The Fallacy of Averages

A. H. Welsh; A. Townsend Peterson; Stuart A. Altmann
The American Naturalist, Vol. 132, No. 2 (Aug., 1988), 277-288.

Stable URL:
http://links jstor.org/sici?sici=0003-0147%28198808%29132%3A2%3C277%3ATFOA%3E2.0.CO%3B2-Z

The American Naturalist is currently published by The University of Chicago Press.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/ucpress.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Thu Aug 26 14:58:07 2004



Vol. 132, No. 2 The American Naturalist August 1988

THE FALLACY OF AVERAGES

A. H. WELsH,* A. TOWNSEND PETERSON,T AND STUART A. ALTMANNT

Department of Statistics, University of Chicago, Chicago, Illinois 60637; tCommittee on
Evolutionary Biology, University of Chicago, Chicago, Illinois 60637

Submitted February 9, 1987; Accepted October 21, 1987

Many questions about organisms require estimation of average values of traits
that, for various practical reasons, are difficult to measure directly but that can be
decomposed into two or more multiplicative components, each of which can be
measured. (Such characteristics are hereafter referred to as product traits.) For
instance, although an animal’s daily intake of food energy is difficult to measure
directly, it can be estimated indirectly using estimates of time spent feeding, food
intake per unit of foraging time, and energy content per unit of food mass.

THE PROBLEM

Many biologists (including two of the authors of this paper) have estimated the
population means of product traits by measuring each of the component variables
in separate subsamples of the population and then multiplying the component
means to produce the desired mean of the product traits. For example, Janson
(1985, table 1) and Stacey (1986, eq. 1) both estimated the mean daily energy
intake by primates from a given food as the product of the mean daily intake of
that food, the mean weight of an item of that food, and the food’s mean energy
content, in joules per gram. This can be represented by p(J/day) = p(J/g)n
(g/item)p(items/day). (Here and in what follows, w(x) indicates the mean of x.)
Further examples of this procedure have been presented by Shea and Ricklefs
(1985, table 1), Shank (1986, p. 645), Ekman and Askenmo (1986, table 1) and can,
indeed, be found in nearly every volume of many biological journals.

A general pattern appears in these calculations. For an individual product trait
with multiplicative component variables X and Y, the population mean of their
product, p(XY), is commonly assumed to equal w(X)u(Y). Alas, this widespread
assumption is not generally correct, although it is if X and Y are uncorrelated. The
exact relationship between w(XY) and p(X)w(Y) is given below. The corre-
sponding assumption is made about division of means, namely, that u(X/Y) equals
w(X)/u(Y), and about other functions of means.
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The assumption that w(XY) = w(X)w(Y) is a special case of what Wag-
ner referred to as the fallacy of averages: ‘‘Given an arbitrary nonlinear function
f(x1, . . ., x,) of random variables x;, . . ., x, it is usually erroneous to assume
Elf(xi, . .., x,)] = fl[E(xy), . .., E(x,)],”” where E indicates an expected value
(1969, p. 658).

The fallacy of averages is perhaps the most widespread statistical error in
biology. Templeton and Lawlor (1981) gave several examples of this fallacy in the
literature on optimization models in ecology, though they did not indicate any of
the situations in which the expected value of a function is the same as the function
of the expected value; and in only one case, the mean of a reciprocal versus the
reciprocal of a mean, did they show how the two are related. Although the
particular examples selected by Templeton and Lawlor may be inappropriate
(Gilliam et al. 1982; Turelli et al. 1982), the principle is still valid.

A comparable problem arises repeatedly in the study of allometric relationships
whenever two or more allometric regression equations are multiplied together or
divided by one another, because the estimates of the regression parameters are
just weighted averages. For example, in quadrupedal mammals, regression of
distance moved per day, D, against body mass, M (in kg), yields D = 0.875 M°-%
km/day (Garland 1983), and regression of the increment in energy expended per
kilometer walked, E, against body mass yields E = 10700 A°%* J/km (Taylor et
al. 1982); and on this basis, Altmann (1987) calculated average energy expended
on locomotion per day as ED, that is, at 10700 M°-%34 0.875 M°22. This calculation
overlooks possible covariance between distance traveled per day and energy
expended per unit of distance.

