

Robust III

- LTS (least-trimmed squares)
 - Least squares but throw out bigger ε_{t}
 - Use smallest $n/2+(k+2)/2 \epsilon_1$

In R

LAD =quantile w/ tau=50% - see next section
M-estimation
library(MASS)

#M-estimate #M=Huber (default), MM=Bisquare m=rlm(dep~indep,data=?,sub=?,method="M" | "MM")

plot(m\$w)

identify(1:length(dep),m\$w,rownames(data) # x,y,text
##LTS (also in MASS)

m=ltsreg(formula,...)

Types

- Error still
 - Robust (don't overweigh outliers)
 - Quantile don't focus on central tendencies
- Nonlinear hypothesis
 - Nonlinear
 - Piecewise
- Machine learning
 - Smoothing
 - GAM
 - MARS
 - Neural Net
 - CART

Effectiveness of traditional f values? Linear regression (abundance or coded presence/absence) Get a plane that rises towards one corner (dependent on sample domain) Linear discriminant analysis (presence/absence)

- Get a dividing line that divides off one corner (dependent on sample domain)
- Logistic (presence/absence) (NEXT SLIDE)
 - Surface with logistic curve in 1-D parallelling line in discriminant analysis
- Also a problem w/ linear combination of x clear interaction here

Error still Robust (don't overweigh outliers) Quantile – don't focus on central tendencies Nonlinear hypothesis Nonlinear Piecewise Machine learning GAM MARS Neural Net CART

Why not just use nonlinear Computational issues – more complex functions may never converge Must have a priori expectation of nonlinearities & interactions May not have these in three cases Data mining – data more abundant than understanding, looking for patterns as a starting point Complexity – so many factors involved it is hard to imagine the nature of a model involving all factors Rapidity – could build model with a couple of years of research but need results now (conservation applications) All apply to our example case

GAM – General Additive model

- $y=a+f(x_1)+f(x_2)+f(x_3)+...$
 - Or logit: $\log(y/(1-y)) = a + f(x_1) + f(x_2) + f(x_3) + ...$
- Nonlinearity but only additive interaction
- Highly interpretable (look at f for each variable)
- What to use for f??
 - Smooth regression (e.g. cubic splines)

mgam=gam(speed~s(log10(weight))+hoppers
,data=Mammals)

plot(mgam)

summary(mgam)

CART

- Classification and regression tree
- In my opinion the best of the techniques
- Handles all sorts of nonlinearities/interactions
- Easily interpretible

CART in R

library(rpart)
m=rpart(formula,...)

data(iris)
mtree=rpart(Species~.,data=iris)
print(mtree)
print(mtree,cp=0.4)
plot(mtree,uniform=T,branch=0)
text(mtree,digits=3)
printcp(mtree)
plotcp(mtree)
mtree2=prune(mtree,cp=0.4)

ROC

- Receiver operating characteristic
- False positives vs. false negatives not always equally important

ROC terms sensitivity or true positive rate (TPR) true positive (TP) eqv. with hit rate, recall eqv. with hit false positive rate (FPR) true negative (TN) eqv. with false alarm rate, fall-out eqv. with correct rejection false positive (FP) accuracy (ACC) eqv. with false alarm, Type I specificity (SPC) or True Negative Rate error false negative (FN) positive predictive value (PPV) eqv. with precision eqv. with miss, Type II error negative predictive value (NPV) NPV=TN/(TN+FN) false discovery rate (FDR) Source: Fawcett (2004). Matthews correlation coefficient (MCC) $MCC = (TPTN - FPFN)/\sqrt{PNP'N'}$

