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Abstract: Ecologists and foresters have long noted a link between tree growth rate and mortality, and recent work sug-
gests that interspecific differences in low growth tolerance is a key force shaping forest structure. Little information is
available, however, on the growth–mortality relationship for most species. We present three methods for estimating
growth–mortality functions from readily obtainable field data. All use annual mortality rates and the recent growth
rates of living and dead individuals. Annual mortality rates are estimated using both survival analysis and a Bayesian
approach. Growth rates are obtained from increment cores. Growth–mortality functions are fitted using two parametric
approaches and a nonparametric approach. The three methods are compared using bootstrapped confidence intervals
and likelihood ratio tests. For two example species,Acer rubrumL. and Cornus floridaL., growth–mortality functions
indicate a substantial difference in the two species’ abilities to withstand slow growth. Both survival analysis and
Bayesian estimates of mortality rates lead to similar growth–mortality functions, with the Bayesian approach providing
a means to overcome the absence of long-term census data. In fitting growth–mortality functions, the nonparametric
approach reveals that inflexibility in parametric methods can lead to errors in estimating mortality risk at low growth.
We thus suggest that nonparametric fits be used as a tool for assessing parametric models.

Résumé: Les écologistes et les forestiers ont depuis longtemps noté le lien entre le taux de croissance et la mortalité
des arbres. En outre, des travaux récents suggèrent que la structure de la forêt serait déterminée principalement par les
différences interspécifiques dans la capacité de survie à une faible croissance. Cependant, il y a peu d’information sur
la relation entre la croissance et la mortalité pour la plupart des essences. Nous présentons trois méthodes pour estimer
les fonctions de croissance et de mortalité à partir de données de terrain facilement disponibles. Toutes les méthodes
utilisent le taux annuel de mortalité et le taux de croissance récent des arbres vivants et morts. Le taux annuel de mor-
talité est estimé à la fois par l’analyse de survie et l’approche bayesienne. Le taux de croissance est obtenu par les ca-
rottes de sondage. Les fonctions de croissance et de mortalité sont ajustées à l’aide de deux méthodes paramétriques et
d’une méthode non paramétrique. Les trois méthodes sont comparées à l’aide des intervalles de confiance amorçe et
des tests du rapport de vraisemblance. À titre d’exemple, les fonctions de croissance et de mortalité montrent une dif-
férence substantielle entre l’Acer rubrumL. et le Cornus floridaL. dans leur capacité à survivre à une faible crois-
sance. L’estimation du taux de mortalité par l’analyse de survie ou l’approche bayesienne conduit à des fonctions de
croissance et de mortalité semblables. L’approche bayesienne permet cependant de pallier l’absence de données
d’inventaire à long terme. Pour l’ajustement des fonctions de croissance et de mortalité, l’approche non paramétrique
révèle que l’inflexibilité des méthodes paramétriques peut engendrer des erreurs dans l’estimation du risque de morta-
lité dû à une faible croissance. Ainsi, nous suggérons que les ajustements non paramétriques soient utilisés comme ou-
til pour évaluer les modèles paramétriques.
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Introduction

The traditional notion of “shade tolerance” classifies spe-
cies according to their abilities to grow and survive under
closed canopies (Burns and Honkala 1990). While research
has long concentrated on growth responses at low light, at-
tention has expanded in recent years to increasingly consider
the relationship between growth and mortality (Buchman

1983; Buchman et al. 1983; Fahey et al. 1998; Kobe and
Coates 1997; Kobe et al. 1995; Kobe 1996). Because growth
rate integrates the effects of many variables on vigor, it
serves as an index of mortality risk. Foresters have long rec-
ognized that mortality risk increases as growth rates decline
(Monserud 1976). Simulation models formalize the relation-
ship, incorporating a “growth–mortality function” that pre-
dicts the probability of mortality based on recent growth
history (Botkin 1993; Pacala and Hurtt 1993; Loehle and
LeBlanc 1996). Species differences in tolerance of slow
growth may contribute to community composition (Pacala
et al. 1996).

Unfortunately, the data needed to parameterize the rela-
tionship between growth and mortality and how it varies
among species are difficult to obtain. Tree mortality is not
often directly observed. Data from long-term permanent
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plots can be used both to estimate mortality rates and to fit
growth–mortality functions (Buchman et al. 1983; Hamilton
1986), but such data sets are few and often include only
large trees. Long or irregular sampling intervals often pre-
clude analysis of recent growth history (Sheil and May
1996). In the absence of long-term censuses of large popula-
tions, mortality rates can be estimated from dead trees en-
countered in the field (Kobe et al. 1995). This method,
however, requires knowledge of how long trees have been
dead, and uncertain decomposition rates can make it difficult
to estimate time since death. Existing methods for modeling
the growth–mortality relationship are more complex than
necessary. We are unaware of efforts to determine confi-
dence levels for the mortality rates obtained by such meth-
ods and how that confidence translates to error in growth–
mortality functions.

