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Abstract. In order to test the veracity of currently accepted ideas about Northern Spotted
Owl (Strix occidentalis caurina) habitat associations in the Klamath Province of northern
California (USA) we compared different habitat descriptions using predictive habitat-asso-
ciation models. The current description used by federal agencies and new descriptions based
on research results and field biologists’ best estimates of owl nesting/roosting habitat and
foraging habitat were evaluated. For each habitat description, three habitat metrics and three
forms of the relationship between owl occupancy and quantities of these habitat metrics were
evaluated, each at three spatial scales. Our refined descriptions of owl nesting and roosting,
and foraging habitat, were better at predicting owl occupancy than the habitat description
currently used by federal land managers. The best-fitting model for predicting owl occupancy
was at the 200-ha scale and exhibited a pseudo-threshold relationship to nesting and roosting
habitat and a quadratic relationship to foraging habitat. This model correctly classified owl-
occupied sites 94% of the time for the developmental data set and between 85% and 92%
of the time on four independent test data sets. The current description of owl habitat in
northern California ranked among the worst in the collection of models we examined. The
testing of multiple models on the four independent data sets was very important for deter-
mining the goodness-of-fit and predictive capabilities of the best models. We explored the
use of the best-fitting model to predict number of owls on several independent study areas
and found a strong correlation between predicted and observed number of owls. The results
of this study are beginning to be used to make land-management decisions regarding har-
vesting and prescribed-burning activities on federal forestlands and were specifically designed
to be amenable to adaptive resource management.

Key words: Akaike’s information criterion, AIC; Bayesian posterior probability; correct-clas-
sification analysis; habitat associations; Klamath Province (California, USA); national forests; north-
ern California (USA); Northern Spotted Owl; owl habitat; predictive models; Strix occidentalis caurina.

INTRODUCTION

Wildlife biologists have long sought to develop hab-
itat-based models to predict presence/absence (Verner
et al. 1986, Morrison et al. 1992, Block and Brennan
1994, Carroll et al. 1999, Dettmars and Bart 1999),
indices of abundance (Block et al. 1997), and demo-
graphic attributes (Van Horne 1982, Ostfeld et al. 1985,
Adler 1987, Donovan et al. 1995, Dunk et al. 1997,
Franklin et al. 2000) of wildlife species, as well as
population trends (Forsman et al. 1996, Paradis et al.
2000). The major assumption behind the development
of accurate predictive habitat-based models is that sub-
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sequent estimation of a species’ presence/absence or
demographic attributes may be possible without exten-
sive and expensive field surveys. Thus, large geograph-
ic areas may be assessed in a much more time- and
cost-effective manner compared to field surveys. Fur-
thermore, predictions regarding various anthropogenic
disturbances can be evaluated and possibly modified
in order to reduce negative impacts.

The final product of most habitat-based modeling
projects is the development of a quantitative model,
based on a representative data set. Unfortunately, bi-
ologists have typically lacked additional independent
data to test their models. More rigorous evaluations
have at least included cross-validation methods to eval-
uate the accuracy and robustness of models (e.g., Car-
roll et al. 1999, Dettmars and Bart 1999). In most cases,
however, it is left to others to discover, evaluate, and
implement the model results. We were able to overcome
these difficulties by using multiple independent test
data sets to evaluate our model results. In addition, we
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moved away from a traditional null vs. alternative hy-
pothesis testing approach towards a model selection
and inference paradigm described by Burnham and An-
derson (1998) that compares a collection of plausible
competing models.

The Northern Spotted Owl (NSO) is among the most
studied and well-known bird species in the world (Gu-
tiérrez et al. 1995). NSO habitat selection has been
intensively evaluated in many study areas throughout
northern California (LaHaye 1988, Sisco 1990, Solis
and Gutiérrez 1990, Blakesley et al. 1992, Folliard
1993, Hunter et al. 1995, Zabel et al. 1995, Gutiérrez
et al. 1998, Thome et al. 1999, Franklin et al. 2000).
However, NSO habitat associations have not been sys-
tematically evaluated throughout their northern Cali-
fornia range. Thomas et al. (1990) recognized that
NSOs in northern California appeared to use habitat
differently than in the more northern part of their range
in Oregon and Washington. At least part of this dif-
ference has been attributed to differences in prey (Zabel
et al. 1995). In general, NSO diets contain a larger
proportion of bushy-tailed and dusky-footed woodrats
(Neotoma cinerea and N. fuscipes, respectively) in
northern California and southern Oregon (Barrows
1980, Ward et al. 1998) and a larger proportion of
northern flying squirrels (Glaucomys sabrinus) further
north (Forsman et al. 1984, Carey et al. 1992).

Because of this difference in the NSO’s biology in
northern California, one habitat description for this
species throughout the three states may not be ade-
quate. It is possible that certain habitats provide ther-
mal benefits, nest-site availability, and protection from
predators while other habitat types provide foraging
opportunities, at least in portions of their range (Frank-
lin et al. 2000). One of the NSO’s primary predators,
Great Horned Owls (Bubo virginianus), was encoun-
tered at its highest densities near NSOs in the mixed-
conifer forests of the Klamath Mountains (northwest
California, USA) (Carey et al. 1992). These authors
suggested that NSOs may use mature and old-growth
forests to avoid predation by Great Horned Owls be-
cause the latter do not use those forest types. There is
general agreement among researchers that NSOs dis-
proportionately select areas with mature and late-suc-
cessional forest characteristics for nesting and roosting
(Solis and Gutiérrez 1990, Blakesley et al. 1992, Hunt-
er et al. 1995, Gutiérrez et al. 1998). Less is known
about foraging-habitat associations because it is more
difficult to obtain radiotelemetry locations on moving
NSOs than on roosting or nesting NSOs. However, the
importance of edges between ‘‘suitable’’ NSO habitat
and other habitat types for foraging has been docu-
mented (Zabel et al. 1995, Ward et al. 1998, Franklin
et al. 2000). It also has been suggested that younger
age classes may be used for foraging, at least in the
Klamath Province of California, because the highest
densities of woodrats occur in young stands in this
region (Sakai and Noon 1993). NSOs in northwestern

California preferred woodrats to other prey species and
hence used foraging areas near ecotones between ma-
ture and young-growth stands where woodrats were
most abundant and accessible (Ward et al. 1998).

