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Predicting tree mortality from diameter growth:
a comparison of maximum likelihood and Bayesian
approaches

Peter H. Wyckoff and James S. Clark

Abstract: Ecologists and foresters have long noted a link between tree growth rate and mortality, and recent work sug
gests that interspecific differences in low growth tolerance is a key force shaping forest structure. Little information is
available, however, on the growth—mortality relationship for most species. We present three methods for estimating
growth—mortality functions from readily obtainable field data. All use annual mortality rates and the recent growth
rates of living and dead individuals. Annual mortality rates are estimated using both survival analysis and a Bayesian
approach. Growth rates are obtained from increment cores. Growth—mortality functions are fitted using two parametric
approaches and a nonparametric approach. The three methods are compared using bootstrapped confidence intervals
and likelihood ratio tests. For two example specikser rubrumL. and Cornus floridaL., growth—mortality functions
indicate a substantial difference in the two species’ abilities to withstand slow growth. Both survival analysis and
Bayesian estimates of mortality rates lead to similar growth—mortality functions, with the Bayesian approach providing
a means to overcome the absence of long-term census data. In fitting growth—mortality functions, the nonparametric
approach reveals that inflexibility in parametric methods can lead to errors in estimating mortality risk at low growth.
We thus suggest that nonparametric fits be used as a tool for assessing parametric models.

Résumé: Les écologistes et les forestiers ont depuis longtemps noté le lien entre le taux de croissance et la mortalité
des arbres. En outre, des travaux récents suggérent que la structure de la forét serait déterminée principalement par les
différences interspécifiques dans la capacité de survie a une faible croissance. Cepegdameu d’'information sur

la relation entre la croissance et la mortalité pour la plupart des essences. Nous présentons trois méthodes pour estimer
les fonctions de croissance et de mortalité a partir de données de terrain facilement disponibles. Toutes les méthodes
utilisent le taux annuel de mortalité et le taux de croissance récent des arbres vivants et morts. Le taux annuel de mor-
talité est estimé a la fois par I'analyse de survie et I'approche bayesienne. Le taux de croissance est obtenu par les ca-
rottes de sondage. Les fonctions de croissance et de mortalité sont ajustées a I'aide de deux méthodes paramétriques et
d’'une méthode non paramétrique. Les trois méthodes sont comparées a I'aide des intervalles de confiance amorce et
des tests du rapport de vraisemblance. A titre d’exemple, les fonctions de croissance et de mortalité montrent une dif
férence substantielle entreAter rubrumL. et le Cornus floridaL. dans leur capacité a survivre a une faible crois

sance. L’estimation du taux de mortalité par I'analyse de survie ou I'approche bayesienne conduit a des fonctions de
croissance et de mortalité semblables. L'approche bayesienne permet cependant de pallier I'absence de données
d’'inventaire a long terme. Pour I'ajustement des fonctions de croissance et de mortalité, I'approche non paramétrique
révele que l'inflexibilité des méthodes paramétriques peut engendrer des erreurs dans I'estimation du risque- de morta
lité¢ d0 a une faible croissance. Ainsi, nous suggérons que les ajustements non paramétriques soient utilisés -comme ou
til pour évaluer les modéles paramétriques.

[Traduit par la Rédaction]

Introduction 1983; Buchman et al. 1983; Fahey et al. 1998; Kobe and

The traditional notion of “shade tolerance” classifies-spe
cies according to their abilities to grow and survive under,
closed canopies (Burns and Honkala 1990). While researc
has long concentrated on growth responses at low light, a
tention has expanded in recent years to increasingly consid

the

Coates 1997; Kobe et al. 1995; Kobe 1996). Because growth
rate integrates the effects of many variables on vigor, it
erves as an index of mortality risk. Foresters have long rec
gnized that mortality risk increases as growth rates decline
lﬁlonserud 1976). Simulation models formalize the relation
‘ ) ; ip, incorporating a “growth—mortality function” that pre
relationship between growth and mortality (Buchmanyjeig the probability of mortality based on recent growth
history (Botkin 1993; Pacala and Hurtt 1993; Loehle and
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plots can be used both to estimate mortality rates and to fip(a) = 1 —p(d), respectively. For a data s€}, containing a sample
growth—mortality functions (Buchman et al. 1983; Hamilton of N trees, the likelihood thab trees die on this interval is the
1986), but such data sets are few and often include onlpinomial:

large trees. Long or irregular sampling intervals often-pre D N-D
clude analysis of recent growth history (Sheil and May[la] L(Gy|B) = |_| p(d|g;[3)><|'| - fdgp)
1996). In the absence of long-term censuses of large popula i=1 i=1

tions, mortality rates can be estimated from dead trees en

- . : where the growth—mortality functiop(d| g;B) is the probability of
countered in the field (Kobe et al. 1995). This m('JthOd’death conditioned on a risk factor (growth ratg)and fitted pa

however, requires knowledge .O.f how long trees ha_tve. b.ee‘rhmetersﬁ. If there is no relationship between growth and mertal
dead, and uncertain decomposition rates can make it difficulty (j.e. “all individuals experience the same risk) then eq. 1

to estimate time since death. Existing methods for modelingimpiifies to the binomial

the growth—mortality relationship are more complex than

necessary. We are unaware of efforts to determine confilb] — L(Gn|6) =8°@-ON°
dence levels for the mortality rates obtained by such meth
ods and how that confidence translates to error in growth
mortality functions.

