

m=gls(abund~tmin+tmax,data=d,
corr=corAR1(0.4) ,method=""ML")

m

summary(m)

i Fractal model (vs ARIMA/GLS)

= White noise:
= Yi=ute

= Random walk/Brownian motion/diffusion:
" Yi=Yerte

= Fractal brownian motion (fBM)
= Movie mountain scapes

= Hurst exponent (H):
= 0.5=white noise
= 1= random walk
= O=antipersistent — flipflops regularly
= Intermediate values

fBM

= H>0.5 >memory of system
= Propensity for being like before
= Weather shows memory
= Random walk (H=1) is brown or red
= Pink noise is in between white & red (e.g. 1/f)
= Pinkish noise has variance constantly increasing with time!
= H<0.5 (antipersistent) is blue noise
= Related values
= B=2*H-1 (0O=white noise, 2=random walk/brown)????
« Power spectrum is f(S)ocs™P
=« D = Fractal dimension
= Extinction risk depends heavily on autocorrelation of
noise




i Examples of various noise

i ACF & power of noise

White ACF Power -

t freq

Brown ACFM'\ Power K

-

t freq

.
.
. 0
White
710 200 400 600 800 1000 1200
0.02
- ]
Pink WWWW\NWWNWMWMWM
0.02
0 -3 200 400 600 800 1000 1200
5 x 10
0 W
Red 5
-10
0 200 400 600 800 1000 1200

= Spectrum analysis (from radio
engineering)->Periodogram

Run a time series through
Use fourier analysis

Doesn't give + or — correlation — gives frequency of sine
waves

Get “power” (energy) vs. frequency (1/lag)

= InR
spectrum(ts, span=oddint)
cpgram(ts)
# e.g. w/ co2
m<-stl(co2,s.window="period")
spectrum(m$time.series[,3],13)
cpgram(m$time.series[,3])

* Space
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i Space

= Similarities differences with time
= Does space have trends?
= Does space have periodicity?

= Does space have covariance dependent
only on distance?

Space very similar to time

= Main difference is that measuring points are:
= Continuous
= Irregular
= 2-Dimensional

= Assume

n COV(ex,ey) = f(d (XIY))
Vs

= cov(e;,,€)=C
= Assume isotropy
= Same in all directions

3 components

@

Spatial
No seasonality/periodic




i Trends in space (15t order)

= Several forms
= Global
= Fit plane, quadratic
= Local=smoothing
= Weight points by distance in some fashion

Tree diversity trend Tree diversity smoothed
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i Fitting trend surface

library(spatial)

library(MASS)

data(topo)

= Polynomial

mpo=surf.lIs(degree,data) #deg=2 for
quadratic

= LOESS

mlo=loess(z~x*y,data=?,degree=2,span=0.25,
normal ize=F)

Plotting Trend

= Most plots (including contour) need a
regularly spaced grid
= Most data is not regularly spaced
= Getting a grid
= Polynomial
surf=trmat(mpo,xlo,xhi,ylo,yhi,n)
= Loess
topogrid=list(x=seq(0,6.5,0.1),y=seq(0,6.5,0.1))
surf=predict(mlo,expand.grid(topogrid),se=T)
= Plotting

contour(surf)
contour (topogrid$x, topogrid$y,surf$fit)

i Contour of deg 2,3,4,6
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Autocorrelation in space

i “grams”

= Space continous, not discrete
= Cannot do exactly ACF
= Use “grams”
= Correlogram uses correlation ~ACF
= Variogram is cumulative (variance, not correl)
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Covariograms

= Correlogram
= Correlation between points at various distances
= Distances lumped into bins
= Should you run a correlogram on the detrended surface?
= You may want to run a model (topo.Is or topo.gls) of degree 0
(constant) and do correlogram of errors for this
mpoO=surf. 1s(0, topo)
mpo2=surf.1s(2,topo)
correlogram(mpo0, 25)
correlogram(mpo2,25)

= Variogram
= Covariance — not scaled
variogram(m2,nbins)

i Output
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GLS - Continuous Spatial

= Assume cov(e;g;)=d; — only a function of
distance

= Typically p;=exp(-kd;)
= So estimate o, k

1 exp(-kd;;)  exp(-kdys)  exp(-kdy) exp(-kd;s)
exp(-kdy) 1 exp(-kdys)  exp(-kdy)  exp(-kdys)
exp(-kdsy;)  exp(-kdzp) 1 exp(-kdss)  exp(-kdss)
exp(-kdsy)  exp(-kdy;)  exp(-kdg) 1 exp(-kdss)

exp(kds;)  exp(-kdsp) — exp(-kds;) — exp(-kdss) 1

i Kriging

= A form of estimating values at points (interpolation)
= Either on grid or point of special interest
= Weighted smoothing w/ weights given by variogram!
= Uses not just trend but guess at error term
= Error term is a weighted average of nearby error terms with
weighting based on distance and covariogram
= Generally more accurate