Until the work of Franklin et al. (2000), biologists
working with the NSO and most other wildlife species
apparently assumed that a linear relationship existed
between quantity of suitable habitat and the quality of
an area. Franklin et al. (2000) documented nonlinear
habitat relationships for the NSO. It is conceivable that
NSOs require a certain quantity of ‘‘suitable’’ habitat
for particular life-history needs (e.g., nesting or roost-
ing), but too much might have negative impacts or limit
the variety and quantity of other habitat types that are
required to meet other needs (e.g., foraging).

We developed, tested, and compared the ability of
vegetation models to predict NSO presence/absence
throughout national forest lands in northern California.
Land managers desired a quantitative and empirically
derived model that they could use to evaluate existing
landscapes, and future landscapes based on projections
of tree growth and harvesting, that would minimize
negative impacts on this threatened species.

METHODS

We evaluated habitat descriptions developed by a
team of USDA Forest Service and USDI Fish and Wild-
life Service biologists (the ‘‘NSO Baseline Team’’).
They had created a seamless, ecologically based habitat
map within the four northern California national forests
within the range of the NSO (Northern Spotted Owl)
in California, USA. In essence, they ‘‘dissolved’’ forest
boundaries and used ecological-zone boundaries. These
zones were derived and modified from Ecological Units
of California (Bailey 1978) and Natural Vegetation of
California (Kuchler 1977). The habitat descriptions
were refined for the following five zones: Western
Klamath, Interior Coast, Eastern Klamath, Modoc, and
West Cascades (Fig. 1). Habitat descriptions were de-
veloped incorporating the knowledge of the local forest
biologists, NSO database inquiries, and published re-
search. Descriptions included new habitat types (e.g.,
smaller tree size classes) and new attributes (e.g., el-
evation, aspect, and Dunning’s soil site class) that the
FSEIS description (USDA/USDI 1994) had not in-
cluded (Appendices A and B).

To develop models, we used a data set of 74 NSO-
survey locations spread throughout the range of NSOs
in northern California national forests that were sur-
veyed in 1990 and 1991 (Research Development and
Application [RDA] data set, USDA 1988). These lo-
cations were randomly selected to be surveyed and
were not selected based on timber sales or any other
management action or inaction; nor were they con-
strained to be near roads or any other feature. In ad-
dition, we had four independent data sets to test the
models. These data sets were from areas within the
National Forest lands of our study area. Each indepen-
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FIG. 1. Map indicating ecological zones in the Klamath Province for northern California, USA; NF 5 National Forest.

dent study area had been completely surveyed for
NSOs so both presence and absence were documented.
Standard NSO survey protocols (Forsman 1983, Frank-
lin et al. 1996) were used on all of the surveyed areas.

We tested six different map layers (hereafter, ‘‘de-
scriptions’’) representing NSO habitat: (1) the existing

FSEIS description; (2) a revised FSEIS (FSEISnew) de-
scription developed by our team using the FSEIS at-
tributes (e.g., tree size class and canopy cover) on up-
dated vegetation data provided to us by the national
forests, with GIS habitat map layers updated for timber
sales and fires that had occurred since the original 1979
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TABLE 1. Acronyms and symbols used to describe habitat covariates, together with the forms
of relationships of habitat covariates for habitat-selection models for Northern Spotted Owls
in northern California, USA.

Meaning Abbreviation

Habitat descriptions
Final Supplemental Environmental Impact Statement
New FSEIS
Nesting and roosting
Foraging
Nesting, roosting, and foraging
Nesting and roosting plus foraging
Edge
Core

FSEIS
FSEISnew

NR
F
NRF
NR 1 F
E (e.g., NRE)
C (e.g., FC)

Examples of forms of relationships
Linear nesting and roosting
Pseudothreshold nesting and roosting core
Quadratic nesting and roosting
Pseudo-threshold foraging core plus linear nesting and roosting

NR
LOGNRC
NR 1 NR2

LOGFC 1 NR

aerial-photo typing; (3) nesting and roosting habitat
(NR) that was thought to represent habitats primarily
selected by the NSO for these activities (essentially
including all FSEIS habitat as well as a few smaller-
diameter tree size classes to account for differences
thought to represent additional NSO habitat in Cali-
fornia) (Appendix A); (4) foraging (F) habitat that was
thought to represent habitats primarily selected by
NSOs for hunting for prey, but that occasionally are
used for nesting/roosting as well, and generally in-
cluded smaller-diameter tree size classes and more-
open canopy than NR (Appendix B); (5) a combination
of nesting, roosting, and foraging (NRF) habitat that
did not distinguish between the relative quantities of
NR and F habitat (combining maps from descriptions
3 and 4); and (6) NR1F habitat (Table 1) in which the
relative quantity of these habitat types could be con-
sidered independently and forms of the relationship
between owl occupancy and quantity of habitat could
be different (this also represented combining maps
from descriptions 3 and 4, but retained their individual
attributes). It is important to note that by using the
terms ‘‘NR’’ and ‘‘F’’ we do not mean to imply that
NR habitat is solely used for nesting and roosting and
that F habitat is solely used for foraging. More accu-
rately, we assume that NR habitat provides most of the
nesting and roosting habitat, along with some foraging
habitat. Similarly, we assume that F habitat is primarily
used for foraging, but we also know that in some in-
stances it is used for nesting and roosting as well. We
began our analyses without the FSEISnew description,
but an evaluation of the FSEIS map revealed that it
was so coarse and inaccurate that it required updating
(see Fig. 2). We used an identical process to revise the
FSEIS map as was used in the creation of the NR, F,
and NRF base maps. By creating the FSEISnew map we
allowed that habitat description to be fairly evaluated
(i.e., we did not want it to perform poorly or well due
to known inaccuracies in the base layers) along with
the new descriptions. The FSEISnew map was more up-

to-date relative to fire and timber harvesting that oc-
curred between 1993 and 1999 than the FSEIS map.
These changes in the landscape, however, were rela-
tively minor as timber harvesting within the study area
was dramatically reduced during that same time.