The paucity of data describing the growth—mortality rela 2] 6= 12
tionship has led to simplistic assumptions in models that af N
fect predictions. For example, JABOWA-FORET models The probabilities in eq.d can be expressed in terms of an odds
assume that all species exhibit the same tolerance of Iovrvatio P a- P
growth, resulting in predictions much different from those of
models that assume species differences (Kobe 1996; Paci@] p(dlg) _ MQ
et al. 1996). These conflicting predictions suggest a need fo palg) pa)
improved understanding.

In this paper, we present and test alternative methods fovhere
estimating tree mortality rates and growth—mortality func- p(g|d)
tions from field data. Our analysis is presented in thred4] Q:m
parts. First, we outline functions describing mortality and g
its relationship to growth. Second, we present three alternarnys, there are three elements to model (eq. 1), including the over-
tive statistical models of the growth—mortality relationship. all probability of deathp(d) = 8, which is estimated as the propor-
Two parametric models (A and B) entail different assump-tion of dead trees in the sample (eg. 2) and the densities of growth
tions concerning how populations are sampled. Our methothtes of deadgx(gld) and living p(gla) trees. These three elements
C is a nonparametric approach that shows where paramefy”y define the mortality function, because the probability of death

ric models may fail because of inadequate data or modelt & given growth rate(dg) and its complemenp(alg) are calcu-
lated from®, p(g|d), andp(gla), i.e.:

where the parametd represents the overall probability of death
"p(d). The maximum likelihood estimate 6fis

inflexibility.
Finally, we provide methods for estimating mortality rate, pdg _ 6
which is required by all growth—mortality models. A Bayesian 1- p(d|g) T1- QQ

approach can be used to update mortality estimates as new

data accumulate. To assess how confidence in mortality ratequation 3 can be cast as Bayes' rule to express the probability

affects confidence in growth rate as a predictor of mortalitydensity of deaths at growth ragg p(d|g, 6), in terms of the overalll

risk, we integrate the posterior density of mortality rate. Wemortality probabilityp(d) = 8 and the density of previous growth

compare the Bayesian approach with survival analysisiates for dead individualg(gld):

To demonstrate and evaluate the approaches we use detga] _pdddad

that include i) growth rates from living and recently dead R(d|g.0) = W

Acer rubrumL. and Cornus floridaL. trees, (i) counts of

living and dead stems, andi sequential censuses of mor where the probability density of a growth rageis the weighted

tality from permanent plots. These data are part of a largeaverage:

study of the growth—mortality relationship for southern-Ap _

palachian tree populations (P.H. Wyckoff and J.S. Clark,[G] M9 =0ndd+1-6) 143

in preparation). The relationships in eqs. 3-6 are the basis for the models that
follow.

The relationship between growth and Growth-mortality models

mortality There are two ways to estimate the relationship between growth
and mortality. The first is a direct estimate using census data. Sur
Growth as an indicator of risk vival analysis is appropriate here, allowing for direct analysis of

A growth—mortality function describes how mortality risk-in  how a risk indicator (e.g., growth rate) affects mortality. Unfertu
creases as growth rate declines. We preface our description -of speately, long-term census data are rarely available. A second way to
cific models in the next section with this section outlining elementsestimate growth—mortality functions sidesteps the long-term data
common to all models. Led be the event that an individual dies needs by extracting mortality and growth information from trees
in a given time interval, an@ be the event that it survives. The already dead (Kobe et al. 1995). Rather than follow a population
complementary probabilities of these two events pfd) and over time, this approach focuses on past risk (represented by
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growth rate). Analysis can be complex for reasons discussed991). Problems are especially likely where data sets contain few

below. dead trees. To evaluate our parametric estimates we compare a
We derive and then compare three methods for analyzingnonparametric model that is constrained only by the assumption

growth and mortality. Our first method is parametric (method A), that risk changes monotonically with growth rate (Ayer et al.

but it is not based on a binomial likelihood. We estimate growth1955). The nonparametric model is binomial. It differs from

functionsp(gla) and p(gld) and mortality rateéd independently and method B in that it assumes a discrete sequence ofthithet de

then calculate the growth—mortality function using the odds r@tio creases monotonically with growth rate. Our algorithm begins with

(eq. 3). The second method (method B), also parametric, uses an arbitrarily small bin width. Growth rates of all living and dead

single function for growth rate and mortality, and is based on-a bi trees are partitioned into bifjs= 1, 2, ...,m, and a corresponding

nomial likelihood (eq. 1). These methods are compared with anortality rate for each bin is determined as

third, nonparametric approach (method C).

Method A: a growth rate focus [10] 8; = n.
In the absence of census data, it is still possible to estimate

a growth—mortality function, provided we know mortality réie . .

