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i Multivariate statistics

= The statistical study of data that has

many different variables

(measurements)

= All variables (except one in some cases)
are continuous

= GLM technically multivariate but usually
excluded

= Very heavy use of linear algebra

i Leave behind

= Significance tests
= y=f(x) (modelling/prediction)

= Purely descriptive
= Basically exploring covariance structure




i Multivariate normal
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i Variations on covariance

s Standardized matrix

= each column converted to a z-score (subtract
mean, divide by std dev)

= Avoid units making some variables appear more
important
= Standardized covariance matrix=correlation
matrix

= Covariance->correlation but not vice versa

Distances

= Instead of variance/covariance (or correlation matrix)
can use a distance matrix
= Distances in ecology
= Euclidian d=sqrt(Z(x,i-X,;)?)
= City-block d= Z|x3;-X5|
= Also chord, chi-square, Bray-Curtis
= 1-Jaccard = #spinA+#spinB/(#spinA+#spinB+#spBoth)
= # substitutions in gene sequence
= InR
= d=dist(md,method=?) w/
?="euclidean”,”"manhattan”,”canberra”

= Also package vegan
= vegdist(x,method="") #defaults to bray-curtis




In R

data(iris)

id=iris[,1:4]

cov(id)

cor(id)

cov(scale(id))

dist(t(id))

#

library(vegan)
vegdist(t(id))
vegdist(t(id),method="chao")

Bootstrap application:

Mantel test
Correlation of distance matrices
Example 1: A B C D
= 4 sites
= Distance (km) between sites A |0 2 1 5
= Change in mean temperature
« Is distance related to temperature? | B 2 0 3 4
Example 2:
= 4 species C 1 3 0 2
D |5 (4 |2 |0

= Genetic distance

= Morphopmetric distance

= Are they the same
Method:

= Randomly reshuffle column/row for one matrix

= Compare to other unshuffled matrix

= Treat each cell as datapoint & calculate r

Get distribution of r's under null hypothesis of no special mapping
of column to column (e.g. site to site)

= Analytic version available but bootstrap often used
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In R

library(vegan)

data(varespec)

data(varechem)

veg.dist <- vegdist(varespec) # Bray-Curtis

env.dist <- vegdist(scale(varechem),
"euclid™)

mantel (veg.dist, env.dist)

mantel (veg.dist, env.dist, method="spear')
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Five categories

= Hypothesis
= Multivariate extensions of GLM
= Y has many variables
= Exploration
= Visualization
= Ordination (reduce dimension, summarize)
= Clustering
= Special data structure

= Correspondence
Special case for species by site data

= Superceded
= (Classification)
= Predicting a categorical variable
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i Sample multivariate data in R

data(iris)

names(iris)

sp=iris[,5]

sp

id=iris[,1:4]

id

#Iet:ifegse(sp::"setosa","s",ifelse(sp::"versicolor","
v, tgt

let<-substr(iris$Species,1,2)

let

mns=aggregate(id,by=list(Species=sp),mean)

mns

mnsp=mns[,1]

mns=mns[,:2:5]
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Multivariate extensions
(hypothesis testing)

= Earlier example of correction for multiple tests
(Bonferonni)
= Two populations, 35 morphometric measures (e.g. corolla
length)
= Are the populations distinct (different means)
= Previously 35 t-tests w/ correction
= Better way
= Assume data in a 35-dimensional normal distribution
= Use normal machinery
= Three analogues (for continuous y)
= T-test (2 discrete)>Hotelling's T2
= ANOVA (n discrete)>MANOVA
= Regression (n continuous)>RDA
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In R

#MANOVA

data(iris)

m=manova(cbind(Sepal .Length,Sepal .Width,Petal .Wid
th,Petal .Length)~Species,data=iris)

m
summary(m)
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manova(y ~ iris$Species)

Terms:

iris$Species Residuals
Sepal .Length 63.2121  38.9562
Sepal .Width 11.3449 16.9620
Petal .Length 437.1028 27.2226
Petal .Width 80.4133 6.1566
Deg. of Freedom 2 147