Similar examples can be found in recent surveys of allometric relationships
(Peters 1983; Calder 1984). At the transition from trot to gallop, mammalian stride
frequency regressed on body mass yields 11.8 M~ %1% strides/s (Heglund et al.
1974), and the regression of stride length on body mass yields 0.35 M°38 m/stride;
thus, Calder (1984) estimated the velocity as the product 11.8 M %14 0.35M%-38
m/s. This estimate ignores the possible covariance between stride length and
stride frequency. As a further example, the regression of the energy content of a
full mammalian gut on body mass yields 757 M'%? kJ, and the regression of
metabolic demand on body mass yields 504 M°7¢ kJ/day; therefore, gut turnover
time was calculated from the ratio 757 M'2/504 M°-7® days/gutfull (Calder 1984).
Again, possible covariance between the component variables is ignored.

In order to demonstrate the potential magnitude of these errors, we used data
from Donaldson (1919, table 1) to calculate three quotient traits describing the
mass of rat skeletons, K, as a percentage of body mass, M. The mean mass of
skeleton (i.e., w(K/M)) as a percentage of body mass is 6.51%; however, W(K) =
12.99 and (M) = 222.74; therefore, w(M)/w(K) = 5.83%. Thus, calculating this
trait as a quotient of means yields an error of 10.5%. Similar calculations for axial-
skeleton mass as a percentage of body mass and appendicular-skeleton mass as a
percentage of body mass yield errors of 10.2% and 10.8%, respectively. Using
information from papers that correctly calculate product traits but present means
of component variables as well, we found that ignoring covariances among com-
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ponent variables can introduce errors ranging from near zero (as in estimating sex
ratios of hamsters; Labov et al. 1986) to well over 50% (as in estimating aggrega-
tion levels in hummingbirds; Tamm 1985).

For regressions, two examples serve to illustrate the potential magnitude of
errors caused by combining regression equations without considering covar-
iances. We used data from Greenewalt (1962, table 1, Coleoptera) to estimate the
regression of the ratio of wing-beat frequency (s ') to wing length on body mass
(mg) in 28 beetles of 12 species. All data were transformed using natural loga-
rithms before analysis. The regression of wing-beat frequency, B, on body mass,
M, is B = 4.942 M~%977; the regression of wing length, L, on body mass is L =
1.054 M°-321 The ratio of these equations is then B/L = 4.942 M ~°°77/1.054 M°-32!
= 4.690 M %38 However, the actual regression of individual values of B/L on M
is B/L = 3.889 M ~°3%, Thus, although the exponent is correct, the coefficient of
M estimated by the ratio of the regressions is off by 17.1%.

In a second example, we used data from Greenewalt (1962, table 15, Corvidae)
to estimate the regression of the ratio of ‘‘large’’ pectoral muscle (= M. pec-
toralis) mass (g) to wing length (cm) on body mass (g) in nine corvids of nine
species. All data were transformed using natural logarithms before analysis. The
regression of pectoral muscle mass, P, on body mass M is P = —2.576 M"%; the
regression of wing length L on body mass is L = 0.885 M%4%, The ratio of these
equations is P/L = —2.576 M"9%%/0.885 M%** = —2.910 M*®2. However, the
actual regression of individual values of P/L on M is P/L = —3.461 M%%°2, The
error in the estimate of the coefficient of M is 15.9%.

Our susceptibility to the fallacy of averages stems in part from dimensional
analysis, in which we treat our units of measurement algebraically and then ignore
the fact that we are using means. So, for example, in a population of birds, the
mean lifetime reproductive success (number of chicks fledged) would equal the
mean number of chicks fledged per clutch times the mean number of clutches per
lifetime if and only if these two characteristics were uncorrelated—which seems
unlikely—notwithstanding the fact that chicks/lifetime equals (chicks/clutch)-
(clutches/lifetime) for an individual bird. In using means, naive dimensional analy-
sis is likely to be misleading.