= InR:

m2gls=surf.gls(2,expcov,topo,d=0.7)#GLS, not GLM,
expcov is model for covariogram

surf=prmat(m2gls,0,6.5,0,6.5,50) #prmat vs trmat

contour(surf)

Kriged surface

o- (o)
720 o
%k
0 740
76D \
<
780
820
o -

N
RO

T
0 1 2 3 4 5 6

i Spatial regression

Models:
s Si= BB *t+HYWS+aVe+ [X,y]{+n+e
= S (species richness) depends on t (temperature)
= Butalso on:

= Space per se [x,y] (trend effects) — traditional (trend surface)

= Moving average=lagged dependent: S elsewhere (e.g dispersal) = Autocovariate, SAR
Autoregressive: depends on residuals (S-Shat) elsewhere = CAR, SAR

Lagged independent:t elsewhere (e.g. effects on juveniles or parents), SAR

= Covariance of residuals (n)=GLS, LMM, GEE

= See Dormann et al 2007!
InR

Autoregressive, CAR, SAR in spatdep
Covariance in nlme, gee

New PIC?

Estimates (b) unbiased, efficient

Does overestimate df (points not independent)
« Duteillel's adjustment to p-value

11



Regression with spatial &
exogenous factors

library(AED)

data(Boreality)

#boreal species over all species
Boreality$Bor<-sqrt(1000*(Boreality$nBor+1)/Boreality$nTot)
str(Boreality)

library(akima)
zz<-interp(Boreality$x,Boreality$y,Boreality$Bor)
image(zz)

contour(zz,add=T)

filled.contour(zz)

#simple model

m<-Im(Bor~Wet,data=Boreality)

summary(m) library(gstat)

E<-rstandard(m) #residuals
mydata<-data.frame(E,Boreality$x,Boreality$y)
coordinates(mydata)<-c(“Boreality.x","Boreality.y")
bubble(mydata,E™,col=c("'black™, "grey"))

#errors non-independent!
variogram(Bor~Wet,~x+y,data=Boreality)

iInRII

library(spatial) #different form of variogram +correlogram
mO<-surf.l1s(0,Boreality$x,Boreality$y,Boreality$Bor)
variogram(m0,300)
correlogram(moO, 300)
library(nlme)
m<-
gls(Bor~Wet,correlation=corSpher (form=~x+y,nugget=TRUE) ,data=Bo
reality)
#a 34 form of variogram that works with nlme/gls
v<-Variogram(m, form=~x+y, robust=TRUE , maxDist=2000)
plot(v)

Non-
stationarity

= Is the assumption of
constancy over
space realistic?

= Can we turnitinto a
tool?

= GWR

eI

(geographically e e
weighted = o
regression) & e

= Wimberly et al 2008 === = 5 Sl

i Areal data

= Grids

= Distance=# cells

= Rook or Queen
= Variogram->Geary c
= Correlogram-> Moran I S
«GLS2-DARL | .

= Maps (counties, states)

= Distance = midpoint-midpoint
= Adjacency matrix W
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Point processes

= Record location (x,y coordinates) of “events”
= E.g. plant growing
= Idea of overdispersed/random/clumped
= Poisson process (rate=2)
= K(t)=# points within distance t/A
= If Poisson K(t)=nt2
= Study L(t)=sqrt(K(t)/=) should be straight line
= Great deal of machinery
= Also works on quadrats — count in each quadrat is
Poisson distributed
= Alternatives to Poisson give clumped/overdispersed

library(spatstat)

d<-read.table("ragwortmap2006.txt" ,h=T)

ragwort<-
ppp(d$xcoord,d$ycoord,c(0,3000),c(0,1500) ,marks=d$type)

plot(ragwort)

summary(ragwort)

plot(quadratcount(ragwort))

Z <- density.ppp(ragwort)

plot(Z,main=""")

K <- Kest(ragwort)

plot(K) #note observed (black)>red null->clumped

pc <- pcf(ragwort)

plot(pc)

Spatial summary

Nature located Human located

Point data Geospatial data Gridded data

L(d)=d-VK(d)/x
(-0,0) vs 0

Variogram V(d) rescale by o2
(0,26?) grid +d>W
1-D
rescalgby 2 transect

Semi-variogram y(d)

Ripley’s K(d)

Cumulative in d (0d) vs nd?

] and
rescale by 2nr

pair correlation g(d)
Local ind = Condit ©(d)
(0,0)vs 1

rescalelby 2

O-ring(d)
(0,0) Vs A

Geary's ¢
(0,62) (0,2)vs 1
covariance > covariance

difference > difference
v(d)=o 2 (1- p(d))

Moran’s |
(~-1,~1) vs -1/(n-1)

Correlogram

p(d)
(-1,1)vs 0

rescald by o2

Covariogram C(d)
(-02, 62) vs 0

Time & space summary

= Independent error terms is clearly
violated

= Study of covariance of error terms with
distance interesting
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i Spatial data

i Random null models

Randomized

fBM null models
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i Gauss null models
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Results V - Empirical
autocorrelation

Moan + 95%Gi comelograms for al models

Plot o sl 5l corelograms
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