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Are time & space unique?
Or can we just do a model:Or can we just do a model:

y=f(lat,lon)+ε
y=f(temp(lat,lon),precip(lat,lon))+ε
y=f(t)+ε
y=f(temp(t))+εy ( p( ))

Space & time different
Key assumption of GLM is independence ofKey assumption of GLM is independence of 
data points
In space/time there is a particular form of 
nonindependence:

Nearby points are very similar
Called autocorrelation (self-correlated)

World’s simplest weather forecast:
Tomorrow’s weather the same as today
Actually has a high degree of accuracy

Also have a well-defined sense of “distance” 
between points

Three components of a time 
series

A time series has:A time series has:
Trend
Seasonality (or cyclicity)
Noise
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Stationarity
To analyze a time series want to assume stationarityTo analyze a time series, want to assume stationarity
Stationarity=

Mean constant over time
Variance constant over time
Covariance structure constant

Must remove trend & seasonality to make stationary
Removing trend:

Fit model (e.g. straight line)
Diff (ti-ti-1)

Removing seasonality
Use routine

In R
Creating timeseries
d=read.table('/temp/dickabund.csv',h=T)
dts=ts(d$Abund,start=1966)

Plotting
plot(dts)

Subscripting
window(dts,start=1980,end=1989)
window(dts,start=1980,end=1989,freq=0.5)

Decomposing
data(co2)
dec=stl(co2,s.window=‘periodic’)#s.window=12
Str(dec)
plot(dec$time.series)
plot(window(co2,1990,c(1991,6)) #Jan90-Jun91

Aggregating
aggregate(co2,1,sum) #1 period/year=yearly
aggregate(co2,4,sum) #4/year=quarterly

Covariance structure
Removing trend/seasonality makes

Mean constant
Variance constant (we hope)

We hope we have a simplified covariance structure
Key simplification
cov(ei,ej)=f(|i-j|) (i.e. depends only on time separation)
cov(ei+t,ei)=ct

Called the ACF (Autocorrelation or autocovariance function)Called the ACF (Autocorrelation or autocovariance function)
Recall cor(x,y)=cov(x,y)/σxσy

Proportional – same shape, different heights
Covariance is usually useful in later calculations
Correlation easier to interpret (scaled –1 to 1)
Plot in autocorrelogram/autocovariogram

Calculating covariance
For lag (distance in time) = tFor lag (distance in time) = t

Have multiple pairs
If N=8, t=4, then have 5 (N-t-1) pairs
# pairs fewer as t bigger big CI for large t
Calculate covariance or correlation of these pairs:

cov4=cov(xi,xi-4)=1/nΣ(xi+t-μ)(xi-μ)
cort=covt/cov0t t/ 0

Repeat for each t
Gives vector for ACF
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In R
co2 diff=diff(co2)co2.diff=diff(co2)
plot(co2.diff)
acf(co2.diff)
acf(co2)

f(dt )acf(dts)

R Output
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Significance tests
acf draws significance bandsacf draws significance bands
Problem of multiple tests
Is 1 point outside enough? 20?
Portmanteau test
Q NΣ (j)2 f j 1 K (N l th tQ=NΣρ(j)2 for j=1..K (N=length ts, 
K=test, e.g. 20)
Q is Chi-square distributed with K df

Cofactors
Endogenous

The time series itself
Self generating

Population dynamics, weather
Autocorrelation – can predict future from past

Exogenous
External factorsExternal factors
E.g. weather or food for population dynamics
Need future of exogenous factors to predict

Usually handled via regression with 
autoregressive & exogenous variables

yt~yt-1+yt-2+ft-1+εt
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Other fancy stuff
NAO_SST <- read.table("Scottish_SST.txt", header = T,sep="\t")
SST=ts(NAO_SST$SST,start=1945,freq=12)_
NAO=ts(NAO_SST$NAO,start=1945,freq=12)
ccf(stl(NAO,s.window="period") $time.series[,3], stl(SST,s.window="period") 

$time.series[,3])

ducks <- read.table("ducks.txt", header = T, sep = "\t", dec = ".")