Yet another problem arises for traits having additive or subtractive components
(e.g., body mass, life span, skeletal elements). Here, although the mean of an
additive trait does equal the sum of the component means, that is, p(X + Y) =
n(X) + p(Y), the variance of the trait is not estimated by the sum or average of
the component variances (Lande 1977; Soulé 1982). For example, although the
mean age of human females at menopause equals their mean age at menarche plus
the mean duration of the reproductive phase between menarche and menopause,
the variance of the age at menopause does not equal the variance of age at
menarche plus the variance of the length of the reproductive phase if, say, females
who reach menarche late tend to reach menopause early. Although Lande (1977)
pointed this out with regard to a biological problem, chiropteran wing measure-
ments (Bader and Hall 1960), some biologists continue to base conclusions on the
(unstated) assumption of additive variances.
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THE SOLUTION

Products

Suppose initially that an individual product trait can be decomposed into two
multiplicative component variables X and Y. Then, provided the moments are
finite, it follows from the definition of covariance that

XY) = WX)uY) + cov(X,Y),

where cov(X, Y) denotes the covariance of X and Y. Thus, w(XY) = w(X)p(Y) if
and only if X and Y are uncorrelated; thus, if X and Y are independent, p(XY) =
r(X)(Y). (Recall that if X and Y are independent, they are uncorrelated, but that
the converse need not be true.)

Now, suppose that the component variables can be measured on the same
individual; if measurements are made on n individuals, the data can then be
written as (X;,Y), (X2Y1), . . ., (X,,Y,). It is usual to assume that each pair of
measurements is not independent of the other pairs. Consider the estimators

n

R )
= 7=t ‘

Jj=1

Now, jiyyis consistent for w(XY) and p(ixy) = p(XY), but ix[iyis consistent for
p(X)p(Y) and

mxfiy) = p(X)u(Y) + cov(X, Y)/n = W(XY) — cov(X, Y)(n — 1)/n;

the product of the component means thus estimates the mean of the product trait if
and only if X and Y are uncorrelated. Goodman (1960) derived the exact sampling
variances of iyy and [ixfiy. In particular, if X and Y are independent,

o(fixy)* = [WX)*e(Y)? + WY)0(X)* + o(X)*o(Y)*]/n
and
o(fixfiy)® = [MX)?a(Y)? + WYV o(X)?* + o(X)’c(Y)*/n]/n,

where o(X)? denotes the variance of X. If X and Y are independent with finite
variances and at least one of w(X), pn(Y) is nonzero, it follows from the central
limit theorem that approximately, for large n,

ixy ~ N{(XY), [W(X)?e(Y)* + W(Y)’a(X)* + o(X)’0(Y)*)/n}
and
Pxfiy ~ N{p(XY), [MX)?0(Y)? + p(Y)’0(X)*)/n},

where ‘‘~ N(a,b%)’’ means ‘‘is normally distributed with mean a and variance b2.”
If X and Y are independent, fiLx{iy has a smaller variance than [iLyy and hence is a
more efficient estimator. However, if X and Y have nonzero covariance, jixfy is
biased and [iyxy is the appropriate estimator.

Analogous results can be derived for products decomposed into several compo-
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nent variables. For example, if there are three component variables X, Y, and Z,
RXYZ) = p(XO(Y)WZ) + wZ)cov(X,Y) + p(Y)cov(X,2)
+ “‘(X)COV(Y’Z) + Clll(X’ Y’Z) ]

where C111(X,Y,Z) = p{[X — p(X)IY — W(V)IZ — n(Z)]}. Again, independence
ensures that the product of the means equals the mean of the products. The
estimators can be analyzed as before, using, for example, results from Goodman
(1962), and the same qualitative conclusions obtained.

Ratios

The results for multiplicative components can be used to derive results for the
ratio of two components. Suppose that ¥ > 0 and that both o(¥)? and o(X/Y)? are
finite. Then,

pX) = pXY/Y) = p(Y)u(X/Y) + cov(X/Y,Y),
so that
p(X/’Y) = pu(X)/u(Y) — cov(X/Y,Y)/u(Y) .

