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Modern Regression

Road map

1. Linear
2. Error in Y only
3. Errors normal
4. Errors independ
5. Errors homosced

Non-linear Machine
L i

OLS GLM GLIM

Survivorship
Analysis

HypothesisNot OLS/MLE
(still errors)

Learning
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GLS Quasi
likelihood

GEE

Zero
Inflation

Path
Analysis

LMM GLMM

HBM

Errors (#2-#5)
->p-value

Modern regression
Three goals: prediction significanceThree goals: prediction, significance, 
summarization
Focus on prediction/summarization –
not significance tests

Some have significance testsg
Usually through bootstrapping/Monte Carlo

Modelling
y=f(x β)+noisey=f(x,β)+noise

No formal error model (e)
y non-linear, general

GLIM had picklist (log, logit)
GLIM had linear interactions between x - xβ

Goals
Prediction if know f, can predict y for new x
Model assessment ( mechanism??)
Observational, not experimental
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Types
Error stillError still

Robust (don’t overweigh outliers)
Quantile – don’t focus on central tendencies

Nonlinear hypothesis
Nonlinear
Piecewise

Machine learningMachine learning
Smoothing
GAM
MARS
Neural Net
CART

Types
Error stillError still

Robust (don’t overweigh outliers)
Quantile – don’t focus on central tendencies

Nonlinear hypothesis
Nonlinear
Piecewise

Machine learningMachine learning
Smoothing
GAM
MARS
Neural Net
CART

Robust regression
“The problem with likelihood is that outliersThe problem with likelihood is that outliers 
are just too unlikely”
Minimizing Σ(x-μ)2 gives special emphasis to 
more distant points

Appropriate if truly from normal
Real world is often a mixture – 95% normal 5%Real world is often a mixture – 95% normal, 5% 
totally unrelated (aka outliers)

We studied GLM outliers and had only two 
choices keep them in or throw them out

Robust regression II
Robust regression

W f
Robust regression 
provides alternatives
M-estimation

Minimize Σwif(εi/k)
k=c*s*sqrt(1-h)

c=method specific tuning

LS w=1 f(ε)=ε2

LAD w=1 f(ε)=|ε|

Huber 1 if |ε|<k
1/|ε| if |ε|>k

½ ε2 if ε<k
~0 if |ε|>k

Bisquare 1 if |ε|<k
0 otherwise

(1-r2)2

c=method specific tuning 
constant
s=nonparametric estimate 
of s (MAD/0.6745)
h=leverage
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Robust III
LTS (least-trimmed squares)LTS (least trimmed squares)

Least squares but throw out bigger ει
Use smallest n/2+(k+2)/2  ει

In R
## LAD =quantile w/ tau=50% - see next section
## M-estimation
library(MASS)y( )
#M-estimate  #M=Huber (default), MM=Bisquare
m=rlm(dep~indep,data=?,sub=?,method=“M”|”MM”)
plot(m$w)
identify(1:length(dep),m$w,rownames(data) # x,y,text
##LTS (also in MASS)
m=ltsreg(formula,…)

Types
Error stillError still

Robust (don’t overweigh outliers)
Quantile – don’t focus on central tendencies

Nonlinear hypothesis
Nonlinear
Piecewise

Machine learningMachine learning
Smoothing
GAM
MARS
Neural Net
CART

Quantile regression
Article for ecologists on syllabus pageArticle for ecologists on syllabus page
GLM (OLS) estimates the mean (~50% 
percentile) of the data
What if we want to estimate the 90%-
percentile or the 20%-percentile lower 
bound?
Called quantile regression
Two questions to explore:

Does slope change with quantile
Find the envelope

Envelope phenomenon
Common in ecology to see one variable explainCommon in ecology to see one variable explain 
the upper or lower envelope of another variable
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From my research Quantile in R
library(quantreg) #must download from CRAN

data(Mammals)data(Mammals)
Linear quantiles (lines)

plot(y~x,data=?)
m=rq(y~x,data=?,tau=0.5)
abline(m)