library(lattice)
xyplot(Gadwall + Goldeneye + Goosander + Mallard + 

Pochard + Pintail ~ Year, data = ducks, 
type = "l", outer = T, layout = c(3, 2), 
scales = list(x = list(relation = "same"), 

y = list(relation = "free"))y = list(relation = "free")), 
ylab = "Abundance", xlab = "Time (years)")

library(vegan)
ducks_pca <- rda(ducks[, -c(1, 2)], scale = T)
plot(ducks_pca, scaling = 2, type = "n", xlab = "axis 1", ylab = "axis 2")
segments(x0 = 0, 

y0 = 0, 
x1 = scores(ducks_pca, display = "species", scaling = 2)[, 1], 

y1 = scores(ducks_pca, display = "species", scaling = 2)[, 2])
text(ducks_pca, display = "sp", scaling = 2, col = 2)
text(ducks_pca, display = "wa", labels = ducks[, 1], scaling = 2, pch = 19)

ARIMA
A pre-fractal approachA pre fractal approach

Autoregressive
Random walk analog
yt=β1yt-1+β2yt-2+εt

Moving average
White noise analog
yt=f1εt-1+f2εt-2+εtyt 1 t 1 2 t 2 t

AR(2)MA(2)
yt=β1yt-1+β2yt-2+ f1εt-1+f2εt-2+ εt

Has a well-defined covariance structure (mostly 0, 
band along diagonal) – use GLS

ARIMA = ARMA+differencing

GLM vs GLS
GLM assumes: σ 0 0GLM assumes:

Y=Xb+ε w/ ε~N(0,σI)
cov(εi,εj)=0
cov(εi,εi)=σ

GLS relaxes
Y=Xb+ε w/ ε~N(0 Σ)

σ 0 0
0 σ 0
0 0 σ

σ11 σ12 σ13
Y Xb+ε w/ ε N(0,Σ)
cov(εi,εj)∝ cor(εi,εj) ≠0

In practice:
Too many parameters in Σ
Usually put some structure on Σ

σ12 σ22 σ23

σ13 σ12 σ33

GLS Timeseries
Observe one variable over time (sayObserve one variable over time (say 
population size): y1,y2,y3,…yt

Want y~tempt+precipt but ε autocorrelated
Assume cov(εt, εs)=ρ|t-s|

AR1
Use correlation

ε1 ε2 ε3 ε4 ε5

ε1 1 ρ ρ2 ρ3 ρ4Use correlation
2 parameters: σ, ρ

1 ρ ρ ρ ρ

ε2 ρ 1 ρ ρ2 ρ3

ε3 ρ2 ρ 1 ρ ρ2

ε4 ρ3 ρ2 ρ 1 ρ

ε5 ρ4 ρ3 ρ2 ρ 1
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Regression with timeseries
d<-read.table("Hawaii.txt",h=T)
str(d)
d$N<-sqrt(d$Moorhen.Kauai)
plot(d$N~d$Year)
m<-lm(N~Rainfall+Year,data=d,na.action=na.omit)
plot(m)
plot(residuals(m))
acf(residuals(m))
#uh oh!#uh oh!
m.gls<-

gls(N~Rainfall+Year,na.action=na.omit,data=d,correlation=corAR1(
form=~Year))

summary(m.gls)
AIC(m)
AIC(m.gls)

Example
d=read table('dickabund csv',h=T, sep=",")d read.table( dickabund.csv ,h T, sep , )
dts=ts(d,start=1966)
acf(dts,lag.max=20)
m=gls(abund~tmin+tmax,data=d, 
corr=corAR1(0.4),method="ML")

m
summary(m)

Fractal model (vs ARIMA/GLS)
White noise:White noise:

yt=μ+εt

Random walk/Brownian motion/diffusion:
yt=yt-1+εt

Fractal brownian motion (fBM)
Movie mountain scapesp
Hurst exponent (H):

0.5=white noise
1= random walk
0=antipersistent – flipflops regularly
Intermediate values 

fBM
H>0.5 memory of system

Propensity for being like before
Weather shows memory
Random walk (H=1) is brown or red
Pink noise is in between white & red (e.g. 1/f)
Pinkish noise has variance constantly increasing with time!
H<0.5 (antipersistent) is blue noise

Related valuesRelated values
β=2*H-1 (0=white noise, 2=random walk/brown)????