The paucity of data describing the growth–mortality rela-
tionship has led to simplistic assumptions in models that af-
fect predictions. For example, JABOWA–FORET models
assume that all species exhibit the same tolerance of low
growth, resulting in predictions much different from those of
models that assume species differences (Kobe 1996; Pacala
et al. 1996). These conflicting predictions suggest a need for
improved understanding.

In this paper, we present and test alternative methods for
estimating tree mortality rates and growth–mortality func-
tions from field data. Our analysis is presented in three
parts. First, we outline functions describing mortality and
its relationship to growth. Second, we present three alterna-
tive statistical models of the growth–mortality relationship.
Two parametric models (A and B) entail different assump-
tions concerning how populations are sampled. Our method
C is a nonparametric approach that shows where paramet-
ric models may fail because of inadequate data or model
inflexibility.

Finally, we provide methods for estimating mortality rate,
which is required by all growth–mortality models. A Bayesian
approach can be used to update mortality estimates as new
data accumulate. To assess how confidence in mortality rate
affects confidence in growth rate as a predictor of mortality
risk, we integrate the posterior density of mortality rate. We
compare the Bayesian approach with survival analysis.
To demonstrate and evaluate the approaches we use data
that include (i) growth rates from living and recently dead
Acer rubrumL. and Cornus florida L. trees, (ii ) counts of
living and dead stems, and (iii ) sequential censuses of mor-
tality from permanent plots. These data are part of a larger
study of the growth–mortality relationship for southern Ap-
palachian tree populations (P.H. Wyckoff and J.S. Clark,
in preparation).

The relationship between growth and
mortality

Growth as an indicator of risk
A growth–mortality function describes how mortality risk in-

creases as growth rate declines. We preface our description of spe-
cific models in the next section with this section outlining elements
common to all models. Letd be the event that an individual dies
in a given time interval, anda be the event that it survives. The
complementary probabilities of these two events arep(d) and

p(a) = 1 – p(d), respectively. For a data setGN containing a sample
of N trees, the likelihood thatD trees die on this interval is the
binomial:

[1a] L G p d g p d gN i
i
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i
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where the growth–mortality functionp d gi( | ;β) is the probability of
death conditioned on a risk factor (growth rate)gi and fitted pa-
rametersβ. If there is no relationship between growth and mortal-
ity (i.e., all individuals experience the same risk) then eq. 1a
simplifies to the binomial

[1b] L GN
D N D( | ) ( )θ θ θ= − −1

where the parameterθ represents the overall probability of death
p(d). The maximum likelihood estimate ofθ is

[2] $θ = D
N

The probabilities in eq. 1a can be expressed in terms of an odds
ratio
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Thus, there are three elements to model (eq. 1), including the over-
all probability of deathp(d) = θ, which is estimated as the propor-
tion of dead trees in the sample (eq. 2) and the densities of growth
rates of deadp(g|d) and living p(g|a) trees. These three elements
fully define the mortality function, because the probability of death
at a given growth ratep(d|g) and its complementp(a|g) are calcu-
lated fromθ, p(g|d), andp(g|a), i.e.:

p d g
p d g

Q
( | )

( | )1−
= θ

1 − θ

Equation 3 can be cast as Bayes’ rule to express the probability
density of deaths at growth rateg, p(d|g, θ), in terms of the overall
mortality probabilityp(d) = θ and the density of previous growth
rates for dead individuals,p(g|d):

[5] p d g
p d p g d

p g
( | , )

( ) ( | )
( )

θ =

where the probability density of a growth rateg is the weighted
average:

[6] p g p g d p g a( ) ( | ) ( ) ( | )= + −θ θ1

The relationships in eqs. 3–6 are the basis for the models that
follow.

Growth–mortality models
There are two ways to estimate the relationship between growth

and mortality. The first is a direct estimate using census data. Sur-
vival analysis is appropriate here, allowing for direct analysis of
how a risk indicator (e.g., growth rate) affects mortality. Unfortu-
nately, long-term census data are rarely available. A second way to
estimate growth–mortality functions sidesteps the long-term data
needs by extracting mortality and growth information from trees
already dead (Kobe et al. 1995). Rather than follow a population
over time, this approach focuses on past risk (represented by
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growth rate). Analysis can be complex for reasons discussed
below.

We derive and then compare three methods for analyzing
growth and mortality. Our first method is parametric (method A),
but it is not based on a binomial likelihood. We estimate growth
functionsp(g|a) and p(g|d) and mortality rateθ independently and
then calculate the growth–mortality function using the odds ratioQ
(eq. 3). The second method (method B), also parametric, uses a
single function for growth rate and mortality, and is based on a bi-
nomial likelihood (eq. 1). These methods are compared with a
third, nonparametric approach (method C).