Thus, w(X/Y) = p(X)/p(Y) if and only if Y and X/Y are uncorrelated, which is
extremely unlikely because of mathematical constraints (Atchley et al. 1976).
Since it is usually difficult to think about the dependence between Y and X/Y, the
situation is complicated. However, provided that o(1/Y)? is finite,

w(X/Y) = pX)p/Y) + cov(X,1/Y),

so that p(X/Y) = wW(X)(1/Y) if and only if X and 1/Y are uncorrelated.
If the component variables can be measured on the same individual, such that
the data consist of » pairs of observations, (X;,Y7), (X5,Y2), . . ., (X, Y,), consider

Pxry = n~ IZ(XJ'/Y,')
j=i

by = (=D 1)

Jj=1 Jj=1
and
i (50) e 5).
j=1 j=1

The last estimator is of interest only if X/Y and Y are independent; therefore, it is
not discussed further. Now [iy,y is consistent for w(X/Y) and p(iyy) = w(X/Y),
but ixil/y is consistent for p(X)w(1/Y) and

pX)(/Y) + cov(X,1/Y)/n
w(X/Y) — cov(X,1/Y)(n — 1)/n.
Therefore, fixfi,y does not estimate w(X/Y) if X and 1/Y are correlated. By the

]

m(fixfiy/y)
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results of Goodman (1960), if X and Y are independent,
o(fxy)? = [WMX)?(1/Y)? + w(1/Y)’a(X)* + o(X)’c(1/Y)*]/n
and
o(ixpyy)’ = WX o(1/Y) + w1/Y)o(X)* + o(X)’a(1/Y)*/nl/n.
In large samples, provided that X and Y are independent,
fxry ~ NIWX/Y),0(hxy)]
and
fxfyy ~ NuX/Y),[X)a(1/Y)* + w(1/Y)’a(X)*)/n},

so that, as before, fLy[i/yis the preferred estimate as long as X and Y are indepen-
dent.

Allometric Relationships

An alternative approach to a multiplicative decomposition is to take the natural
logarithm of the variables to obtain an additive decomposition. Of course, if
X > 0,Y > 0, and the moments are finite,

w(InXY) = w(InX) + w(nY)
and
o(nXY)? = o(nX)> + o(InY)? + 2 cov(InX,InY),

such that the relationship between In X and In Y enters only in the variance calcula-
tion. It is usual on an additive scale to assume that the variables InX and
InY are normally distributed. If InX and In Y are normally distributed,

w(X) = exp[p(nX) + o(nX)?/2],
u(Y) = explp(nY) + a(In¥)*/2],
and
exp[p(nXY) + o(nXY)?*/2]
p(X)(Y)explcov(InX,InY)] .

Thus, w(XY) = w(X)w(Y) if and only if InX and In Y are uncorrelated, so that if X
and Y are independent, w(XY) = p(X)u(Y).

Suppose that n independent pairs of measurements (X;,Y;), . . ., (X,,Y,) have
been made, and put

MXY)

fxy = exp(n“ZlanYj + 62/2)
j=1

and

n

n
fxhiy = exp(n_IZIan + GX/2>exp(n_‘ZlnY} + 6-%»/2),
=i

Jj=1
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where
n n 2
& =(n- 1)“Z(lanYj ~n7'>n Xfo) :
j=1 i=1
n n =2
6% = (n — 1)_lz(lan - n! Zlan} )
j=1 i=1
and

n n 2
6= (n - 1)”2(1:1 Y, - n—IZInY,.) .
i=1 i=

If InX and InY are normally distributed, iyy is consistent for w(XY) but
exp(n‘lE}’=1 InX;Y;) is consistent only if InX and InY have degenerate distri-
butions and otherwise underestimates w(XY). If X and Y are independent and
wl(InX)*] and p[(In Y)*] are finite, it follows that approximately, for large n,

Pxy ~ N(m(XY),m(XY)Z{cr(lnX)2 + o(InY)* + k3(InX) + k3(InY)

+ [k4(InX) — o(InX)* + k4s(nY) — o(InY)*1/4 + o(InX)?c(In Y)z}/n)
and

dxchiy ~ N(m(XY),m(XY)Z{cr(lnX)z + o(nY) + ky(InX) + ks(In¥)

+ [k(nX) — o(InX)* + ks(nY) — o(ln Y)4]/4}/n),

where m(XY) = exp[n(InXY) + o(InXY)?/2] and k(InX) = u{{InX — w(InX)]%.
(If InX and In Y are normally distributed, m(XY) = w(XY).) Again, if X and Y are
independent, ixfLy is more efficient than {iyy, but if InX and In Y are coirelated,
fixfly is not consistent for w(XY).