The relationship can be obtained from fitted growth distributionsWheredJ andn are, respectively, the number dead and tofal trees in

; : - bin j. The algorithm then checks for monotonicity. Bins for which
and®. Equation 5 can be rearranged to give the growth—mortalltye_ >6,_, are expanded (increased in width), data are rebinned, and

function: tﬂme process is continued until a monotonic sequence is achieved
0 having likelihood:
[7a] Hdg®=_— ?
0+(1-6)/Q m
. A = dg-g yn-d
and its complement: [11] I‘(NleJ =1..ms bJ=1-~m) D elJ ¢ eJ) b
]=1
_ 1-06
[7b] nalg.6) = 1-0+6Q whereb; is the boundary (growth rate) between bjrs1 andj. Al-

though the estimate of mortality risk in any one bin depends en ad
where Q is a ratio of growth rates; of living and recently dead Jjacent bins (to achieve monotonicity), the dependency is weak
trees (eq. 4). We use gamma densities for growth rates, the likelitélative to that of parametric models.

hood for recently dead trees being Relationship to a previous method

A previous method for estimating the growth—mortality function

D D

\Pa 4

8]  LGolAg.pa)=[] R(Gild) =[] 7r(f;jd) ¢ expCAqd)  (Kobe et al. 1995) uses a likelihood function that can be written as
i=1 i=1

D
whereAy andpy are fitted parameters. The likelihood for growth 12 LG = dla:
rates of live trees differs only in having parameter subscrgpts [12] Sl g pdlgiBy) gl dB2)
rather thand and a sample size ok rather thanD. In summary,

this first method fits growth distributions to each data set (living N-D
and dead) separately (eq. 8) and then, together with the mortality X I—l - p)(dg;B)IK gl aB,)
rate, calculates the growth—mortality function using ea. 7 -1

Method B: an explicit mortality focus The method involves maximizing the likelihood assuming a para
Method B differs from method A in that a growth-mortality metric (e.g., exponential) growth-mortality functigafd|g) with
function is estimated directly. Here we begin by fitting the growth—fitted parameter sd; and the growth rate densities (e.g., gamma
mortality relationshimp(dig). We used several parametric forms; in  densities) of living and dead trees(¢;|a) and p(g;|d)) with param
cluding logistic and exponential. A Weibull model fit best for most eter sef3,. Equation 12 embodies conflicting assumptions regard

species, having likelihood: ing how mortality relates to growth rate. The form of the growth—
D N-D mortality functionp(d|g) is already defined by the choice of func

9 L - R x _ . tional forms for growthp(gla) and p(gld) (eqgs. 3-5). Imposing a

[°] (GnlB) !:! P(dlg;B) !:! L= Hdgp)] new model, in the form op(d|g), amounts to adopting a new (and

conflicting) assumption concerning how mortality varies with
growth. Our methods A and B demonstrate how one can adept ei

D U J N-D U U
= exg}?gmx I—ll_ exn}?@tg ther a growth-rate (method A) or a direct mortality (method B)
=1 H b H -1 H b H function, each of which is internally consistent and less complex

than eq. 12.
Unlike the growth—mortality function used in method A (eq. 7),
eq. 9 does not explicitly show the mortality réieHowever, this ~ Mortality rate
likelihood depends implicitly o, becausé represents the frac Our three methods depend implicitly or explicitly on mortality
tion of dead trees in the sample (eq. 2). This method provides aate6. For a single sample, eq. 2 represents the maximum dikeli
likelihood for the entire sample and, thus, a basis for model evaluhood (ML) estimate oB, but multiple censuses or large sample
ation, but sampling considerations will often preclude straightfor sizes are needed to produce acceptable confidence intervals. In

ward application (see below). practice, multiple censuses are rarely available. One alternative to
direct observation involves counts of living and recently dead
Method C: nonparametric stems along transects (Kobe et al. 1995). To estifddtem such

Parametric models share the disadvantage that the mortality ris#tata, one must determine when dead trees died. Kobe et al. (1995)
estimated at one growth rate depends on estimates at all oth@rdge trees to be recently dead based on twig suppleness and leaf
growth rates and, thus, on the distribution of data points (Lavineretention. This method has the advantage of providing rapid estimates.
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We found criteria for judging time since death difficult to apply Survival analysis from sequential censuses
and sought other means for estimatthghe two methods we out Survival analysis can be applied where long-term census data
line here use different data types and determine parameter-confire available from permanent plots. Consider an initial samph¢ of
dence based on different criteria. Our Bayesian analysis is applieflees at timet, that will be censused at successive intenjatsi,

to two data types (stem counts and census data) to estrand 2 . m The duration of census intervalt, is the elapsed time be
to determine how our belief il affects estimated mortality func  tyween censug— 1 andj. D, individuals die during intervaj, and

tions. The survival analysis that follows is an adaptation of stan i . .

dard methodology to tree census data, where census intervals c%_ zizl D; remain to be tallied at the next census. Eg} be the

span multiple years or be of uneven duration. probability density for mortality with corresponding distribution

function:

A Bayesian estimator for mortality rate _
Our Bayesian approach treats mortality risks a random vari !