Method A: a growth rate focus
In the absence of census data, it is still possible to estimate

a growth–mortality function, provided we know mortality rateθ.
The relationship can be obtained from fitted growth distributions
andθ. Equation 5 can be rearranged to give the growth–mortality
function:

[7a] p d g
Q

( | , )θ θ
θ + (1 − θ)/

=

and its complement:

[7b] p a g
Q

( | , )θ θ
1 − θ + θ

= −1

whereQ is a ratio of growth ratesgi of living and recently dead
trees (eq. 4). We use gamma densities for growth rates, the likeli-
hood for recently dead trees being
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where λd andρd are fitted parameters. The likelihood for growth
rates of live trees differs only in having parameter subscriptsa
rather thand and a sample size ofA rather thanD. In summary,
this first method fits growth distributions to each data set (living
and dead) separately (eq. 8) and then, together with the mortality
rate, calculates the growth–mortality function using eq. 7a.

Method B: an explicit mortality focus
Method B differs from method A in that a growth–mortality

function is estimated directly. Here we begin by fitting the growth–
mortality relationshipp(d|g). We used several parametric forms, in-
cluding logistic and exponential. A Weibull model fit best for most
species, having likelihood:

[9] L G p d g p d gN i i
i

N D

i

D

( | ) ( | ; ) [ ( | ; )]β β β= × −
=

−

=
∏∏ 1

11

= −

















× − −



= =

−

∏ ∏exp exp
g
b

g
b

i
c

i

D

i

N D
i

1 1

1 












c

Unlike the growth–mortality function used in method A (eq. 7),
eq. 9 does not explicitly show the mortality rateθ. However, this
likelihood depends implicitly onθ, becauseθ represents the frac-
tion of dead trees in the sample (eq. 2). This method provides a
likelihood for the entire sample and, thus, a basis for model evalu-
ation, but sampling considerations will often preclude straightfor-
ward application (see below).

Method C: nonparametric
Parametric models share the disadvantage that the mortality risk

estimated at one growth rate depends on estimates at all other
growth rates and, thus, on the distribution of data points (Lavine

1991). Problems are especially likely where data sets contain few
dead trees. To evaluate our parametric estimates we compare a
nonparametric model that is constrained only by the assumption
that risk changes monotonically with growth rate (Ayer et al.
1955). The nonparametric model is binomial. It differs from
method B in that it assumes a discrete sequence of binsθj that de-
creases monotonically with growth rate. Our algorithm begins with
an arbitrarily small bin width. Growth rates of all living and dead
trees are partitioned into binsj = 1, 2, ...,m, and a corresponding
mortality rate for each bin is determined as

[10] θ j
j

j

d

n
=

wheredj andnj are, respectively, the number dead and total trees in
bin j. The algorithm then checks for monotonicity. Bins for which
θj > θj–1 are expanded (increased in width), data are rebinned, and
the process is continued until a monotonic sequence is achieved
having likelihood:

[11] L N bj m j m j
d

j
n d

j

m
j j j( | , ) ( )θ θ θ= =

−

=
= −∏1 1

1

1K K

wherebj is the boundary (growth rate) between binsj – 1 andj. Al-
though the estimate of mortality risk in any one bin depends on ad-
jacent bins (to achieve monotonicity), the dependency is weak
relative to that of parametric models.

Relationship to a previous method
A previous method for estimating the growth–mortality function

(Kobe et al. 1995) uses a likelihood function that can be written as

[12] L G p d g p g dN i i
i

D

( | ) ( | ; ) ( | ; )β β β=
=

∏ 1 2
1

× −
=
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The method involves maximizing the likelihood assuming a para-
metric (e.g., exponential) growth–mortality functionp(d|g) with
fitted parameter setβ1 and the growth rate densities (e.g., gamma
densities) of living and dead trees (p(gi|a) andp(gi|d)) with param-
eter setβ2. Equation 12 embodies conflicting assumptions regard-
ing how mortality relates to growth rate. The form of the growth–
mortality functionp(d|g) is already defined by the choice of func-
tional forms for growthp(g|a) and p(g|d) (eqs. 3–5). Imposing a
new model, in the form ofp(d|g), amounts to adopting a new (and
conflicting) assumption concerning how mortality varies with
growth. Our methods A and B demonstrate how one can adopt ei-
ther a growth-rate (method A) or a direct mortality (method B)
function, each of which is internally consistent and less complex
than eq. 12.