Nonlinear spline quantiles
m=lprq(x,y,h=2,tau=percentile)p q( ,y, , p )
#h gives smoothing try, 1,3, 4 also
#doesn’t take data=?
lines(m$xx,m$fv,lty=2)

A priori nonlinear in homework
m=lprq(log10(Mammals$weight),Mammals$speed,h=2,tau=0.9)
plot(speed~log10(weight),data=Mammals)
lines(m$xx,m$fv)

Types
Error stillError still

Robust (don’t overweigh outliers)
Quantile – don’t focus on central tendencies

Nonlinear hypothesis
Nonlinear
Piecewise

Machine learningMachine learning
Smoothing
GAM
MARS
Neural Net
CART

Nonlinear regression
Lots of relationships are non linearLots of relationships are non-linear
Polynomials (quadratic,cubic) capture 
some of this
Polynomials don’t have asymptotes 
which are common in naturewhich are common in nature
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Example problem:
niche modelling
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values?

Linear regression (abundance or codedLinear regression (abundance or coded 
presence/absence)

Get a plane that rises towards one corner (dependent on 
sample domain)

Linear discriminant analysis (presence/absence)
Get a dividing line that divides off one corner (dependent on 
sample domain)

Logistic (presence/absence) (NEXT SLIDE)Logistic (presence/absence) (NEXT SLIDE)
Surface with logistic curve in 1-D parallelling line in 
discriminant analysis

Also a problem w/ linear combination of x – clear 
interaction here

Continuous dependent variable
1/(1+exp(x+y))
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Nonlinear regression
Standard approach is to minimize sum squaresStandard approach is to minimize sum squares
Must be solved iteratively (by computer)
Must give the iterator a starting point
Confidence intervals

Often asymmetric
Default method just uses standard errors & symmetric CI
Preferred method #1

Uses a method similar to likelihood ratio
Vary parameter, calculate sum-squares, F

Preferred method #2
Bootstrapping – covered later

Don’t forget many nonlinear cases can be 
transformed to linear
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Nonlinear regression in R
plot(speed~log10(weight*100),data=Mammals)plot(speed log10(weight 100),data Mammals)
mnl=nls(speed~a*log10(weight*100)/(half+log10
(weight*100)),start=list(a=60,half=0),trace
=T,data=Mammals)

abline(mnl) # doesn’t work only does straight 
lines
10^ ( 3 4 0 2)x=10^seq(-3,4,0.2)

lines(x,predict(mnl,data.frame(weight=x)))
plot(m), summary(m), etc

Types
Error stillError still

Robust (don’t overweigh outliers)
Quantile – don’t focus on central tendencies

Nonlinear hypothesis
Nonlinear
Piecewise

Machine learningMachine learning
Smoothing
GAM
MARS
Neural Net
CART

Piecewise linear regression
Several lines with breakpointsSeveral lines with breakpoints

5 parameters for one breakpoint
Only recommended when main variable of 
interest is the breakpoint

Piecewise
Fit multiple linear models over differentFit multiple linear models over different 
domains

Approximation to nonlinear – bad reason
A priori hypothesis of threshold effect –
good reason
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In R
library(quantreg)library(quantreg)
lata(Mammals)
mammals$logWeight=log10(Mammals$weight*100)
m.lm<-lm(speed~logWeight,data=Mammals)
m.seg<-segmented(m.lm,seg.Z=~logWeight, 
psi=list(logWeight=c(4)))

m.Seg
summary(m.seg)
confint(m.seg)
plot(speed~logWeight,data=Mammals)
plot(m.seg,add=T)

Types
Error stillError still

Robust (don’t overweigh outliers)
Quantile – don’t focus on central tendencies

Nonlinear hypothesis
Nonlinear
Piecewise

Machine learningMachine learning
Smoothing
GAM
MARS
Neural Net
CART

Statistical learning
Let the computer figure out the function, f

Smooth regression (spline/local)
GAM (General Additive Model)
MARS (Multivariate Adaptive Regressive Splines)
Neural Networks
CART (Classification & Regression Tree)