We examined NSO presence and absence at three
different spatial scales around each sample location:
200-ha, 550-ha, and 900-ha circles. The smallest spatial
scale was based on the estimated size of average core
home-range area for NSOs in northern California
(Bingham and Noon 1997). The largest scale was based
on estimates of mean nearest-neighbor distance be-
tween NSOs in the 1100 km2 Hayfork Adaptive Man-
agement Area (Northern California, USA) and six ad-
jacent late-successional reserves that was completely
surveyed during 1996 and 1997 (C. J. Zabel and K. S.
McKelvey, unpublished data). The midpoint between
these two scales was used for the third scale. For each
habitat description we estimated three habitat metrics
around each sample location: total quantity (total), lin-
ear distance of edge between that habitat type and any
other (edge), and quantity of core habitat area defined
by 100-m buffers from an edge (core).

Three functional forms of each covariate were eval-
uated: linear, quadratic, and pseudo-threshold (sensu
Franklin et al. 2000). The linear form assumed that the
probability of NSO presence was a monotonic function
of the amount of the habitat metric within the sampling
unit. The quadratic form allowed for some intermediate
level of the habitat metric to be optimal or suboptimal
(i.e., hump-shaped or bowl-shaped) for probability of
NSO presence. The pseudo-threshold form, based on a
logarithmic transformation, allowed for the possibility
that once the quantity of the habitat metric reached
some ‘‘threshold’’ level the probability of occupancy
did not increase or decrease substantially with more
habitat.

Statistical methods

Developing and comparing models.—We used lo-
gistic regression for the analyses and a parsimonious
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FIG. 2. Final Supplemental Environmental Impact Statement (FSEIS) and revised FSEIS (FSEISnew) map overlays for the
Northern Spotted Owl in northern California.

model-selection and inference strategy based on the
bias-corrected Akaike’s Information Criterion (AICc;
Akaike 1973) to compare the models (Sugiura 1978,
Hurvich and Tsai 1989, Burnham et al. 1995, Burnham
and Anderson 1998). This information-theoretic mea-
surement of model fit accounts for both bias and pre-

cision. The models with the lowest AICc values are the
best-fitting models to the data. We began by identifying
a collection of plausible candidate models, based on the
field experience of the biologists on our team and ex-
tensive published literature on the NSO. For each of the
six habitat descriptions we had three metrics and three
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functional forms, resulting in nine combinations at each
of three scales, with the exception of NR1F for which
we had a total of 27 combinations (9 combinations of
forms for each of NR and F total, core, and edge).

We used a two-stage process for selecting our best-
fitting models. First we compared a collection of mod-
els for each of the six habitat descriptions, selecting
the best-fitting models. Within each habitat description,
the most competitive one-covariate models (i.e., those
within two AICc units of the model with the lowest
AICc; Burnham and Anderson 1998) were determined.
Each competing model was then combined with the
model that had the next lowest AICc, but that was an
estimate of a different metric. For example, if the low-
est AICc was for the NR pseudo-threshold description
(total), we would not combine that further with any
other NR (total) descriptions (linear or quadratic). In-
stead, we would search among the three edge and three
core covariate models for the lowest AICc, subject to
the constraint of not being highly correlated with the
original covariate (r . 0.50). The best two-covariate
model was then compared to the best univariate model.
If it was a better model, based on AICc, we then eval-
uated three-covariate models using the same criteria,
and tested them against the two-covariate model. For
the NR1F description, up to six covariates could be
in a model. For each habitat description, model build-
ing was terminated when the more complex model
failed to have a lower AICc than the model with fewer
covariates. At the second stage, we compared the
pooled collection of the top two best-fitting models
from each of the six habitat descriptions (n 5 12 mod-
els). Because our evaluation of habitat descriptions in-
cluded the description currently used by federal land
managers along with several ‘‘challenging’’ descrip-
tions, it was important for us to keep the best-fitting
models from each description throughout the model
development and testing process.

We estimated the variance inflation factor c from our
full model (i.e., the model containing the covariates from
all of the models) and adjusted our corrected AICc ac-
cordingly to obtain the quasi-corrected QAICc that ac-
counts for overdispersion in the data (Wedderburn 1974).
Overdispersion due to dependencies in the data creates a
variance larger than that expected by the binomial as-
sumptions underlying the logistic regression model.

Akaike weights (Buckland et al. 1997) ([wi 5
exp(2Di /2)] where Di 5 (AIC 2 minimum(AIC ) forc ci k

the ith model; the kth model is the best-fitting model)
were used to evaluate the relative competitiveness of
the leading models. Akaike weights can be interpreted
as the Bayesian posterior probabilities for the collec-
tion of models, describing their relative likelihoods of
best fitting the data (see Carlin and Louis 2000).

For the independent test data sets, we evaluated the
top two models within each habitat description. We
sequentially analyzed the test data sets, calculating
Akaike weights for each of the models, and multiplied

those weights by the posterior probabilities of the pre-
viously analyzed data sets, viewed as prior probabilities
of the new data set. These provided us with revised
Bayesian posterior probabilities for our collection of
models, based on the sequence of data sets previously
analyzed and the new test data set. By evaluating mod-
els in this manner, each subsequent data set was con-
sidered both individually (the AICc values and weights
for that data set) and collectively with all previously
analyzed data sets. By examining whether the posterior
probabilities of the models remained constant or varied
substantially over multiple data sets, we evaluated the
stability of our best-fitting models. This approach had
the benefit of synthesizing new information with pre-
vious information. The practical management benefit
was that each new data set could stand on its own, but
its overall weight could also be evaluated relative to
other information that was available.