Mortality rate
Our three methods depend implicitly or explicitly on mortality

rateθ. For a single sample, eq. 2 represents the maximum likeli-
hood (ML) estimate ofθ, but multiple censuses or large sample
sizes are needed to produce acceptable confidence intervals. In
practice, multiple censuses are rarely available. One alternative to
direct observation involves counts of living and recently dead
stems along transects (Kobe et al. 1995). To estimateθ from such
data, one must determine when dead trees died. Kobe et al. (1995)
judge trees to be recently dead based on twig suppleness and leaf
retention. This method has the advantage of providing rapid estimates.
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We found criteria for judging time since death difficult to apply
and sought other means for estimatingθ. The two methods we out-
line here use different data types and determine parameter confi-
dence based on different criteria. Our Bayesian analysis is applied
to two data types (stem counts and census data) to estimateθ and
to determine how our belief inθ affects estimated mortality func-
tions. The survival analysis that follows is an adaptation of stan-
dard methodology to tree census data, where census intervals can
span multiple years or be of uneven duration.

A Bayesian estimator for mortality rate
Our Bayesian approach treats mortality riskθ as a random vari-

able described by a probability density. The “spread” of that den-
sity reflects our knowledge ofθ, which, in practice, depends
primarily on sample size. We begin with a prior estimate of this
density, with broad spread reflecting limited insight. Data refine
our understanding, which is manifest in a posterior density concen-
trated about our best estimate. The analysis entails specifying a
prior density forθ, which is subsequently “updated” with data. We
assume a prior beta density for the parameterθ:

[13] f
B N N D

N N D
( )

( )
( , )

θ θ θ= −
−

− − −0 0 01 1

0 0 0

1

whereB() is the beta function, andD0 andN0 are prior estimates of
dead and total trees, respectively. The mean for this prior is eq. 2:
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with variance
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Additional data are used to sequentially update our density ofθ.
Suppose a data set yields numbers of dead and total treesD1 and
N1. The posterior density ofθ is also a beta density:
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(e.g., O’Hagan 1994). By sequential application the posterior den-
sity following m censuses is
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This posterior can be integrated to obtain Bayesian confidence in-
tervals on the growth–mortality function itself:

[18] p d g D p d g f Dm m( | , ) ( | , ) ( | )= ∫
0

1

θ θ θd

where the mortality function is eq. 7a (method A) or eq. 9
(method B).

Survival analysis from sequential censuses
Survival analysis can be applied where long-term census data

are available from permanent plots. Consider an initial sample ofN
trees at timet0 that will be censused at successive intervalsj = 1,
2, ...,m. The duration of census intervalj, tj, is the elapsed time be-
tween censusj – 1 andj. Dj individuals die during intervalj, and
N – Dii

j

=∑ 1
remain to be tallied at the next census. Letf(t) be the

probability density for mortality with corresponding distribution
function:

F t t f t tj j

t

t

j

j

( , ) ( )− =
−

∫1

1

d

F(tj–1, tj) is the probability of death during census intervalj. Each
individual has one ofm + 1 possible fates: it can die during one of
the m census intervals, or it can survive to the end of the study.
The likelihood can be written in terms of census intervals:

[19] L N F t t F t
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j j
D
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N D
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The product series incorporates the contributions of individuals
that die over the successive censuses, and the survivor function in-
corporates those that remain alive at the last census.

Now assume a constant mortality rateθ that is continuous in the
sense that mortality is not limited to a specific time during the cen-

sus interval. The ML estimate ofθ satisfies
∂
∂θ

ln L = 0, where

[20] ln ln( )L D e e N D tj
j

m
t t
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is obtained by solving for the distribution function for constant
mortality riskθ. For a single census interval of durationt we obtain
a closed form solution for risk:

$ lnθ = −















−

t
D
N

1
1

There is no closed form solution for multiple censuses, but eq. 19
is readily solved numerically.

Combining mortality rate estimates with growth–mortality
functions

Because recently dead trees are often rare, they are infrequent in
stem counts and census data. Impossibly large sample sizes may be
needed to obtain sufficient dead trees for confident growth–mortal-
ity fits. Whereas a modest number of dead trees may be sufficient
to estimate mortality rate, large numbers are needed to estimate
growth–mortality functions. For example, a mortality rate ofθ =
0.01/year, would require growth rates for 2000 live trees to obtain
20 from dead trees. Although 20 dead trees may yield acceptable
estimates of mortality rate, this sample size may be too small for
estimating the distribution of growth rates of recently dead trees
(e.g., eq. 8). If we actively search for dead trees, then we lack the
proportions of living and dead trees that determine mortality rate.
Our sampling scheme (see Field data below) involves active search
for dead trees, which provides growth rates disproportionate to
their representation in the field. To fit binomial models to such
data, we describe a bootstrap procedure for weighting effects of
growth data according to the estimate of their contribution to the
likelihood as implied by eq. 2 (see Estimation below).
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Study area

Data were obtained from the Coweeta Hydrologic Laboratory in
the southern Appalachian Mountains (35°03′N, 83°27′W). Mean
annual temperature is approximately 13°C and average annual
rainfall is 220 cm (Swift et al. 1988). Temperature decreases and
precipitation increases with increasing elevation. Soils are primar-
ily Ultisols and Inceptisols (Velbel 1988). Dominant overstory veg-
etation includes Acer rubrum, Quercus prinus L., Quercus
rubra L., Carya glabra (Mill.) Sweet, and Liriodendron tulipi-
fera L. Important understory species includeCornus florida, Acer
pennsylvanicumL., and Rhododendron maximumL.