All have EXTREMELY different ideas of fAll have EXTREMELY different ideas of f
But all predictive y=f(X)
All automatically handle non-linearities & 
interactions
They vary greatly on a spectrum from black-box to 
human-interpretable

Why not just use nonlinear
Computational issues – more complex functions mayComputational issues more complex functions may 
never converge
Must have a priori expectation of nonlinearities & 
interactions
May not have these in three cases

Data mining – data more abundant than understanding, 
looking for patterns as a starting point
C l it f t i l d it i h d t i iComplexity – so many factors involved it is hard to imagine 
the nature of a model involving all factors
Rapidity – could build model with a couple of years of 
research but need results now (conservation applications)

All apply to our example case
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Overtraining
Challenge more parameters leads toChallenge – more parameters leads to 
better fit

Enough parameters leads to perfect fit to 
noisy data
E.g. polynomial of order n-1 fits n data 

f lpoints perfectly

Kernel smoothing
1.5
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Cross-validation
Split data into two categories:Split data into two categories:

Training
Test
Often 2/3 randomly into training

Run the tree on training data
Evaluate accuracy on test
Parallels with bootstrapping
Can be used on even linear regression
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Optimal complexity
Plot accuracy vs complexity pickPlot accuracy vs. complexity, pick 
optimum accuracy

%
Accurately

Training

Accurately
classified

# nodes in tree

Test

Types
Error still

Robust (don’t overweigh outliers)
Quantile – don’t focus on central tendencies

Nonlinear hypothesis
Nonlinear
Piecewise

Machine learningg
Polynomial
Smoothing
GAM
MARS
Neural Net
CART

Polynomial surface
Fit a quadratic cubic quartic (don’t goFit a quadratic, cubic, quartic (don t go 
higher)
Usually include interaction terms (e.g. 
x*y2)
Use lm commandUse lm command

Types
Error stillError still

Robust (don’t overweigh outliers)
Quantile – don’t focus on central tendencies

Nonlinear hypothesis
Nonlinear
Piecewise

Machine learningMachine learning
Smoothing
GAM
MARS
Neural Net
CART
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Smooth (aka nonparametric or 
local) regression

The high-tech equivalent of drawing a fitting curve by 
hand

High-order polynomials
Cubic splines (NEXT SLIDE)

http://www.wam.umd.edu/~petersd/interp.htm
Local regression (LOWESS)

Create list of points evenly spread, take a window around each 
such point, weight data w/in window by distance from point, 
get local slope from linear regressionget local slope from linear regression

Kernel
Similar but no window, weight data by a kernel such as 
Gaussian

Human interpretable only up to 2 dimensions (visual)
Many of these have a smoothing parameter that ranges 
from perfect fit to the data to perfectly smooth (e.g. 
polynomial degree)

High order polynomial (6) vs 
piecewise splines (3)
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Smooth regression in R
#traditional formula based#traditional formula based
m=loess(formula,span=0.75,data=?)
#shortcut for plotting
lines(loess.smooth(x,y))
ysmooth=ksmooth(x,y,bandwidth=0.5)
library(KernSmooth)
ysmooth=locpoly(x,y,bandwidth=0.5)
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Types
Error stillError still

Robust (don’t overweigh outliers)
Quantile – don’t focus on central tendencies

Nonlinear hypothesis
Nonlinear
Piecewise

Machine learningMachine learning
Smoothing
GAM
MARS
Neural Net
CART

GAM – General Additive model
y=a+f(x )+f(x )+f(x )+y=a+f(x1)+f(x2)+f(x3)+…

Or logit: log(y/(1-y))= a+f(x1)+f(x2)+f(x3)+…

Nonlinearity but only additive interaction
Highly interpretable (look at f for each 
variable)
Wh t t f f??What to use for f??