able described by a probability density. The “spread” of that den F(ti—l'tj) = I f(t)dt

sity reflects our knowledge 06, which, in practice, depends tia

primarily on sample size. We begin with a prior estimate of this

density, with broad spread reflecting limited insight. Data refine F(t_;, t;) is the probability of death during census interyaEach

our understanding, which is manifest in a posterior density concenindividual has one ofn + 1 possible fates: it can die during one of

trated about our best estimate. The analysis entails specifying e m census intervals, or it can survive to the end of the study.

prior density forf, which is subsequently “updated” with data. We The likelihood can be written in terms of census intervals:

assume a prior beta density for the paraméter

gNo~1( — g)No= Do [19]  L(NI6) = [ [Fty- )% X[ Kty oV 10
aN01 NO - DO) =1

whereB() is the beta function, anB, andN, are prior estimates of
dead and total trees, respectively. The mean for this prior is eq. 2:

t

[13] f(®) =

The product series incorporates the contributions of individuals
that die over the successive censuses, and the survivor function in
corporates those that remain alive at the last census.

Now assume a constant mortality rétéhat is continuous in the

D,
[14] E® = N*() sense that mortality is not limited to a specific time during the cen-

0 sus interval. The ML estimate cﬁh‘satisfies% InL =0, where

with variance
Do(No — Do)

— = - . O g —D - m m
[15] Var@)_m [20] InL ;DJ In(e e™) %N Yia E}%Btn

Additional data are used to sequentially update our densiéy of is obtained by solving for the distribution function for constant
Suppose a data set yields numbers of dead and total reesid  mortality risk@. For a single census interval of duratibwe obtain

N;. The posterior density d is also a beta density: a closed form solution for risk:
f(©) f(Dy|6 -1
[16] f(elDl) = 1 () ( 1| ) é = %|n@—D%
[ f@f(Di16)d0 O N
0
There is no closed form solution for multiple censuses, but eq. 19
@R D71 — G)No~Do* Ny~ D1 is readily solved numerically.

B(Do + Dy, No = Do+ Ny~ Dy Combining mortality rate estimates with growth—mortality

functions
Because recently dead trees are often rare, they are infrequent in
stem counts and census data. Impossibly large sample sizes may be
needed to obtain sufficient dead trees for confident growth—mortal
& 1-95 ity fits. Whereas a modest number of dead trees may be sufficient
[17] f@ D) = to estimate mortality rate, large numbers are needed to estimate
gm m l growth—mortality functions. For example, a mortality ratefof
Bﬁz Dkaz Ny — Dﬁ 0.01/year, would require growth rates for 2000 live trees to obtain
=0 k=0 20 from dead trees. Although 20 dead trees may yield acceptable
estimates of mortality rate, this sample size may be too small for
This posterior can be integrated to obtain Bayesian confidence inestimating the distribution of growth rates of recently dead trees
tervals on the growth—mortality function itself: (e.g., eq. 8). If we actively search for dead trees, then we lack the
proportions of living and dead trees that determine mortality rate.
1 Our sampling scheme (see Field data below) involves active search
[18] p(dlg, Dy) :J' p(dgb) 9| B, )Xo for dead trees, which provides growth rates disproportionate to
0 their representation in the field. To fit binomial models to such
data, we describe a bootstrap procedure for weighting effects of
where the mortality function is eq.a7(method A) or eq. 9 growth data according to the estimate of their contribution to the
(method B). likelihood as implied by eq. 2 (see Estimation below).

(e.g., O'Hagan 1994). By sequential application the posterior den
sity following m censuses is

sz'l z(Nk_Dk)_l
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Study area estimates are based on 500 resamples. For method A, we first ob

tained ML estimates for growth densities (eq. 8) using resamples
Data were obtained from the Coweeta Hydrologic Laboratory inof the growth data weighted by the proportion of dead trees im

the southern Appalachian Mountains (35°R3 83°27 W). Mean plied by our mortality estimates. Each resample includgd 6am

annual temperature is approximately 13°C and average annugle size of dead trees equal to the number of dead trees in the data

rainfall is 220 cm (Swift et al. 1988). Temperature decreases andet, and i{) a sample of size of living trees of size

precipitation increases with increasing elevation. Soils are primar R

ily Ultisols and Inceptisols (Velbel 1988). Dominant overstory veg 21] A= Dﬂ

etation includes Acer rubrum Quercus prinus L., Quercus A

rubra L., Carya glabra (Mill.) Sweet, andLiriodendron tulipk

fera L. Important understory species inclu@rnus floridg Acer  whereD is the number of dead trees for which growth rates have

pennsylvanicuni.., and Rhododendron maximuin been obtained, an@ is the posterior mortality estimate from
eq. 17. For each resample, we calculated the growth—mortality
function, substituting foQ in eq. 7, and we examined the effect of

Methods error in8 on the growth—mortality function by numerically inte
grating eq. 18. Thus, we accommodate both sampling error in
Field data growth and confidence in the estimated mortality rate.