Methods

Field data
Data derive from two study areas at elevations of 800 and

1100 m. Growth rates were obtained from increment cores of liv-
ing and recently deadAcer rubrumandCornus floridatrees. “Re-
cently dead” trees were defined as standing individuals without
leaves but still identifiable to species. Only dead trees with intact
crowns were cored to insure that death did not result from cata-
strophic (and presumably growth-independent) causes.

To estimate recent growth history, we cored all recently dead
trees >4 cm diameter at breast height (DBH) encountered along
transects at each of the two study areas. Within approximately
10 m of each dead tree, we cored and measured diameters of
conspecific live individuals of similar size. Growth increments
were measured with the WINDENDRO (Régent Instruments Inc.)
measuring system. We report radial growth rates averaged over the
five most recent growth years. Long-term growth histories are con-
sidered in a companion paper (P.H. Wyckoff and J.S. Clark, in
preparation).

To estimate mortality rates, we used three censuses from five
permanent mapped plots. Plots were 40 m × 20 m when estab-
lished in 1991. All trees over 2 m tall were measured in 1991, and
survival was checked and the survivors remeasured in 1993. Trees
were censused again in 1995. Also in 1995, the plots were ex-
panded to 60 m × 60 m, and arecensus of the expanded plots was
done in 1996.

For our Bayesian method, we used three types of prior mortality
estimates. Our first prior is based on a stem count method similar
to that of Kobe et al. (1995), whereN0 is the total number of indi-
viduals andD0 is an estimate of the number that die per year. Stem
counts were conducted in 5 m radius plots located at 20 m inter-
vals along transects used for increment core sampling. Based on
the characteristics of dead trees in our census plots, which died
during a known interval, we estimated that trees remained identifi-
able to species for an average of 5 years.D0 is therefore the total
number of observed dead stems divided by five. Our second prior
was taken from USDA Forest Service Forest Inventory and Analy-
sis (FIA) plots located in the seven North Carolina counties nearest
our field site (http://www.srsfia.usfs.msstate.edu/scripts/ew.htm).
We used only FIA plots in stands of similar age and elevation as
our study sites. Our third prior is taken from mortality rates of
Acer rubrumfrom Missouri (Shifley and Smith 1982).

Estimation
To examine how estimates changed with accumulation of data,

we estimated mortality rates incrementally, treating successive cen-
suses as “new” data sets. Bayesian confidence intervals for mortal-
ity estimates are quantiles from the posterior density (eq. 17).
Confidence intervals for survival analysis were determined by a
likelihood profile (Cox and Oakes 1984).

Parameter estimates for methods A and B were determined by a
nonparametric bootstrap (Efron and Tibshirani 1993). Parameter

estimates are based on 500 resamples. For method A, we first ob-
tained ML estimates for growth densities (eq. 8) using resamples
of the growth data weighted by the proportion of dead trees im-
plied by our mortality estimates. Each resample included (i) a sam-
ple size of dead trees equal to the number of dead trees in the data
set, and (ii ) a sample of size of living trees of size

[21] A D′ = −1 $

$

θ
θ

whereD is the number of dead trees for which growth rates have
been obtained, and$θ is the posterior mortality estimate from
eq. 17. For each resample, we calculated the growth–mortality
function, substituting forQ in eq. 7, and we examined the effect of
error in θ on the growth–mortality function by numerically inte-
grating eq. 18. Thus, we accommodate both sampling error in
growth and confidence in the estimated mortality rate.

For method B, we used the resampling procedure to weight the
contributions of living and dead trees. ML parameter estimates
were obtained for each resample using eq. 9. The ML for the
model is taken as the mean ML over the bootstraped sample, be-
cause the underrepresentation of live growth rates means that there
is no likelihood for a raw data set. For method C, the algorithm de-
scribed by eqs. 10 and 11 was implemented on a data set having
bins weighted by the proportions of living and dead trees (eq. 21).
The fits of methods B and C were compared with one another and
to the null model (eq. 1b) based on likelihoods taken over the same
weighted sample size. The likelihoods estimated by this weighting
procedure are an approximation to the likelihood that would be ob-
tained had we sampled growth rates for all live trees.