Predictive accuracy of our best-fitting models was
evaluated using a correct-classification (CC) analysis.
We determined the proportion of NSO-occupied sites
(CCNSO) (i.e., the sensitivity) and the proportion of un-
occupied sites (CCabsent) (i.e., the specificity), as well
as the total proportion of sites (CCtotal) that were cor-
rectly predicted by our best-fitting models. Correct-
classification estimates were derived for both the RDA
and test data sets. We established an ‘‘optimal’’ prob-
ability cutoff point for each estimated model in order
to have a way of classifying sites as ‘‘occupied’’ or
‘‘unoccupied.’’ Locations with estimated probabilities
greater than the cutoff point were classified as occu-
pied, and those with probabilities less than or equal to
the cutoff point were classified as unoccupied.

For the two leading models for each habitat descrip-
tion a range of probability cutoff points, in increments
of 0.05 from 0.25 to 0.65, was evaluated. We deter-
mined an ‘‘optimal’’ cutoff point using two criteria: (1)
correct classification of NSO-occupied sites had to be
$75%, and (2) an increase in the probability value of
the cutoff point had to result in a greater increase in
CCabsent than the reduction in CCNSO. This protocol re-
flected the conservation priority to avoid errors of
omission (i.e., predicting absence when NSOs were
present) rather than errors of commission (i.e., pre-
dicting presence when NSOs were absent). We also
recognized that suitable habitat is sometimes vacant
for a variety of reasons (e.g., it is occupied by a pred-
ator, the occupant recently died). Furthermore, the
smaller spatial scales are likely to represent relatively
small portions of a NSO’s home range and therefore
be predisposed to predict occupancy when NSOs are
absent. Thus, a 200-ha scale model applied to a home
range of 1000 ha that is composed of all high-quality
habitat (i.e., high predicted probability values) would
correctly predict presence in one of five 200-ha poly-
gons overlaid on the home range.

Overall model rankings within each scale were based
on an average of AICc and CCNSO ranks. We decided
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to use this composite ranking system in order to main-
tain and balance the positive attributes of each tool.
AICc can heavily penalize a model for its outliers (al-
though less so than traditional statistics based upon
Pearson residuals). An outlier, on the other hand, re-
gardless of magnitude will have a relatively small fixed
effect on CCNSO, misclassifying at most one point. Cor-
rect classification, however, will be highly dependent
on the data set, and AICc will be more sensitive to
possible biases created by specific data sets.

Testing models on independent data.—We tested the
models on the four independent data sets using both
AICc and CCNSO to evaluate model performance at each
spatial scale. We compared model rankings for the test
data sets to the original rankings for the developmental
RDA data set. We also used the iterative Bayesian pro-
cess, looking at posterior distributions for the models
with the data sets to examine the stability of the model
rankings within and between spatial scales. We were
particularly interested in the scale that would give us
the most consistent best-fitting model(s): the 200-ha
scale that estimated the core nesting-roosting area of
the NSO, the 900-ha scale that estimated the home
range, or the intermediate scale.

Estimating numbers of NSOs.—We estimated prob-
ability of NSO occupancy within each independent
study area using a ‘‘focal point’’ method. We used the
‘‘best’’ model at the best scale (200 ha; see Results:
All models, below) to estimate probabilities of NSO
occupancy at potential nesting locations, positioned at
incremental points 40 m apart throughout the region.
This allowed us to effectively create a continuous prob-
ability contour map over the 2.2 3106 ha study area.
Areas of interest to land managers could be classified
and used as an indicator of its value to NSOs.

We explored the ability of our ‘‘best’’ model to es-
timate NSO numbers. We evaluated the relationship of
NSO numbers to the sum of probabilities within nine
independent study areas that had been completely cen-
sused. For this exploratory evaluation, we used each
of the four independent study areas mentioned near the
start of Methods, above (for this evaluation each of the
five relatively small Klamath National Forest areas
were treated separately) in addition to the Willow Creek
Study Area (see Franklin et al. 2000). Because these
areas were completely surveyed, we had estimates of
the total number of territorial NSOs. We then summed
the probability values from each 40 3 40 m pixel within
each study area and divided by 5625 (the number of
pixels within a 900-ha area). We chose 900 ha because
it approximates the mean size of a NSO home range
in the Klamath Province. We used simple linear re-
gression to evaluate this relationship. If our ‘‘best’’
model is a good predictor of owl numbers we would
expect that the intercept term would not be significantly
different than zero and the slope term would be positive
and not significantly different than one.

RESULTS

Sample sizes for the RDA (Research, Development
and Application) data set (USDA 1988) varied at dif-
ferent scales because at the larger scales, 550 ha and
900 ha, we encountered more private land for which
we had no data and thus excluded those locations. The
number of occupied sites and total sample sizes were
33 of 74, 18 of 41, and 15 of 35 sites at the 200-ha,
550-ha, and 900-ha scales, respectively. The four test
data sets had total (presence plus absence) sample sizes
ranging from 24 to 180.

Differences in habitat covariates (total, core, and
edge) between owl-occupied and unoccupied sites were
greater at the 200-ha scale than at either the 500-ha or
900-ha scales for FSEIS, FSEISnew (a revised FSEIS),
NRF, and NR (nesting and roosting) habitat descrip-
tions (i.e., GIS map layers) but not for F (foraging)
habitat. Subsequently, ‘‘all models’’ refers to all mod-
els developed at a particular spatial scale and ‘‘reduced
set of models’’ refers to the evaluation of the two top-
ranking models within each habitat description (12
models total: 6 habitat descriptions 3 2 models).