Data derive from two study areas at elevations of 800 and For method B, we used the resampling procedure to weight the
1100 m. Growth rates were obtained from increment cores ef liv contributions of living and dead trees. ML parameter estimates
ing and recently deadcer rubrumand Cornus floridatrees. “Re were obtained for each resample using eq. 9. The ML for the
cently dead” trees were defined as standing individuals withouimodel is taken as the mean ML over the bootstraped sample, be
leaves but still identifiable to species. Only dead trees with intacttause the underrepresentation of live growth rates means that there
crowns were cored to insure that death did not result from-catais no likelihood for a raw data set. For method C, the algorithm de
strophic (and presumably growth-independent) causes. scribed by egs. 10 and 11 was implemented on a data set having

To estimate recent growth history, we cored all recently deacbins weighted by the proportions of living and dead trees (eq. 21).
trees >4 cm diameter at breast height (DBH) encountered alon@he fits of methods B and C were compared with one another and
transects at each of the two study areas. Within approximatelyo the null model (eq. ) based on likelihoods taken over the same
10 m of each dead tree, we cored and measured diameters wfeighted sample size. The likelihoods estimated by this weighting
conspecific live individuals of similar size. Growth increments procedure are an approximation to the likelihood that would be ob-
were measured with the WINDENDRO (Régent Instruments Inc.)tained had we sampled growth rates for all live trees.
measuring system. We report radial growth rates averaged over the Comparisons of the binomial models (B and C) are based on
five most recent growth years. Long-term growth histories are conAkaike’s information criterion, AIC = 2(—IrL + number of param-
sidered in a companion paper (P.H. Wyckoff and J.S. Clark, ineters), whereL is the likelihood of the model (eq. 9 or 11). For
preparation). method B, there are two fitted parametdrssandc. For method C,

To estimate mortality rates, we used three censuses from fivéhe number of fitted parameters isn2wherem is the number of
permanent mapped plots. Plots wer@ i x 20 m when estab- bins. The fitted parameters consistgptind a boundary for each of
lished in 1991. All trees ove2 m tall were measured in 1991, and the m bins, b.
survival was checked and the survivors remeasured in 1993. Trees Binomial models (methods B and C) were tested against the null
were censused again in 1995. Also in 1995, the plots were exhypothesis of no growth rate effect using the likelihdg@ye) O
panded to 8 m x 60 m, and aecensus of the expanded plots was 8°(1 - 8)N~Pand a likelihood ratio test. Method B has one degree
done in 1996. of freedom (two fitted Weibull parameters minus one parameter for

For our Bayesian method, we used three types of prior mortalitythe null likelihood,8). Method C has & — 1 degrees of freedom
estimates. Our first prior is based on a stem count method simila¢two for each bin minus one for the null model).
to that of Kobe et al. (1995), wheé, is the total number of indli
viduals andDy is an estimate of the number that die per year. StemR
counts were conducted i5 m radius plots located at 20 m inter Results

vals along transects used for increment core sampling. Based on We use data fromAcer rubrum and Cornus florida to

the characteristics of dead trees in our census plots, which die . .
during a known interval, we estimated that trees remained identifigemonsmjlte our methods, because they yield contrasting

able to species for an average of 5 yedg.s therefore the total Mortality functions. At our study siteCornus floridacon
number of observed dead stems divided by five. Our second priofacts dogwood anthracnose disease, which accounts for the
was taken from USDA Forest Service Forest Inventory and Analy poor tolerance of low growth we see in this classically “tol
sis (FIA) plots located in the seven North Carolina counties nearestrant” species (Burns and Honkala 1990). Growth rates were
our field site (http://www.srsfia.usfs.msstate.edu/scripts/ew.htm)measured for 107 living and 41 recently de&der rubrum

We used only FIA plots in stands of similar age and elevation agrees and for 26 living and 28 recently de@drnus florida
our study sites. Our third prior is taken from mortality rates of {ygeg.

Acer rubrumfrom Missouri (Shifley and Smith 1982).

. Estimating annual mortality (0)
Estimation Because all three methods for relating growth and mortal

To examine how estimates changed with accumulation of datay, require an estimate of mortality rate, we begin with our
we estimated mortality rates incrementally, treating successive ce y

suses as “new” data sets. Bayesian confidence intervals for morta:]e‘?'ma?on Ofe't To c:et_erfrlnlne Wdh(le)ther_Bayets_lant confldenced
ity estimates are quantiles from the posterior density (eq. 17)/Nt€rvais are strongly influenced Dy prior estimates, we use

Confidence intervals for survival analysis were determined by &hree priors from sources other investigators might use. Our
likelihood profile (Cox and Oakes 1984). first prior is based on stem counts. FAcer rubrum our

Parameter estimates for methods A and B were determined by @itial stem counts yielded, = 4.6 dead (23 deaths in 5
nonparametric bootstrap (Efron and Tibshirani 1993). Parameteyears for an average of 4.6 dead trees/year) from a total of
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Fig. 1. Survival analysis and Bayesian estimates of the annual Fig. 2. The effects of three alternate priors on the posterior
mortality rate® for both Acer rubrumand Cornus floridachange  Bayesian estimate of mortality rate féicer rubrumand Cornus
with the iterative addition of more field data. Note the tightening florida.
of confidence intervals (thin lines) with each iteration. The

Bayesian prior is based on stem count data which are rot in 0.6
cluded in the survival analysis.
0.6 . .
= Survival analysis 0.5+ Prior from stem
nauee Bayesian estimate counts
0.5 — — - Prior from FIA data
0.4+
Prior from Shifley and
0.4— Smith (1982)