Residual standard error: 0.5147894 0.3396877 0.4303345 0.2046500
Estimated effects may be unbalanced
> summary(m)

Df Pillai approx F num Df den Df Pr(cF)
iris$Species 2 1.192 53.466 8 290 < 2.2e-16 ***
Residuals 147
Signif. codes: 0 “**** 0.001 “*** 0.01 ~** 0.05 ~." 0.1~ " 1
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i Five categories

= Hypothesis
= Multivariate extensions of GLM
= Y has many variables

= Exploration
= Visualization
= Ordination (reduce dimension, summarize)
= Clustering
= Special data structure
= Correspondence
Special case for species by site data
= Superceded

= (Classification)
= Predicting a categorical variable
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i Visualization (Exploration 1)

= Many ways to visual multivariate
data

= Human eye very good at finding h
patterns /

library(MASS) o N
parcoord(id) @mmml/\y/\XWWm
parcoord(mns) o

stars(mns, full=F,key.loc=c(4,3),

labels=mnsp)
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Five categories

= Hypothesis
= Multivariate extensions of GLM
= Y has many variables

= Exploration
= Visualization
= Ordination (reduce dimension, summarize)
= Clustering
= Special data structure
= Correspondence
Special case for species by site data
= Superceded

= (Classification)
= Predicting a categorical variable
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i Ordination (Exploration 2)

= A collapsing of
dimensionality=simplification
= E.g. have 20 variables, simplify to two (can
plot)
= Many methods
= Principle Component Analysis (PCA)
= Principle Coordinate Analysis (PCoA)
= Multidimensional Scaling (MDS)

20




i Two goals

= Reduce # of measurements
= 20 measurements of body size

= Ordinate (order) the data
= Species abundance data at 20 sites
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Principal Component Analysis

dentify the major axes of variation

= Literally axis 1 is the axis of greatest varition
Calculation: the eigenvectors/eigenvalues
of the covariance matrix

= Often use the standardized matrix
Eigenvalues (A) proportional to amount of
variation explained

Eigenvectors give directions

= Get coordinates of original data on new
axes — can keep subset 2

i Visual PCA

Temp

Precip
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ilnR

data(iris)

id=iris[,1:4]

pc=princomp(log(id),cor=T) #log normalize, cor scales
pc

summary(pc)

plot(pc) #scree tells relative variance of axes
loadings(pc) #how variables map into axes
pcid=predict(pc) #get projected coordinates for plots
#classic plot
plot(pcid[,2]~pcid[,1],xlab="PC1",ylab="PC2'")

#also library(MASS), eqgscplot(Xx,y,..)

#classic w/ letters
plot(pcid[,2]~pcid[,1],xlab="PC1",ylab="PC2“, type=n)
text(pcid[,1:2], labels=let)

#biplot

biplot(pc,xlabs=let) 24




:.‘ R output
= princomp(Tog(id), cor = T)

> pc
Call:
princomp(x = log(id), cor = T)
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4
1.7124583 0.9523797 0.3647029 0.1656840
4 variables and 150 observations.
> summary(pc)
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.7124583 0.9523797 0.36470294 0.1656840
Proportion of Variance 0.7331284 0.2267568 0.03325206 0.0068628
Cumulative Proportion 0.7331284 0.9598851 0.99313720 1.0000000
> loadings(pc)
Loadings:
Comp.1 Comp.2 Comp.3 Comp.4
Sepal.Length 0.504 -0.455 0.709 0.191
Sepal .Width -0.302 -0.889 -0.331
Petal.Length 0.577 -0.219 -0.786
Petal .Width  0.567 -0.583 0.580

Comp.1 Comp.2 Comp.3 Comp.4
SS loadings 1.00 1.00 1.00 1.00
Proportion Var 0.25 0.25 0.25 0.25

Summary of outputs

= Loadings - relative importance of different
variables (x;) in a PC axis
= The arrows in a biplot

= Scores — position (coordinates) of an
observation/row on PCA axes
= The points in a biplot

= Variance — proportion of variance for axis is
MEN,
= Scree plot is just bars of A; - looks like talus slope