200-ha models

All models.—Ninety-two 200-ha models were de-
veloped and compared using the RDA data set (Ap-
pendix C). Using AICc, the FSEIS linear model (the
model in use by the federal government when our work
began) ranked 55th, while the highest-ranking FSEIS
model ranked 46th. Using two AICc units as the cri-
terion for determining competing models, there were
three competing 200-ha RDA models. The competing
RDA models were

2 2LOGNRE 1 LOGNRC 1 NR 1 NR 1 F 1 F

2LOGNR 1 F 1 F

2LOGNR 1 F 1 F 1 LOGNRE 1 FE

(see Table 1 for explanation of symbols). The cumu-
lative Akaike weight of these three models was 0.5476
(the cumulative Akaike weight of all 92 models 5 1.0).
All three models contained F and NR covariates, with
the functional form of F being identical in each model
and NR exhibiting either a quadratic or threshold func-
tional form.

The top-ranking model based on AICc was 15 449
times more likely to be the best model than the FSEIS
linear model based on Akaike weights. However, the
top-ranking model was only 1.39 and 2.09 times more
likely to be the best model than the second- and third-
ranking models.

Reduced set of models.—Among the reduced set of
models, the two top-ranking models had a cumulative
Akaike weight of 0.87 based on the RDA data set (Table
2). CCNSO (correct classification of the site as NSO
occupied) of the RDA data at the 200-ha scale varied
from 81.8% to 93.9% among these 12 models. We es-
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TABLE 2. Bias-corrected Akaike Information Criterion (AICc), percentage correct classification of Northern Spotted Owl
occupancy (CCNSO), and Bayesian posterior probabilities (wB) for the developmental (RDA) data set and four test data sets,
for the five top-ranking models based on the RDA data set at each of three spatial scales.

Models†

RDA

AICc CCNSO (%) wB

Hayfork

AICc CCNSO (%) wB

200-ha scale
LOGNRE 1 LOGNRC 1 NR 1 NR2 1 F 1 F2

LOGNR 1 F 1 F2

LOGNRFC 1 NRF 1 NRF2 1 NFE
LOGNRE 1 LOGNRC
LOGNRE

74.63
75.29
79.44
79.65
79.70

87.88
93.94
87.89
84.85
90.91

0.506
0.363
0.046
0.041
0.040

264.15
208.40
216.44
205.50
232.00

81.11
92.22
92.22
92.22
92.22

,0.001
0.670
0.002
0.323

,0.001

550-ha scale
NRE 1 LOGFE 1 NR 1 NR2 1 LOGF
NRE 1 NRE2 1 LOGFE 1 NRC 1 NRC2 1 FC
NRC 1 NRC2

NRC 1 NRC2 1 NRE
LOGFSEISnewC
NRF

48.75
49.62
50.40
51.58
53.09
54.69

94.44
83.33
77.78
77.78
77.78
88.89

0.367
0.238
0.161
0.089
0.042
0.019

237.75
264.31
260.77
250.95
240.52
223.19

61.11
62.22
60.00
63.33
42.22
92.22

,0.001
,0.001
,0.001
,0.001
,0.001

0.006

900-ha scale
F 1 F2

LOGNR 1 F 1 F2

NR 1 F 1 F2

FC 1 FC2

LOGNRF
LOGFSEISnewE

41.70
43.11
43.16
43.49
44.02
47.88

80.00
93.33
86.67
86.67
80.00
86.67

0.292
0.144
0.119
0.092
0.067
0.013

299.47
302.60
246.93
322.77
218.96
213.45

64.44
70.00
64.44
68.89
83.33
81.11

,0.001
,0.001
,0.001
,0.001

0.263
0.599

Notes: Bayesian posterior probability values (wB) represent the relative probability of each model among the set of 12
models compared at each scale, given the ‘‘performance’’ of the model on all previous data sets.

† These models are the top five among the 12 models we evaluated at each scale on each data set. The model in italics is
the top-ranking model considering all data sets; at some scales this is an additional model. For an explanation of model
symbols see Table 1.

timated a variance inflation factor c of 1.01, using a
full model with the 19 covariates from these 12 models.
There was no evidence of overdispersion in the data
so we did not use the quasi-corrected QAICc.

We summarized the AICc and CCNSO rankings along
with the Bayesian posterior probabilities of the top five
models at the 200-ha scale for the RDA data and eval-
uated how well these models performed on test data
sets (Table 2). Except for one notable exception, AICc

and CCNSO rankings of the top models were generally
in agreement for the RDA and test data sets, though
the Akaike weights fluctuated considerably. Most of
the top models at this scale exhibited similar rankings
among the test data sets. The top-ranking RDA model
was the one inconsistent model that performed poorly
among the test data sets. This top-ranked RDA model,
based on AICc, was the most complex of the 12 and
had seven parameters. The FSEIS models were con-
sistently ranked low among the different data sets.
Based on our composite rankings of AICc and CCNSO,
the best 200-ha model (LOGNR 1 F 1 F2 ), ranked
first with both the RDA data and the test data sets. For
this model, CCNSO averaged 90% (range 85.2 to 93.9%)
on the RDA and test data sets. The estimated logit for
this model was as follows:

24.35700 1 2.00760 log(NR 1 1)

21 0.06700(F) 2 0.00049(F )

and standard errors of the coefficients were 1.12167,
0.57413, 0.02759, and 0.00025, respectively.

550-ha models

All models.—Ninety-five models were developed at
the 550-ha scale using the RDA data (Appendix C).
Based on AICc, the FSEIS linear model ranked 46th
while the highest-ranking FSEIS model ranked 27th.
Six of the 95 550-ha RDA models were competing
models (within two AICc units; Appendix C). The com-
peting models were

2NRE 1 LOGFE 1 NR 1 NR 1 LOGF

2 2NRE 1 NRE 1 LOGFE 1 NRC 1 NRC 1 FC

2NRE 1 LOGFE 1 NRC 1 NRC 1 LOGFC

2NRE 1 LOGFE 1 NRC 1 NRC 1 FC

2NRC 1 NRC

NRE 1 LOGFE.