Comparisons of the binomial models (B and C) are based on
Akaike’s information criterion, AIC = 2(–lnL + number of param-
eters), whereL is the likelihood of the model (eq. 9 or 11). For
method B, there are two fitted parameters,b andc. For method C,
the number of fitted parameters is 2m, wherem is the number of
bins. The fitted parameters consist ofθj and a boundary for each of
the m bins, bj.

Binomial models (methods B and C) were tested against the null
hypothesis of no growth rate effect using the likelihoodL(GN|θ) ∝
θ θD N D( )1 − − and a likelihood ratio test. Method B has one degree
of freedom (two fitted Weibull parameters minus one parameter for
the null likelihood,θ). Method C has 2m – 1 degrees of freedom
(two for each bin minus one for the null model).

Results

We use data fromAcer rubrum and Cornus florida to
demonstrate our methods, because they yield contrasting
mortality functions. At our study site,Cornus florida con-
tracts dogwood anthracnose disease, which accounts for the
poor tolerance of low growth we see in this classically “tol-
erant” species (Burns and Honkala 1990). Growth rates were
measured for 107 living and 41 recently deadAcer rubrum
trees and for 26 living and 28 recently deadCornus florida
trees.

Estimating annual mortality (u)
Because all three methods for relating growth and mortal-

ity require an estimate of mortality rate, we begin with our
estimation ofθ. To determine whether Bayesian confidence
intervals are strongly influenced by prior estimates, we used
three priors from sources other investigators might use. Our
first prior is based on stem counts. ForAcer rubrum, our
initial stem counts yieldedD0 = 4.6 dead (23 deaths in 5
years for an average of 4.6 dead trees/year) from a total of
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N0 = 142 trees. TheAcer rubrum prior has a mean of
D0/N0 = 0.032 and broad spread (varθ = 0.015) (Fig. 1). Se-
quential application of our Bayesian method (eq. 17) using
permanent plot data progressively reduces the estimated
mean mortality rate toθ = 0.023 (D0 = 17.6 andN0 = 751)
and reduces the confidence interval (Fig. 1).Cornus florida
suffers higher mortality thanAcer rubrum. Initial stem
counts yieldedD0 = 10 andN0 = 68 for a prior Bayesian es-
timate ofθ = 0.15. The posterior Bayesian estimate of mor-
tality is θ = 0.17 (D0 = 36.5 andN0 = 217).

Our second prior was taken from Forest Service FIA data.
In 1984, FIA plots near our field site, at similar elevations,
and in forest stands of similar age, contained 68Acer
rubrum trees 12.7–20.3 cm in diameter. In 1990, 67 of the
68 individuals remained alive, for an average annual mortal-
ity of 0.17 trees (D0 = 0.17 andN0 = 68) (Fig. 2). Using our
census data, the posterior estimate of mortality rate wasθ =
0.019, lower than that obtained using the prior based on
stem counts. The FIA-based prior forCornus florida in-
cluded 16 trees in 1984, fifteen of which survived to 1990

(D0 = 0.17 andN0 = 16). Addition of census data yielded a
posterior mean mortality rate ofθ = 0.16, slightly less than
obtained using a prior based on stem counts (Fig. 2). Our
third prior for Acer rubrum D0 = 4.7 andN0 = 224 comes
from Shifley and Smith (1982). Addition of our census data
does not change the mean mortality estimate (posteriorθ =
0.021).

Survival analysis of permanent plot data showed that most
Acer rubrum mortality was confined to the initial cohort.
The initial high estimate ofθ = 0.039 declined with the addi-
tion of the second and third cohorts to a final estimate ofθ =
0.013 (Fig. 1). The estimated rate forCornus florida is θ =
0.16 (Fig. 1).

Relating growth and mortality
Fitted growth rate densities from method A (eq. 8) show a

distinction between parameter estimates (λ and ρ) for live
and dead trees (Table 1), but parameter estimates are corre-
lated (Fig. 3). Recently dead trees tend to have lower growth
rates in the years just prior to death (Fig. 4). The mortality
functions derived from these fits (eq. 7a) show the risk of
death decreasing with increasing growth for both species;
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Fig. 1. Survival analysis and Bayesian estimates of the annual
mortality rateθ for both Acer rubrumand Cornus floridachange
with the iterative addition of more field data. Note the tightening
of confidence intervals (thin lines) with each iteration. The
Bayesian prior is based on stem count data which are not in-
cluded in the survival analysis.

Fig. 2. The effects of three alternate priors on the posterior
Bayesian estimate of mortality rate forAcer rubrumand Cornus
florida.
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this decrease is steep forCornus florida (Fig. 5). Boot-
strapped 95% confidence intervals show significant differ-
ences between the two species’ abilities to survive radial
growth rates below 0.7 mm/year.