= Cumulative or pareto gives cumulative variance
26

Cumulative var 0.25 0.50 0.75 1.00 2
Another morphological
d<-read.table(*sparrowda.txt",h=T)
d2<-d[d$%observer==3 & d$Month==6, ]
str(d2)
m<-princomp(d2[,2:7],cor=T)
biplot(m)
summary(m)
loadings(m)

And an ordination

#and a ordination

library(vegan)

data(varespec)

m<-
princomp(varespec[,1:20],cor=T)

summary(m)

plot(m)

biplot(m)

loadings(m)

scores(m)

28




i And in climate

= Take pressure at grid on globe at one
point in time as one row (1 observation)
= Time in rows, points on globe in columns
= Do PCA
= Get main axes of variability over time
= 2> PNA, NAO, many other teleconnections

29

i PCA & Collinearity

= If you have highly collinear data
messing up a multivariate regression
= Do:
= PCA (or PCoA)
= Determine # of axes to keep
= Interpret the axes

= Do regression vs. the transformed
coordinates

30

ilnR

d<-read.csv("'dickcissel.csv',h=T)
str(d)
m<-princomp(d[,3:15],cor=T)
summary(m)
biplot(m)
m2<-Im(d$abund~m$scores[, 1]+
m$scores[,2])
plot(d$abund~m$scores[,1])
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Factor analysis

= Line is very blurry with PCA
= PCA has goal of finding axis of maximum varition

= Factor has goal of finding p<n factors that explain
(predict) the multivariate cloud with error

= Original derivation
= X=Af+g
= Z=cov(x)=coVv(A f + g)=cov(A f )+cov(e)=A AT+¥
= Non-unique upto Qf where Q orthogonal
= PCAis now alternative

= 1Q was the original motivation (test scores in different

subjects all correlated — 1 underlying factor?)

= Big difference — Factor axes are not unique

= Can rotate axes to make loadings high or 0 —i.e. improve
interpretation 32




Factor analysis in R

<—
read.table("'sparrowda.txt”,h=T)

#d2<-d[d$observer==3 &
d$Month==6, ]

#str(d2)

fact<-
factanal (d2[,2:7],3,scores=c(''reg
ression’),rotation="varimax'")

loadings(m)
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Correspondence analysis

= Works on a chi-squre table (counts)
= Classically species in columns, sites in rows
= Not for morphology!
= Treats rows & columns equally (PCA & Factor do not)
= Order sites based on species while ordering species based
on sites found in
= Two different interpretations
= Reciprocal averaging (RA)
= Gaussian ordination
= Find the unknown (abstract) axis such that species abundances

vs this axis are:
34

Correspondence Analysis (CA)
in R)

#and a ordination
library(vegan)

data(varespec)

m<-cca(varespec) # no [,1:20]!!
summary(m)

plot(m)
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i Horseshoe effects

= Sometimes get a plot that
looks like a horseshoe

= Most common in CA :,

= Two ends of gradient have
middle plants with zeros :
« These zeros cause the ends to | e
look similar | ’
= In fact one zero is due to too
hot, other is too cold

PCA fixis 2
?

= Can correct with detrending
(e.g. DECORANA) but current
recommendation is to not do
this

36




PCA on distances instead of
covariances

= Variety of methods analogous to PCA for distance matrix

= Allows use of preferred distance measure (e.g use Jaccard when
only have presence-absence)

= Many names

= Principle Coordinate Analysis (PCoA) — just PCA with distances

= PCA is a special case with Euclidean distance and k=# principal
components

= Metric Multidimensional Scaling
= Classical Scaling
= Works by:
= Center and scale distances, then apply PCA

37

ilnR

dat=varespec|[,1:20]
mms<-cmdscale(vegdist(dat>0),k=2)

mms #just scores (coordinates)
library(MASS)

egscplot(mms,type="n"") #library(MASS)
text(mms, rownames(dat))
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Non-metric MDS

= NMDS

= Non-metric MDS — only rank order of
distances

= Can use when faith in distances is weak

= Works by:
= Attempts to spread points out in 2 (+) dimensions to keep distances
proportional
= Requires squishing/stretching
= Builds n-dimensional ball-stick model, tries to find rotation that requires
least squishing to flatten
Stress=measure of how much squishing occurred

library(vegan)

m<-metaMDS(dat,distance="jaccard",k=2)
39

i Which to use?