The cumulative Akaike weight of these models was
0.433. These six competing models shared many co-
variates with NRE appearing in five, LOGFE appearing
in five, and NRC appearing in four. The top-ranking
model was only 2.3 times more likely to be the best
model than the sixth-ranked model. The top-ranking
RDA model was 32.2 times more likely to be the best
model than the FSEIS linear model. The top-ranking
RDA model was 194 times more likely to be the best
model than the 95th-ranking model (contrast this to the
difference between the best and worst 200-ha RDA
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TABLE 2. Extended.

Mendocino 1

AICc CCNSO (%) wB

Mendocino 2

AICc CCNSO (%) wB

Klamath

AICc CCNSO (%) wB

84.22
61.07
68.21
48.16
49.62

62.96
85.19
77.78
88.89
96.30

,0.001
0.680
0.0178
0.215

,0.001

65.45
37.88
32.97
38.72
40.22

8.33
91.67
83.33
91.67
91.67

,0.001
0.005

,0.001
0.952

,0.001

198.94
131.76
152.00
144.63
148.34

66.67
87.04
74.07
83.33
88.89

,0.001
0.321

,0.001
0.104

,0.001

57.62
62.46
66.61
68.13
59.26
61.04

81.48
70.37
62.96
62.96
81.48

100.00

,0.001
,0.001
,0.001
,0.001
,0.001

0.001

69.94
63.51
35.17
35.73
40.02
36.49

83.33
83.33
83.33
83.33
66.67
75.00

,0.001
,0.001
,0.001
,0.001
,0.001

0.041

216.26
204.77
145.62
146.00
144.36
140.06

46.30
38.89
42.59
46.30
53.70
70.37

,0.001
,0.001
,0.001
,0.001
,0.001

0.327

105.93
89.91

107.74
119.80

56.60
73.88

55.56
62.96
55.56
59.26
85.19

100.00

,0.001
,0.001
,0.001
,0.001

0.017
0.769

64.82
65.57
66.97
45.96
42.88
36.93

8.33
8.33
8.33

16.67
0.00

100.00

,0.001
,0.001
,0.001
,0.001

0.786
0.599

154.18
159.10
156.22
154.61
148.00
141.39

62.96
64.81
62.96
68.52
51.85
83.33

,0.001
,0.001
,0.001
,0.001

0.272
0.059

models where the top model was 1 361 128 more likely
to be the best model).

Reduced set of models.—Among the reduced set of
models there was no evidence of overdispersion in the
data. CCNSO ranged from 77.8 to 94.4% using the RDA
data set. The top three models of this group had a
cumulative Akaike weight of 0.766. Nonetheless, the
five top-ranking (based on the RDA data set) models
of this group performed very poorly on the test data
sets (Table 2). The top-ranking model using our com-
posite rank by CCNSO and AICc was NRF (Table 2). Of
the 12 models, on the RDA data set this model was
the eighth ranked using AICc and fourth ranked using
CCNSO. Using the RDA data set the relative likelihood
of this model being the best of the 12 models was 0.019
(Table 2). Nonetheless, it performed the best and most
consistently when considering the developmental and
four test data sets. CCNSO for this model averaged 85.3%
(range 70.4 to 100%) across all data sets. The estimated
logit for this model was

21.359 1 0.00423(NRF)

and standard errors of the coefficients were 0.7778 and
0.00262, respectively.

900-ha models

All models.—One hundred five models were devel-
oped at the 900-ha scale using the RDA data set (Ap-
pendix C). Using AICc, the FSEIS linear model ranked
86th and the highest-ranking FSEIS model ranked 48th.
The top-ranking model was 28.4 times more likely to
be the best model than the FSEIS linear model and 98.4

times more likely to be the best model than the lowest
ranked model.

There were five competing 900-ha RDA models. The
competing models were

2 2F 1 F LOGNR 1 F 1 F

2 2NR 1 F 1 F FC 1 FC LOGFC.

The cumulative Akaike weight of these models was
0.1803. Three of the five competing models included
a quadratic functional form of F, with the other two
models including either a quadratic or threshold form
of FC.

Reduced set of models.—Among the reduced set of
models we found no evidence of overdispersion. Using
the RDA data set on the reduced set of models, the
cumulative Akaike weight of the top-ranking five mod-
els was 0.789 (Table 2). CCNSO among the 12 models
ranged from 80–93.3% on the RDA data set. Of the
five top-ranking models only one (LOGNRF) per-
formed very well on the test data sets (though it had
0% CCNSO on one data set and 52% on another; Table
2). The top-ranking model using our composite rank
by CCNSO and AICc was LOGFSEISnewE (Table 2). Of
the 12 models, on the RDA data set this model was
the eleventh ranked using AICc and tied for second
based on CCNSO (86.67%) with four other models (two
models tied for first with 93.33%). Using the RDA data
set the relative likelihood of this model being the best
of the 12 models was 0.0133 (Table 2). Nonetheless,
it performed most consistently when considering all
data sets. CCNSO for this model averaged 90.2% (range
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FIG. 3. Distribution of Northern Spotted
Owl presence and absence locations relative to
predicted probability of occupancy classes
based on the LOGNR 1 F 1 F 2 model at the
200-ha scale applied to the Research Devel-
opment and Applications (RDA) data set, Klam-
ath Province, California, USA.