Cornus florida

Cornus florida

Annual mortality rate
o o
hy ¢

.t
o

Annual mortality rate
o o
@

0.1 /

0.1-

o
i1st census
2nd census
3rd census

1st census
2nd census
3rd census

(Do = 0.17 andN, = 16). Addition of census data yielded a
posterior mean mortality rate &= 0.16, slightly less than
obtained using a prior based on stem counts (Fig. 2). Our
N, = 142 trees. TheAcer rubrum prior has a mean of third prior for Acer rubrum B = 4.7 andN, = 224 comes
Dy/No = 0.032 and broad spread (V&= 0.015) (Fig. 1). Se  from Shifley and Smith (1982). Addition of our census data
quential application of our Bayesian method (eq. 17) usingloes not change the mean mortality estimate (postérror
permanent plot data progressively reduces the estimateé@d021).
mean mortality rate t@ = 0.023 DO, = 17.6 andN, = 751) Survival analysis of permanent plot data showed that most
and reduces the confidence interval (Fig. @prnus florida  Acer rubrummortality was confined to the initial cohort.
suffers higher mortality thanAcer rubrum Initial stem  The initial high estimate d® = 0.039 declined with the addi
counts yielded, = 10 andN, = 68 for a prior Bayesian es tion of the second and third cohorts to a final estimaté of
timate of@ = 0.15. The posterior Bayesian estimate of mor 0.013 (Fig. 1). The estimated rate fG@ornus floridais 6 =
tality is 8 = 0.17 O, = 36.5 andN, = 217). 0.16 (Fig. 1).

Our second prior was taken from Forest Service FIA data.
In 1984, FIA plots near our field site, at similar elevations,
and in forest stands of similar age, contained A8er  Relating growth and mortality
rubrum trees 12.7-20.3 cm in diameter. In 1990, 67 of the Fitted growth rate densities from method A (eq. 8) show a
68 individuals remained alive, for an average annual mortaldistinction between parameter estimatésandp) for live
ity of 0.17 trees D, = 0.17 andN\, = 68) (Fig. 2). Using our and dead trees (Table 1), but parameter estimates are corre
census data, the posterior estimate of mortality rate@as lated (Fig. 3). Recently dead trees tend to have lower growth
0.019, lower than that obtained using the prior based omates in the years just prior to death (Fig. 4). The mortality
stem counts. The FlA-based prior f@ornus floridain-  functions derived from these fits (eq. 7a) show the risk of
cluded 16 trees in 1984, fifteen of which survived to 1990death decreasing with increasing growth for both species;
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Table 1. Parameter values for gamma (method A) and Weibull Fig. 3. Gamma parameters andp (eqg. 8) from each of 500

models (method B). bootstraps for the growth rate distributions @j (iving and re
cently deadAcer rubrumshow differences in parametpr For
Parameter Value 95% ClI (b) living and recently deacornus florida parameter values
Acer rubrum show broad overlap.
Gamma model (method A) (a) Acer rubrum
Living trees A 1.95 1.62-2.34 30
(o)) 1.91 1.61-2.29
Dead trees A 1.74 1.25-2.68
P4 4.42 2.40-8.55 254 X Live
Weibull model (method B)
b 0.018 20+ [ Dead
C 0.39
Cornus florida 15+
Gamma model (method A) e
Living trees A 4.44 2.80-7.74 10 [
o)} 6.51 3.92-11.79
Dead trees Ad 3.28 2.17-5.81 5
Py 8.37 4.50-18.00
Weibull model (method B) 0 | | |
b 0.24 florid
. 0.87 (b) Cornus florida
30
this decrease is steep f@ornus florida (Fig. 5). Boot- 25— X
strapped 95% confidence intervals show significant differ-
ences between the two species’ abilities to survive radial 20-
growth rates below 0.7 mm/year. X
The Weibull growth—mortality function (method B; see X
Table 1) and the nonparametric mortality function (method 15
C) predict relationships similar to those obtained by method a.
A (Fig. 6). For both Acer rubrum and Cornus floridg
likelihood ratio tests of methods B and C versus the null 10
model are highly significant (Table 2). Similar AIC values
(Table 2) indicate the two methods fit the data equally well. 5
Because Bayesian and survival analysis estimates of annual
mortality for Acer rubrumand Cornus floridawere nearly
identical (Fig. 1), there is little difference in the growth— 0 l I |
mortality functions predicted using either approach (Fig. 7). 0 5 10 15 20

Where do parametric models fail?
As an aid to visualizing the level of agreement between A
models and data, we used a kernel smoother to estimate
nonparametric densities fop(gld) and p(gla) (Silverman ) . o
1986; function “density” in SPLUS). The joint density steepness of the increase in mortality risk that occurs at low

p(g,d) is the productp(gld) p(d). The nonparametric condi growth rates (Figs. 6 and 8). Figure 9 shows this low-growth

tional densities are then region for Acer rubrum The parametric models are inflexi
ble and do not reflect the abrupt increase in risk below
p(dlg) = Mg 9 0.1 mm annual radial growth.
p(9)

The resulting smoothed data are compared with the Weibully: :

function (method B) in Fig. 8. Unlike our method C, the 'blscussmn

smoothed kernel need not be monotonic. A growth—mortality function is an empirical summary of
The nonparametric method C and the smoothed data indthe complex relationship involving environmental stress,

cate that the parametric models (A and B) fail to capture theyrowth, and mortality risk. Slow growth indicates low vigor
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Fig. 4. Growth rate distributions (histograms) dd)(recently dead andbj living Acer rubrumand €) recently dead anddj living
Cornus floridawith their respective gamma fits (solid lines). Note that living trees grew faster than recently dead trees for both

species.