Smooth regression (e.g. cubic splines)

GAM result
1
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1

GAM Predicted
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GAM in R
library(mgcv)library(mgcv)
m=gam(y~s(x)+s(y)+lo(z)+disc,…)
plot(m) # plots functions

mgam=gam(speed~s(log10(weight))+hoppers
,data=Mammals)

plot(mgam)
summary(mgam)
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Types
Error stillError still

Robust (don’t overweigh outliers)
Quantile – don’t focus on central tendencies

Nonlinear hypothesis
Nonlinear
Piecewise

Machine learningMachine learning
Smoothing
GAM
MARS
Neural Net
CART

MARS
Variation on GAMVariation on GAM

Don’t allow spline f, use specific f for each xi

Do allow products (interaction)
y=a + Σ bi _/i(xi) + Σ bij _/i(xi)_/j(xj)+…

The region of zero allows for very local fitting

fi(xi)=

The multiplication allows for nonlinearity & 
interaction
MARS is human interpretible??

Multiplication nonlinearity, 
interaction

*

*

*

MARS result
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MARS in R
library(mda)library(mda)
m=mars(xmatrix,y,degree=n)

Types
Error stillError still

Robust (don’t overweigh outliers)
Quantile – don’t focus on central tendencies

Nonlinear hypothesis
Nonlinear
Piecewise

Machine learningMachine learning
Smoothing
GAM
MARS
Neural Net
CART

Neural Nets
Very accurate black boxVery accurate black box
Hard to interpret
Weight at one “neuron” is sum of input 
weights run through “threshhold” (logistic) 
function)
Easy to get nonlinearities, interactions

Neural nets in R
library(nnet)library(nnet)
m=nnet(formula, size=n)
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Types
Error stillError still

Robust (don’t overweigh outliers)
Quantile – don’t focus on central tendencies

Nonlinear hypothesis
Nonlinear
Piecewise

Machine learningMachine learning
Smoothing
GAM
MARS
Neural Net
CART

CART
Classification and regression treeClassification and regression tree
In my opinion the best of the 
techniques
Handles all sorts of 
nonlinearities/interactionsnonlinearities/interactions
Easily interpretible

CART output
AVGT<4 42AVGT<4.42

ELV.CV<17.81 AVGT<8.12

Y N

Iverson et al Ecological Monographs 1998 – N of Populus tremulodies

PET<60.01 TAWC<18.90 PERM<9.75
0.14

5 204.81 27.3050

CART Building algorithm
Need optimization criterionNeed optimization criterion

Depends on if dependent variable is metric 
or categorical

In principle could optimize tree globally
In practice too computationally intensivep p y

1. For each independent variable
Select optimal split
Calculate improvement of split

2. Select best split
3. Repeat for subgroup assigned to left
4. Repeat for subgroup assigned to right
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CART Optimization criteria
For metric dependent variableFor metric dependent variable

Goal is reduction of variance
Vargroup=Σ (yi-μy)2

Varsplit= Σleft (yi-μy)2 + Σright (yi-μy)2

Optimization method depends on independent 
variablevariable

Metric – order and try split between each set
3   4   5.2   9.3   11.8  14.6

Categorical – try all permuations
A vs B,C   A,B vs C,   A,C vs B

Worked example
Y= 1 2 3 4 6 7 8Y  1  2  3  4   6  7  8
Xi=4  3  2   5   6  9  9
Splits on Xi <3, <4, <5, <6, <9
Original Y

Mean=4.23, Var=(1-4.23)2+…=41.71
Split Xi<6

Y1=(1 2 3 4) Y2=(6 7 8)Y1=(1,2,3,4), Y2=(6,7,8)
Mean1=2.5, mean2=7
Var1=5, var2=2
Varsplit = 7

Split Xi<5
Y1=(1,2,3), Y2=(4,6,7,8)
Varsplit=10.75

Cart optimzation criteria
Instead of value at each leaf have accuracyInstead of value at each leaf, have accuracy

E.g. 73/80=91.25% are absence

Multiple choices if dependent is categorical
Variance (binomial np(1-p)
Gini: impurity
TwoingTwoing
Stratification (maximize accuracy of one node)

CART Pruning
Will produce extremely large treesWill produce extremely large trees
Need to “prune”
Simplistic:

Maximum depth
Maximum # nodes (may be unbalanced)Maximum # nodes (may be unbalanced)
Stop accuracy (% correct>x, or CV<y)

Cross-validation
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Summary of CART
Specify dependent and independent variablesSpec y depe de t a d depe de t a ab es
Produces tree
Prune simplistically or optimally
Pros

Handles some nonlinearities, all interactions
Handles mixed types of data
Very easy to interpret
Handles missing data
Robust to outliers
Computationally manageable

Cons
Not best with certain nonlinearities
Unstable (small changes in data make big changes in tree)
Less accurate than NN, MARS

CART in R
library(rpart)y( p )
m=rpart(formula,…)

data(iris)
mtree=rpart(Species~.,data=iris)
print(mtree)
print(mtree,cp=0.4)
plot(mtree,uniform=T,branch=0)plot(mtree,uniform T,branch 0)
text(mtree,digits=3)
printcp(mtree)
plotcp(mtree)
mtree2=prune(mtree,cp=0.4)

Advanced techniques
ThresholdingThresholding
ROC
Bagging

Thresholding
Output of dependent variable is often alwaysOutput of dependent variable is often always 
metric (MARS, NN, GAM), even if want to 
study binary
Use thresholding to convert to binary – i.e. 
y’=1 if y>x
Optimal thresholding:Optimal thresholding:

Plot % correctly classified vs. threshold
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ROC
Receiver operating characteristicReceiver operating characteristic
False positives vs. false negatives not always equally 
important

ROC terms
true positive (TP)

sensitivity or true positive rate (TPR) 
eqv with hit rate recalltrue positive (TP) 

eqv. with hit 
true negative (TN) 

eqv. with correct rejection 
false positive (FP) 

eqv. with false alarm, Type I 
error

false negative (FN) 
eqv. with miss, Type II error

eqv. with hit rate, recall
TPR = TP / P = TP / (TP + FN)

false positive rate (FPR) 
eqv. with false alarm rate, fall-out
FPR = FP / N = FP / (FP + TN)

accuracy (ACC) 
ACC = (TP + TN) / (P + N)

specificity (SPC) or True Negative Rate 
SPC = TN / N = TN / (FP + TN) = 1 − FPR

positive predictive value (PPV) 
eqv. with precision

Source: Fawcett (2004).

PPV = TP / (TP + FP)

negative predictive value (NPV) 
NPV = TN / (TN + FN)

false discovery rate (FDR) 
FDR = FP / (FP + TP)

Matthews correlation coefficient (MCC) 

ROC
Plot Sensitivity (truePlot Sensitivity (true 
positive|positive) vs. 1-
specificity (true 
negative|negative)=probability 
false alarm
Tresholding (red-line = tune 
model to accept/reject)model to accept/reject)
Idealized is right angles
Area under curve (AUC) is 
measure of quality

0.5=random
1=perfect

Bagging

Bagging
Build many trees in bootstrap fashion (sequential 
subsetting of data)
Prediction averaged across trees

BoostingBoosting
A more sophisticated version
Can profoundly increase predictibility in cases 
where simple methods fail
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Which technique is best

Elith et al 2006

Spatial autocorrelation and non-
independence

None RandomNone Random

Strips Halves

Evaluating predictive success without 
space

1.
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Data split type for evaluation
None Random Stripes Halves

AUC
Somer's D
rbinom
2

r2

R2

Bahn & McGill

Summary
Predictive statements are vital in ecologyPredictive statements are vital in ecology
Regression, GLIM, likelihood model selection are best 
of both worlds if have a priori expectation and 
understanding of errors
Statistical learning is great for:

No a priori expectation (new field/data)
Quality of prediction is critical (applied problems)
Complexity precludes ever developing a priori expectationp y p p g p p

Statistical learning tools include:
Smoothing –local regression – good but only up to 2 
dimensions
GAM – easy to understood, only additive effects
MARS – very accurate, difficult to understand
NN – very accurate, impossible to understand
CART – accurate, easy to understand
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Road map

1. Linear
2. Error in Y only
3. Errors normal
4. Errors independ
5. Errors homosced
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