Power spectrum is f(s)∝s-β

D = Fractal dimension
Extinction risk depends heavily on autocorrelation of 
noise
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Examples of various noise
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To analyze
Spectrum analysis (from radioSpectrum analysis (from radio 
engineering) Periodogram

Run a time series through
Use fourier analysis
Doesn’t give + or – correlation – gives frequency of sine 
waves
Get “power” (energy) vs. frequency (1/lag)

In RIn R
spectrum(ts,span=oddint)
cpgram(ts)
# e.g. w/ co2
m<-stl(co2,s.window="period")
spectrum(m$time.series[,3],13)
cpgram(m$time.series[,3])

Space
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Space – types 
of data

Spatial sampling design Binary 
Variable 
(Present/Ab
sent)

Continuous 
Variable 
(Amount/Abu
ndance)

Sampler 
controlled

Regular 
across space

“Presence/a
bsence 
quadrat”

Quadrat

R d “P / G ti lRandom 
across space

“Presence/a
bsence 
geospatial”

Geospatial

Biology controlled Point-
process

Marked point-
process

Space
Similarities differences with timeSimilarities differences with time

Does space have trends?
Does space have periodicity?
Does space have covariance dependent 
only on distance?

Space very similar to time
Main difference is that measuring points are:Main difference is that measuring points are:

Continuous
Irregular
2-Dimensional

Assume
cov(ex,ey)=f(d(x,y))

VVs
cov(ei+t,ei)=ct

Assume isotropy
Same in all directions

3 components
20
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Trends in space (1st order)
Several formsSeveral forms
Global

Fit plane, quadratic

Local=smoothing
Weight points by distance in some fashionWeight points by distance in some fashion
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Fitting trend surface
library(spatial)library(spatial)
library(MASS)
data(topo)

Polynomial
mpo=surf.ls(degree,data) #deg=2 for 
quadraticquadratic

LOESS
mlo=loess(z~x*y,data=?,degree=2,span=0.25, 
normalize=F)

Plotting Trend
Most plots (including contour) need aMost plots (including contour) need a 
regularly spaced grid
Most data is not regularly spaced
Getting a grid

Polynomial
surf=trmat(mpo,xlo,xhi,ylo,yhi,n)

Loess
topogrid=list(x=seq(0,6.5,0.1),y=seq(0,6.5,0.1))
surf=predict(mlo,expand.grid(topogrid),se=T)

Plotting
contour(surf)
contour(topogrid$x,topogrid$y,surf$fit)

Contour of deg 2,3,4,6

6 6

0 2 4 6

0
2

4

0 2 4 6

0
2

4

0 2 4 6

0
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4
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0
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4
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Autocorrelation in space 
“grams”

Space continous not discreteSpace continous, not discrete
Cannot do exactly ACF

Use “grams”
Correlogram uses correlation ~ACF
Variogram is cumulative (variance, not correl)Variogram is cumulative (variance, not correl)

Easting
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Correlogram
Covariogram
Semivariogram
Variogram
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Actual
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2nd only

Covariograms
Correlogram

l b dCorrelation between points at various distances
Distances lumped into bins

Should you run a correlogram on the detrended surface?
You may want to run a model (topo.ls or topo.gls) of degree 0 
(constant) and do correlogram of errors for this

mpo0=surf.ls(0,topo)
mpo2=surf.ls(2,topo)
correlogram(mpo0,25)
correlogram(mpo2,25)

Variogram
Covariance – not scaled

variogram(m2,nbins)

Output
Correlogram
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GLS - Continuous Spatial
Assume cov(ε ε )=d – only a function ofAssume cov(εi,εj)=dij – only a function of 
distance
Typically ρij=exp(-kdij)
So estimate σ, k

1 exp(-kd12) exp(-kd13) exp(-kd14) exp(-kd15)

exp(-kd21) 1 exp(-kd23) exp(-kd24) exp(-kd25)

exp(-kd31) exp(-kd32) 1 exp(-kd34) exp(-kd35)

exp(-kd41) exp(-kd42) exp(-kd43) 1 exp(-kd45)

exp(-kd51) exp(-kd52) exp(-kd53) exp(-kd54) 1

Kriging
A form of estimating values at points (interpolation)g p ( p )

Either on grid or point of special interest
Weighted smoothing w/ weights given by variogram!

Uses not just trend but guess at error term
Error term is a weighted average of nearby error terms with 
weighting based on distance and covariogram
Generally more accurate

In R:In R:
m2gls=surf.gls(2,expcov,topo,d=0.7)#GLS, not GLM, 

expcov is model for covariogram
surf=prmat(m2gls,0,6.5,0,6.5,50) #prmat vs trmat
contour(surf)

Kriged surface

6
2

3
4

5
6

0 1 2 3 4 5 6

0
1

2

Spatial regression
Models:

Si= β0+β1*ti+γWS+αVt+ [x,y]ζ+η+ i

S (species richness) depends on t (temperature)
But also on:

Space per se [x,y] (trend effects) – traditional (trend surface)
Moving average=lagged dependent: S elsewhere (e.g dispersal) = Autocovariate, SAR
Autoregressive: depends on residuals (S-Shat) elsewhere = CAR, SAR
Lagged independent:t elsewhere (e.g. effects on juveniles or parents), SAR
Covariance of residuals (η)=GLS, LMM, GEE

S D t l 2007!See Dormann et al 2007!
In R

Autoregressive, CAR, SAR in spatdep
Covariance in nlme, gee

New PIC?
Estimates (b) unbiased, efficient
Does overestimate df (points not independent)

Duteillel’s adjustment to p-value
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Regression with spatial & 
exogenous factors
library(AED)
data(Boreality)data(Boreality)
#boreal species over all species
Boreality$Bor<-sqrt(1000*(Boreality$nBor+1)/Boreality$nTot)
str(Boreality)
library(akima)
zz<-interp(Boreality$x,Boreality$y,Boreality$Bor)
image(zz)
contour(zz,add=T)
filled.contour(zz)
#simple model#simple model
m<-lm(Bor~Wet,data=Boreality)
summary(m)library(gstat)
E<-rstandard(m) #residuals
mydata<-data.frame(E,Boreality$x,Boreality$y)
coordinates(mydata)<-c("Boreality.x","Boreality.y")
bubble(mydata,"E",col=c("black","grey"))
#errors non-independent!
variogram(Bor~Wet,~x+y,data=Boreality)

In R II
library(spatial) #different form of variogram +correlogram
m0<-surf.ls(0,Boreality$x,Boreality$y,Boreality$Bor)
variogram(m0,300)
correlogram(m0,300)
library(nlme)
m<-

gls(Bor~Wet,correlation=corSpher(form=~x+y,nugget=TRUE),data=Bo
reality)

#a 3rd form of variogram that works with nlme/gls
v<-Variogram(m,form=~x+y,robust=TRUE,maxDist=2000)
plot(v)

Non-
stationarity

Is the assumption ofIs the assumption of 
constancy over 
space realistic?
Can we turn it into a 
tool?
GWRGWR 
(geographically 
weighted 
regression)

Wimberly et al 2008

Areal data

G idGrids
Distance=# cells

Rook or Queen

Variogram->Geary c
Correlogram-> Moran I g
GLS 2-D AR1

Maps (counties, states)
Distance = midpoint-midpoint
Adjacency matrix W
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Point processes
Record location (x y coordinates) of “events”Record location (x,y coordinates) of events

E.g. plant growing
Idea of overdispersed/random/clumped
Poisson process (rate=λ)

K(t)=# points within distance t/λ
If Poisson K(t)=πt2

Study L(t)=sqrt(K(t)/π) should be straight line

Great deal of machinery
Also works on quadrats – count in each quadrat is 
Poisson distributed
Alternatives to Poisson give clumped/overdispersed

library(spatstat)y( p )
d<-read.table("ragwortmap2006.txt",h=T)
ragwort<-

ppp(d$xcoord,d$ycoord,c(0,3000),c(0,1500),marks=d$type)
plot(ragwort)
summary(ragwort)
plot(quadratcount(ragwort))
Z <- density.ppp(ragwort)
plot(Z,main="")
K <- Kest(ragwort)

plot(K) #note observed (black)>red null clumped
pc <- pcf(ragwort)
plot(pc)

Spatial summary
Nature located Human located

rescale
1-D

transect

rescale by σ2

grid +d W

rescale by 2

covariance 
difference

covariance 
difference
γ(d)=σ 2 (1 ρ(d))

∫ and
rescale by 2πr

Cumulative in d
Geary’s c
(0,2) vs 1

Semi-variogram γ(d)
(0,σ2)

Ripley’s K(d)
(0,dmax) vs πd2

Point data Gridded dataGeospatial data

Variogram V(d)
(0,2σ2)L(d)=d-√K(d)/π

(-∞,∞) vs 0
PQV

grid +
d W

rescale by λ

γ(d)=σ 2 (1– ρ(d))

Local in d
Moran’s I

(~-1,~1) vs -1/(n-1)
Correlogram ρ(d)

(-1,1) vs 0
pair correlation g(d)
= Condit Ω(d)

(0,∞) vs  1

O-ring(d)
(0,∞) vs  λ

Covariogram C(d)
(-σ2, σ2) vs 0

rescale by σ2

Time & space summary
Independent error terms is clearlyIndependent error terms is clearly 
violated
Study of covariance of error terms with 
distance interesting
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Spatial data Random null models

fBM null models Gauss null models
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Results V - Empirical 
autocorrelation
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