The Weibull growth–mortality function (method B; see
Table 1) and the nonparametric mortality function (method
C) predict relationships similar to those obtained by method
A (Fig. 6). For both Acer rubrum and Cornus florida,
likelihood ratio tests of methods B and C versus the null
model are highly significant (Table 2). Similar AIC values
(Table 2) indicate the two methods fit the data equally well.
Because Bayesian and survival analysis estimates of annual
mortality for Acer rubrumand Cornus florida were nearly
identical (Fig. 1), there is little difference in the growth–
mortality functions predicted using either approach (Fig. 7).

Where do parametric models fail?
As an aid to visualizing the level of agreement between

models and data, we used a kernel smoother to estimate
nonparametric densities forp(g|d) and p(g|a) (Silverman
1986; function “density” in SPLUS). The joint density
p(g,d) is the productp(g|d) p(d). The nonparametric condi-
tional densities are then

p d g
p g d
p g

( | )
( , )
( )

=

The resulting smoothed data are compared with the Weibull
function (method B) in Fig. 8. Unlike our method C, the
smoothed kernel need not be monotonic.

The nonparametric method C and the smoothed data indi-
cate that the parametric models (A and B) fail to capture the

steepness of the increase in mortality risk that occurs at low
growth rates (Figs. 6 and 8). Figure 9 shows this low-growth
region for Acer rubrum. The parametric models are inflexi-
ble and do not reflect the abrupt increase in risk below
0.1 mm annual radial growth.

Discussion

A growth–mortality function is an empirical summary of
the complex relationship involving environmental stress,
growth, and mortality risk. Slow growth indicates low vigor
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Parameter Value 95% CI

Acer rubrum

Gamma model (method A)

Living trees λ1 1.95 1.62–2.34

ρ1 1.91 1.61–2.29

Dead trees λ d 1.74 1.25–2.68

ρd 4.42 2.40–8.55

Weibull model (method B)

b 0.018

c 0.39

Cornus florida

Gamma model (method A)

Living trees λ1 4.44 2.80–7.74

ρ1 6.51 3.92–11.79

Dead trees λ d 3.28 2.17–5.81

ρd 8.37 4.50–18.00

Weibull model (method B)

b 0.24

c 0.87

Table 1. Parameter values for gamma (method A) and Weibull
models (method B).

Fig. 3. Gamma parametersλ andρ (eq. 8) from each of 500
bootstraps for the growth rate distributions of (a) living and re-
cently deadAcer rubrumshow differences in parameterρ. For
(b) living and recently deadCornus florida, parameter values
show broad overlap.
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and risk from a variety of agents. The value of these empiri-
cal relationships is evident from a long tradition of their
use in simulation models (Botkin et al. 1972; Shugart and
West 1977; Huston and Smith 1987) and from the more
direct evidence they provide concerning successional status
(Kobe et al. 1995; Pacala et al. 1996). Because of their im-
plications for the overall dynamics of forest communities,
the availability of confident estimates extends insight into
how life history affects succession and diversity. The diffi-
culty obtaining such estimates is reflected in the simplistic
(e.g., step) functions traditionally used in such models

(Botkin 1993) and development of creative new field meth-
ods (Kobe et al. 1995). We contribute modeling approaches
that permit estimates under the sampling constraints that are
typical for such data. Our three methods for analyzing the
relationship between growth and mortality derive from dif-
ferent statistical models, but they give similar results
(Fig. 6). Each method has its advantages, and there are im-
portant differences. Before discussing the relative merits of
our three approaches, we evaluate our ability to estimate
mortality rate,θ, because each of our three methods depend
on it.
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Fig. 4. Growth rate distributions (histograms) of (a) recently dead and (b) living Acer rubrumand (c) recently dead and (d) living
Cornus floridawith their respective gamma fits (solid lines). Note that living trees grew faster than recently dead trees for both
species.
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How well can we estimate mortality rate?
Although there are many published studies of tree mortal-

ity, model comparison is rare, and statistical inference tends
to be neglected (Clark et al. 1999). For the case where mor-
tality can occur at any time during a census interval (it is not
discrete), survival analysis (based on eq. 20) offers a less bi-
ased estimate ofθ than does the traditional method of using
the fraction of trees that die divided by the duration of the
interval. Survival analysis with our census data provide con-
fident estimates (Fig. 1).

The Bayesian approach is valuable when data are limited,
because it exploits prior information that can be extracted
from other sources, and it explicitly accommodates parame-
ter variability. Strength of our prior estimate ofθ is deter-
mined by sample size. Because the amounts of data
contributing to our first two priors, one based on stem
counts and one based on FIA data, were small relative to our
censuses, alternative priors did not have large effects on fi-
nal estimates (Fig. 2). Had these prior estimates been based
on larger samples, the effect on the posterior would have
been more noticeable. A third prior obtained from the litera-
ture (Shifley and Smith 1982), was based on a large sample.
Because this prior was similar to our census data, it sharp-
ened the posterior without affecting the mean.