(a) Acer rubrum - dead trees (c) Cornus florida - dead trees
25
15+
20 R
[
[
8157 10
©
3
E 10_
3 5
g \
0 II!_-]IIIIII 0 \IIIIIIII
0 1 2 3 0 1 2 3
(b) Acer rubrum - live trees (d) Cornus florida - live trees
25
15
20+
0
1 | (L
£ 15~ 01
ks
: 10 [ ] \
gV ] )
E N\ 5-
5
-
0 [ S I s 0 e e e
0 1 2 3 0 1 2 3
5 year average radial growth (mm) 5 year average radial growth (mm)

and risk from a variety of agents. The value of these empiri (Botkin 1993) and development of creative new field meth

cal relationships is evident from a long tradition of their ods (Kobe et al. 1995). We contribute modeling approaches
use in simulation models (Botkin et al. 1972; Shugart andhat permit estimates under the sampling constraints that are
West 1977; Huston and Smith 1987) and from the moreypical for such data. Our three methods for analyzing the
direct evidence they provide concerning successional statuglationship between growth and mortality derive from- dif

(Kobe et al. 1995; Pacala et al. 1996). Because of their imferent statistical models, but they give similar results

plications for the overall dynamics of forest communities, (Fig. 6). Each method has its advantages, and there are im
the availability of confident estimates extends insight intoportant differences. Before discussing the relative merits of
how life history affects succession and diversity. The diffi our three approaches, we evaluate our ability to estimate
culty obtaining such estimates is reflected in the simplisticmortality rate,8, because each of our three methods depend

(e.g., step) functions traditionally used in such modelson it.
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Fig. 5. Fitted mortality functions forAcer rubrumand Cornus Fig. 6. Mortality functions based on parametric methods A and
florida based on method A. Broken lines are bootstrapped 95% B and the nonparametric method C f@&) (Acer rubrumand
confidence intervals. (b) Cornus florida Broken lines are bootstrapped 95% cenfi
1 dence intervals for method A.
(a) Acer rubrum
0.9+
508 ",
£0.7 !
= :
8 0.6 ; >0.8- : Method A
45 \ Cornus florida 3 N IS Method A 0.025
(o] 0.5 \
> e '
£ €06 , | e Method A 0.975
3 0.4+ - !
203 Acer rubrum > — — Method B
o) 0.3 = 1
(i e} 04—
0.2+ . © - - = MethodC
""""" O ]
................... (o]
0.1 ST AN s o .
N — — st Q 0.2+ «
0 T | I f |
0O 025 05 075 1 125 15
. rroRrnrme o)
5 year average radial growth (mm) 0
(b) Cornus florida
. : 1
How well can we estimate mortality rate?
Although there are many published studies of tree mortal-
ity, model comparison is rare, and statistical inference tends
to be neglected (Clark et al. 1999). For the case where mor- EO-B“
tality can occur at any time during a census interval (it is not g Y
discrete), survival analysis (based on eq. 20) offers a less bi- & 1
ased estimate df than does the traditional method of using & 0.6
the fraction of trees that die divided by the duration of the 5
interval. Survival analysis with our census data provide-con -,
fident estimates (Fig. 1). = 0.4
The Bayesian approach is valuable when data are limited, g .
because it exploits prior information that can be extracted
from other sources, and it explicity accommodates parame o
ter variability. Strength of our prior estimate 6fis deter & 0.2
mined by sample size. Because the amounts of data
contributing to our first two priors, one based on stem
counts and one based on FIA data, were small relative to our 0 | | | : | :
censuses, alternative priors did not have large effects-on fi
nal estimates (Fig. 2). Had these prior estimates been based 0 025 05 075 1 125 15
on larger samples, the effect on the posterior would have 5 year average radial growth (mm)

been more noticeable. A third prior obtained from the litera

ture (Shifley and Smith 1982), was based on a large sample.

Because this prior was similar to our census data, it sharp

ened the posterior without affecting the mean. The beta posterior that we obtain from our conjugate beta
Caution may sometimes be needed in choosing approprbinomial prior is especially valuable for error propagation. It

ate priors. The USDA Forest Service FIA data only includerepresents a parametric function that can be inserted in

stems >12.5 cm DBH, thus excluding the small individualseq. 18 and used to produce the confidence intervals on the

that tend to suffer highest mortality rates. In the case ofgrowth—mortality function itself (Fig. 5).