81.1–100%; Table 2) across all data sets. The estimated
logit for this model was

22.120 1 0.466(LOGFSEIS E 1 1)new

and standard errors of the coefficients were 2.1348 and
0.5032, respectively

Determining the ‘‘best’’ model and estimating
NSO numbers

Of the 36 models evaluated on all five data sets (12 at
each spatial scale), the model that performed most con-
sistently across all data sets was the LOGNR 1 F 1 F2

model at the 200-ha scale. Thus, this model was used for
subsequent estimation of owl numbers in the independent
study areas. The distribution of predicted probabilities
relative to NSO presence and absence showed good sep-
aration using the RDA data set (Fig. 3).

Observed number of NSOs in the nine independent
study areas ranged from 4–45 birds. Estimated number
of NSOs in the independent study areas (based on the
sum of probabilities from 40 3 40 m pixels divided
by 5625) ranged from 3.5 to 63.4 birds. We found a
high correlation between actual number of NSOs within
independent study areas and estimated number of NSOs
from the sum of probabilities (r 5 0.89, P 5 0.0012).
Futhermore, the estimated y-intercept (5.883) had a
wide 95% confidence interval (21.31–13.07) and did
not differ from an intercept of zero (t 5 1.93, P 5
0.09). The estimated slope coefficient (0.674) had a
95% confidence interval (0.36–0.98) that was close to
but did not overlap 1. Four of the nine estimates were
within two NSOs of the actual number.

DISCUSSION

It was critical to our analyses that we included a rig-
orous test of the models on independent data. A survey
of recent journal articles found that only 3% of the habitat-
modeling papers had conducted independent field-testing
of models and an additional 16% had used some form of
statistical validation (n 5 382 articles; T. Edwards, per-
sonal communication). We used a parsimonious model-
selection and inference methodology based on AICc (bias-
corrected Akaike Information Criterion) to determine our
best-fitting models. AICc provides a method for compar-

ing models but does not provide information about good-
ness of fit of the model to the data, as Burnham and
Anderson (1998) have emphasized. Although parametric
bootstrapping approaches have been suggested for good-
ness-of-fit tests with logistic regression, there is not a
consensus among statisticians about the effectiveness of
this approach. The Hosmer-Lemeshow test (Hosmer and
Lemeshow 1989) is a standard goodness-of-fit test rec-
ommended by statisticians for logistic regression, but it
is a somewhat arbitrary test, depending on the grouping
of the data into categories. AIC is a relative measure of
the fit of data to a model, and thus we used it to evaluate
relative fit of the various models. We also chose to eval-
uate model correct-classification rates, using optimal cut-
off points for the models, and examining the CCNSO (cor-
rect classification of the site as occupied by a Northern
Spotted Owl). Comparing multiple models will always
result in one (or a few) being considered ‘‘the best.’’
However, whether any of them (including the best) are
useful for making accurate predictions is another issue.
Evaluating CCNSO for each model allowed us to address
this issue of goodness of fit. Furthermore, we used mul-
tiple test data sets to critically test our results.

We concluded that the LOGNR 1 F 1 F 2 model at
the 200-ha scale worked best considering its perfor-
mance on the developmental and test data sets. Models
at the 550-ha and 900-ha scales had reduced CCNSO and
performed more erratically across the various test data
sets (see Table 2). Testing multiple models at multiple
scales on the independent data sets revealed major in-
consistencies among many of the top-ranking models
based on the developmental data set. These results sug-
gest that researchers should be extremely cautious
about inferences they make based on models that have
not been adequately evaluated on independent test data.
Using AICc to draw inferences from a single data set
could be extremely misleading. Even though our de-
velopmental data set was based on a random sampling
of the study area, many of the models that appeared to
be good were apparently good only because they fit
that particular data set, not because they were in general
good models. Burnham and Anderson (1998) discuss
issues such as this. Our findings simply re-emphasize
the interpretation of ‘‘the best model, given the data.’’
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FIG. 4. Predicted probability of Northern Spotted Owl occupancy for every 40 3 40 m pixel within USDA Forest Service
lands in the Klamath Province, California, USA, based on the LOGNR 1 F 1 F 2 model at the 200-ha scale.

Beyond the ‘‘best’’ model, given the data set, the suite
of competing models needs to be subjected to the same
cautious interpretation.

Our data sets had small sample sizes at the larger
scales; therefore, we need to accept our results of 200
ha being the best scale with some caution. The spatial

scale at which Northern Spotted Owls respond to habitat
features has been reported by others (Lehmkuhl and Ra-
phael 1993, Hunter et al. 1995, Bingham and Noon 1997,
Ripple et al. 1997, Meyer et al. 1998, Swindle et al.
1999, Thome et al. 1999). Most found that NSO sites
differed from non-NSO sites at relatively small scales
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(e.g., 200 ha); however, differences have also been re-
ported at relatively large scales (e.g., .3600 ha; Meyer
et al. 1998). These estimates are consistent with pub-
lished estimates of NSO home-range sizes (Forsman et
al. 1984, Carey et al. 1990, Solis and Gutiérrez 1990,
Blakesley et al. 1992, Zabel et al. 1995), indicating that
tremendous variation in size exists throughout their
range (Gutiérrez et al. 1995).

Although we chose the LOGNR 1 F 1 F 2 model as
the best model, our analyses suggested that there were
three highly competitive leading models at the 200-ha
scale. All three models produced consistently high clas-
sification success rates for the RDA and test data sets.
We considered whether to use weighted averages to pre-
dict probabilities of NSO occupancy, based on these
three models, but decided this was unnecessary because
predicted values were similar for each of the three mod-
els. Nonlinear effects were prevalent in our top models.
Our results differed from other NSO studies in northern
California and southern Oregon that did not examine
nonlinear effects (Carey et al. 1990, Solis and Gutiérrez
1990, Hunter et al. 1995, Meyer et al. 1998). Only one
other study evaluated nonlinear forms of the relationship
between habitat and NSOs and their conclusions were
similar to ours (Franklin et al. 2000). The FSEIS and
FSEISnew habitat descriptions did not perform very well
at the 200- or 550-ha scale, but LOGFSEISnewE was the
‘‘best’’ 900-ha model. Consistently, we found that de-
scriptions that incorporated NR and F habitat better pre-
dicted CCNSO than the older FSEIS descriptions.