Caution may sometimes be needed in choosing appropri-
ate priors. The USDA Forest Service FIA data only include
stems >12.5 cm DBH, thus excluding the small individuals
that tend to suffer highest mortality rates. In the case of
Cornus florida, the FIA data derive from the period before
dogwood anthracnose entered the area, so mortality rates
were low (see Fig. 2, prior from FIA data). Standard meth-
ods can be used to test for Bayesian robustness, i.e., sensi-
tivity to the prior (Gelman et al. 1995).

The beta posterior that we obtain from our conjugate beta
binomial prior is especially valuable for error propagation. It
represents a parametric function that can be inserted in
eq. 18 and used to produce the confidence intervals on the
growth–mortality function itself (Fig. 5).

Which growth–mortality model?
Estimating growth–mortality functions is frustrated by the

relative rarity of dead trees. In the case where full sampling
is possible (when the growth rates of live and dead trees are
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Fig. 5. Fitted mortality functions forAcer rubrumand Cornus
florida based on method A. Broken lines are bootstrapped 95%
confidence intervals.

Fig. 6. Mortality functions based on parametric methods A and
B and the nonparametric method C for (a) Acer rubrumand
(b) Cornus florida. Broken lines are bootstrapped 95% confi-
dence intervals for method A.
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sampled in proportion to their natural abundances), method
B provides the most direct estimate of the growth–mortality
relationship. Large and long-term data sets (e.g., Condit et
al. 1993a, 1993b) are best suited for analysis by method B.
In the case where growth rates cannot be sampled in propor-
tion to their relative abundances, mortality rate might be es-
timated from other information and used to calculate the
growth–mortality relationship by method A.

Because all three models give similar predictions
(Figs. 6a and 6b), we expect that parametric methods (A and
B) will perform equally well for data sets comparable in size
with those analyzed here. In theAcer rubrumexample, the
Weibull mortality function (method B) more closely matches
the nonparametric fit in low growth regions than does our
method A (Fig. 6a), but for Cornus florida, the opposite is
true (Fig. 6b).

Although the nonparametric approach is least likely to be
biased by the distribution of data, it is best used as a means
for evaluating parametric fits, rather than as a replacement
for them. Our analysis indicates parametric models are least

accurate at the lowest growth rates (Fig. 6a). The
nonparametric method helps identify the problem and may
suggest alternative parametric forms. Nonetheless, paramet-
ric models are needed for forest simulation models, and they
are more analyzable than are nonparametric models.

Implications for forest models
Gap-dynamic forest simulation models have traditionally

included the assumption that all species exhibit the same tol-
erance of low growth. JABOWA– FORET models assume
that trees only experience growth-related mortality when ra-
dial growth rate falls below 0.5 mm/year (Fig. 10). Our mor-
tality functions show mortality risk at higher growth rates.
Preliminary results show that incorporation of our mortality
functions into the LINKAGES gap-dynamic model (Pastor
and Post 1985) substantially alters that model’s predictions
of successional dynamics of southern Appalachian forests
(P.H. Wyckoff and J.S. Clark, in preparation). Pacala et al.
(1996) also found that growth–mortality functions calculated
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Model
Negative log
likelihood

p value of
likelihood ratio test
vs. null model

No. of
parameters AIC

Acer rubrum
Null 194.4 — 1 391.0
Method B 168.0 <0.0001 2 340.0
Method C 162.7 <0.0001 8 343.3
Cornus florida
Null 78.5 — 1 158.9
Method B 64.5 <0.0001 2 133.1
Method C 63.3 <0.0001 8 142.6

Table 2. Model comparisons.

Fig. 7. Method B survival functions based on both survival anal-
ysis and Bayesian estimates of annual mortality rateθ.

Fig. 8. Deviation between smoothed data and parametric method
A for Acer rubrumshows that method A fails to capture the
sharp increase in mortality risk seen at low growth rates.
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by Kobe et al. (1995) affect predictions of forest succession.
Continued improvement in forest simulation models requires
more data. The methods described here provide a basis for
analysis and inference.

Conclusions

Our three approaches provide tools for estimating the
growth–mortality relationship for tree species in the absence
of large, long-term data sets. Our Bayesian approach accom-
modates prior mortality information and yields a parametric
posterior. We propagate error in estimates of mortality rate
and assess the effect on the confidence in the growth–mor-
tality function. Our nonparametric method C provides a tool
to assess the performance of parametric approaches in cap-
turing the vital low growth – high mortality regions of the
growth–mortality curve. Accurate simulation of forest dy-
namics depends on the field estimates of mortality risk that
these methods can provide.
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