Cornus florida the FIA data derive from the period before

dogwood anthracnose entered the area, so mortality rat&hich growth—mortality model?

were low (see Fig. 2, prior from FIA data). Standard meth  Estimating growth—mortality functions is frustrated by the

ods can be used to test for Bayesian robustness, i.e., senstlative rarity of dead trees. In the case where full sampling

tivity to the prior (Gelman et al. 1995). is possible (when the growth rates of live and dead trees are
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Table 2. Model comparisons.

p value of
Negative log likelihood ratio test No. of

Model likelihood vs. null model parameters AIC
Acer rubrum
Null 194.4 — 1 391.0
Method B 168.0 <0.0001 2 340.0
Method C 162.7 <0.0001 8 343.3
Cornus florida
Null 78.5 — 1 158.9
Method B 64.5 <0.0001 2 133.1
Method C 63.3 <0.0001 8 142.6

165

Fig. 7. Method B survival functions based on both survival anal Fig. 8. Deviation between smoothed data and parametric method
ysis and Bayesian estimates of annual mortality ate

A for Acer rubrumshows that method A fails to capture the
sharp increase in mortality risk seen at low growth rates.
0.6 —— Survival analysis
0.6+
-------- Bayesian estimate
20.54 3
S 205 i
S04+ £ i
- Cormus florida 30.4— <4 Smoothed data
20.37 5
= >0.37 :
2 = :
2 e} :
:é_ 0 Acer rubrum _‘é’ 0.2-
0.1 I Method A
0.1 °
0 T | B | = :
0 02505075 1 125 15 0 A

T * ! 1
0O 025 05 075 1 125 15

5 year average radial growth (mm)

5 year average radial growth (mm)

sampled in proportion to their natural abundances), method

B provides the most direct estimate of the growth—-mortalityaccurate at the lowest growth rates (Figa).6 The
relationship. Large and long-term data sets (e.g., Condit etonparametric method helps identify the problem and may
al. 199&, 1993%) are best suited for analysis by method B. suggest alternative parametric forms. Nonetheless, paramet

In the case where growth rates cannot be sampled in proporic models are needed for forest simulation models, and they

tion to their relative abundances, mortality rate might be esare more analyzable than are nonparametric models.

timated from other information and used to calculate the

growth—mortality relationship by method A. Implications for forest models
Because all three models give similar

predictions Gap-dynamic forest simulation models have traditionally
(Figs. G and ), we expect that parametric methods (A andincluded the assumption that all species exhibit the same tol

B) will perform equally well for data sets comparable in sizeerance of low growth. JABOWA— FORET models assume
with those analyzed here. In thcer rubrumexample, the that trees only experience growth-related mortality when ra
Weibull mortality function (method B) more closely matches dial growth rate falls below 0.5 mm/year (Fig. 10). Our mor

the nonparametric fit in low growth regions than does ourtality functions show mortality risk at higher growth rates.
method A (Fig. @), but for Cornus floridg the opposite is Preliminary results show that incorporation of our mortality
true (Fig. ®).

functions into the LINKAGES gap-dynamic model (Pastor
Although the nonparametric approach is least likely to beand Post 1985) substantially alters that model’'s predictions

biased by the distribution of data, it is best used as a mears successional dynamics of southern Appalachian forests
for evaluating parametric fits, rather than as a replacemen(P.H. Wyckoff and J.S. Clark, in preparation). Pacala et al.
for them. Our analysis indicates parametric models are leagi996) also found that growth—mortality functions calculated
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Fig. 9. Deviation between parametric methods A and B and
nonparametric method C mortality functions facer rubrumat
very low growth rates. Actual data points are shownCagfor

recently dead) an&X (for live trees).

Can. J. For. Res. Vol. 30, 2000

Fig. 10. Mortality function from JABOWA-FORET models com
pared with method A mortality functions fakcer rubrumand
Cornus florida In JABOWA-FORET models, all species experi

ence the same slow-growth mortality risk. Two consecutive years
h I h lity risk i
1 IHSONMEHIOOE VIRV of radial growth below 0.5 mm leads to a 37% mortality risk.
: ter five consecutive years of growth below 0.5 mm, trees ex
H After fi ive y fg h below 0.5
0.9~ : perience an 84% mortality risk. There is no risk of growth-
H X Dead related mortality at growth rates above 0.5 mm, and one good
2‘0_8— H year of growth resets the mortality risk to zero no matter how
% 0.7 O Live long a tree has been suffering from poor growth.
€Y : 1
(o) H Method A
5 : == == Method B ’
0.5 : DTS
= : v Method C ..2‘0'8_ z Acer rubrum
3047 80.7-
Qo | o Z | = == Cornus florida
09_ 0.3 : £ 0.6 :
0-27 ~ i 2.0.5- \ : Gap models: all
= .E:‘ \ - LRI p_ *
0.1 M = 0.4 = species
O N -Q ' IIIIIIIIII\IIIIIIII-_::
—OO—QOO—O0- 203 \ :
0 0.1 0.2 0.3 s \
5 year average radial growth (mm) 0.2 N
0.1 5\ ~ o
= T e e e -
by Kobe et al. (1995) affect predictions of forest succession. 0 ! '
Continued improvement in forest simulation models requires

T
0 025 05 075 1 1256 15

more data. The methods described here provide a basis for 5 year radial growth (mm)

analysis and inference.
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