For land managers our results provide a predictive
tool that may be useful for NSO habitat monitoring and
adaptive land management in California. Our best-fit-
ting model, LOGNR 1 F 1 F 2, was used to provide a
current assessment of habitat for NSO occupancy on
federal forestlands in northern California (Fig. 4). It
can be used in the future to compare the effects of
various proposed management prescriptions on NSO
occupancy. The effect of proposed changes in habitat
on NSO probabilities of occupancy can be evaluated
using GIS by comparing probabilities before and after
any prescribed activity.

The LOGNR 1 F 1 F 2 model was designed and
tested using data from federal forest lands in northern
California, but could be applied to other lands with
similar habitat types. It should not be applied to other
habitat types such as coastal Douglas–Redwood with-
out first being tested in those areas. It provides an index
of NSO occupancy. Although it consistently demon-
strated high success rates at predicting habitat where
NSOs can be found, its success rates at predicting NSO
absence were lower. Furthermore, all of our test data
sets came from areas that were thought to be relatively
good habitat for NSOs prior to being surveyed. Test
data from a random sample of locations throughout the
entire study area would be a more critical and rigorous
test of our models.

This study began with the primary objective of com-
paring new NSO habitat descriptions, based on nest-
ing–roosting and foraging habitat. The older FSEIS de-
scription was based on mature forest stands and de-
scribed NSO habitat the same in Oregon, Washington,
and California. However, evaluations of NSO foraging
ecology (Ward et al. 1998), prey use and home-range
characteristics (Zabel et al. 1995), and habitat use (So-
lis and Guttierez 1990, Blakesley et al. 1992, Hunter
et al. 1995, Thome et al. 1999) in California have sug-
gested that NSOs use habitat differently in relatively
xeric conditions in the south compared to more mesic
conditions further north. Our findings were consistent
with previous results suggesting that NSOs use and
perhaps need a broader variety of habitats in California
than in the remainder of their range.

Climate explained almost all of the temporal process
variation in the life-history traits estimated for the NSO
in northwest California (Franklin et al. 2000). The pe-
riod when life-history traits were most affected by cli-
mate was during the spring, i.e., the breeding effort
was impacted by rainfall. Franklin et al. (2000) hy-
pothesized that precipitation may decrease hunting ef-
ficiency, prey activity, and prey populations. They
stressed that climate variation may negatively affect
NSO populations, even if no further habitat loss occurs.
They concluded that temporal variation, as influenced
by climate, is an important factor to consider when
developing conservation plans.

Our exploratory analysis of the relationship of the
focal-point probabilities to NSO abundance was en-
couraging. Due to the small sample size (n 5 9 study
areas), our results must be viewed as preliminary, sub-
ject to more thorough evaluation of using our model
(or other models) to estimate owl numbers. Nonethe-
less, the high correlation between observed and esti-
mated number of NSOs was encouraging.

Our models represent an association of NSOs to the
habitat features we evaluated. We do not suggest that
these habitat features are causally tied to NSO life-
history characteristics. We do believe, however, that
the habitat features we evaluated are correlated with
features that are causally tied to NSO life-history char-
acteristics. An evaluation of the relationship between
NSO fitness and our best model predictions would be
an important step toward determining the degree to
which our model might serve as an index of NSO fitness
throughout the Klamath Province (California, USA).

Our determinations of the ‘‘best’’ models at each
spatial scale were also biased toward correctly classi-
fying owl presence. We recognize that other individuals
and groups might wish to place more (perhaps all)
weight on predicting owl absence. For example, rural
communities within our study area are particularly con-
cerned about catastrophic wildfires. However, if NSOs
are thought to occupy areas adjacent to these com-
munities, additional regulations might hamper proac-
tive fuel-reduction efforts. Thus, from a pragmatic
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standpoint, if our ‘‘best’’ model is to be used for es-
timating NSO occupancy, we recommend that areas
having predicted probabilities near the center of the
frequency distribution (e.g., from 0.20 to 0.50; see Fig.
3) be considered equivocal predictions, perhaps trig-
gering on-the-ground surveys.

We found that using data from a randomized sam-
pling design over a large (2.2 3106 ha) study area
resulted in the development of accurate-habitat-asso-
ciation models when applied to relatively small spatial
scales (e.g., the much smaller study areas from which
the test data came). We encourage federal and state
agencies and other institutions to invest in such studies.
The degree to which results from small-scale habitat-
association studies can be extrapolated to larger areas
outside of the study area has long been suspect. Fur-
thermore, study areas are often chosen because they
are presumed to be good habitat for the organism(s) of
interest (and will result in larger sample sizes), making
the generality of findings from such areas tenuous. Our
results provide evidence that ‘‘scaling down’’ from
larger study areas to smaller portions within them is
feasible, and we believe more defensible. Initially these
larger scale studies will be more expensive than small-
er, more localized, studies. However, in the longer term
we believe they are more cost-effective and provide
more defensible information.
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APPENDIX A

New descriptions of Northern Spotted Owl ‘‘nesting and roosting’’ (NR) habitat by ecological zone in northern California
(USA) developed for the USDA Forest Service Land Management Planning vegetation database are available in ESA’s
Electronic Data Archive: Ecological Archives A013-017-A1.

APPENDIX B

New descriptions of Northern Spotted Owl ‘‘foraging’’ (F) habitat by ecological zone in northern California (USA)
developed for the USDA Forest Service Land Management Planning vegetation database are available in ESA’s Electronic
Data Archive: Ecological Archives A013-017-A2.

APPENDIX C

The list of all vegetation models evaluated at each of three spatial scales is available in ESA’s Electronic Data Archive:
Ecological Archives A013-017-A3.