= |f we do not have a special idea of distance
= PCA if goal is description
= PCA or factor if goal is explanation
= If we have a metric of distance
= PCoA/MDS
= NMDS
= If ordination (speciesXsite w/ abundances)

= |f gradient is small (all species on all gradient, linear
responses)—>PCA/PCoA

= |If gradient is large (species come in/out, Gaussian

responses)—>CA
40
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Direct ordination

= All of the above are indirect ordination
= We do not know what the varying factors causing species turnover
are
= Find an abstract gradient
= Direct ordination uses species data vs. environmental data
= Direct gradient
= True multivariate regression: many y (species) vs many x

(environment)
= Can get p-values (also belongs in goal 1 with MANOVA)

= Two kinds of direct
= PCA->RDA (Redundancy analysis)
= CA->CCA (Cannonical Correspondence Analysis)
= Now need triplots!
= Can also do Borcard partioning of variance (which subsets of variables
explain what % of variance in set of y’s) a1

In R

#rda or cca from library(vegan)
data(varespec)

data(varechem)

str(varechem)

str(varespec)
m<-cca(varespec~Al+P+K,varechem)
plot(m)

summary(m)

ordiplot3d(m)
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An aside

= Related to RDA ...
= If you don’t have multivariate normal data/don’t
like euclidean distances
= €.g. molecular distances
= But do have a distance matrix
= You can use a trick to do sum-squares analysis
even though means do not make sense in a
community with only distance not positions
= ANOVA=variance w/in between groups
= Traditional var=2(x-u) but also = £Xdj
= Get F-statistics, variance partitioning
= See adonis command in vegan 43

Five categories

= Hypothesis
= Multivariate extensions of GLM
= Y has many variables
= Exploration
= Visualization
= Ordination (reduce dimension, summarize)
= Clustering
= Superceded

= (Classification)
= Predicting a categorical variable

44
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Clustering (Exploration 3)

= Are there natural “clumps” or clusters in n-
dimensional space?

= Takes a distance matrix as input
= may be Euclidean or not
= Several types

= Hierarchical (builds a tree of points based on similarity)

= Aggregative (builds leafs up)
In R: hclust, agnes, mclust

= Divisive (builds trunk down)
In R: diana, mona
= Non-hierchical
= K-means (user inputs K, uses gravity-like method)
In R: kmeans, pam, clara, fanny

45

ilnR

cl=hclust(dist(id),method="single")
cl

summary(cl)

plot(cl)
cutree(cl,
cutree(cl,
cutree(cl,
cutree(cl,
cutree(cl,k=4)

library(cluster)

cl=diana(dist(id))

plot(cl)

cutree(cl,k=3)

plot(cl, lab=let,w=2,cex=0.8) 46
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Five categories

= Hypothesis
= Multivariate extensions of GLM
= Y has many variables
= Exploration
= Visualization
= Ordination (reduce dimension, summarize)
= Clustering
= Superceded
= (Classification)
« Predicting a categorical variable

47

i (Classification) (Superceded)

= Linear discriminant analysis

= Given a training set of data with a
discrete y variable, and multivariate
continuous x

= Find hyperplanes (n-dimensional
lines) that divide the groups

= Simple to calculate but now
superceded by other techniques

48
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Multivariate summary
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i Summary Multivariate

= Hypothesis testing (many continuous y versus some x)

= Multivariate normal
= Hotelling t, MANOVA
= RDA (regression)
= Distances instead of MVN
= Mantel (correlation)
= PERMANOVA/ANOSIM/adonis (Im)

= Exploration
= Visual
= Ordination & dimension reduction
= Indirect (explanation abstract, ordering)
= Direct (explanatory variables)
= Clustering

50

13