The above results can be extended to the decomposition of allometric relation-
ships. If a product trait can be decomposed into two multiplicative component
variables X and Y, each of which is related to body mass M via Huxley’s (1932)
allometric equation X = axMP*and Y = ayMP?, then on the additive logarithmic
scale it is convenient to suppose that InX given M is normal with mean n(InX) =
ay + BxInM and variance o(InX)? and, similarly, that In ¥ given M is normal with
mean p(InY) = ay + By InM and variance o(In Y)?. Of course, on the log scale,
the means are additive, though the variances need not be. On the original scale,
given M,

m(X) = explay + BxInM + o(InX)?/2],
n(Y) = explay + By InM + o(InY)?/2],
and

WXY) = explay + ay + (Bx + BplnM + o(InX)*/2
+ o(InV)?/2 + cov(InX,InY)].



284 THE AMERICAN NATURALIST

If n independent triples of measurements (X,Y,M,), (X2,Y2,M3), . . ., (X,, Y,
M,) have been made, let

fxy = exp{é + BInM + 6%/2}

and
llx}:l,y = exp{&X + BxlnM + d'X/Z}exp{&y + SylnM + d'y/Z},
where
a = ay + ay,
dX = n_l zlan - QXH_IEIHM,
j=1 j=1
dy = n_IZlnYJ - Byn_lzlnMj,
Jj=1 Jj=1
6 = BX + BY,
n n n n 2
Bx = [Z(lnMj - n! lnMi)lan] (lnM - n_'Z lnM,) )
j=1 i=1 j=1 i=1
n n n 2
By = [E(InMJ- - n! lnM,-)ln Yj]/ (lnMJ - n_lz lnM,) ,
Jj=1 i=1 J=1 i=1
6 = -2 (nX;Y; — ¢ — § lnM))?,
j=1
6k =(n - 27D (InX; — 6x — fx InM?,
j=1
and

6% = (n — 27> (n¥; - dy — Py lnM)>.
j=1

As before, notice that if InX and In Y are normally distributed, fiLyy is consistent
for w(XY) but exp(& + B InM) is not. If X and Y are independent, then fixy and
fLxfy both estimate w(XY) and it can be shown that asymptotically Lyfiy is more
efficient than [iyy; if InX and In Y are correlated, fixfiy is not consistent for w(XY),
and [iyy should be used. Consequently, the problems in taking the product of
allometric relationships are the same as those in taking the product of means.

Summary of Results
We summarize the results relating functions of means to means of functions.
A. Functions of a single variable

1. Linear function: p@aX + b) = anX) + b.
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2. Reciprocal function: p(1/X) # 1/u(X);
p(1/X) = 1/u(X) + o(X)*/n(X)® (Templeton and Lawlor 1981).
3. Exponential function: plexp(X)] # exp[p(X)];
plexp(X)] = exp[(DI[1 + o(X)*/2] or

wlexp(X)] = exp[u(X) + o(X)*/2]
if X is normal.

B. Functions of two variables
1. Product of random variables: wXY) = w(X)u(Y) + cov(X,Y) or
w(XY) = plexp(nX + InY)]
exp[p(nX) + o(InX)?*/2
+ w(nY) + o(nY)*/2
+ cov(InX,lnY)].
If X and Y are independent, w(XY) = pw(X)u(Y).
2. Ratio of random variables: wX/Y) = w(X)/p(Y) — cov(X/Y,Y)/u(Y)
= p(X)(1/Y) + cov(X,1/Y)
~ pX)/W(Y) + pX)o(¥)*/u(Y) .

285

If Y and X/Y are independent, p(X/Y) = w(X)/pn(Y). If X and Y are independent,

MXTY) = pXOu(1/Y).
3. Sums of random variables: X + Y)
oX + Y)?

X)) + (1),

C. Allometric relationships
1. Single relationship: If X = aM® exp(Z) with Z ~ N(0,0?), then
w(X) = aMP exp(c?/2).

o(X)* + o(Y)* + 2cov(X,Y).

2. Product of two relationships: If X = a;MP' exp(Z,) and Y = a,M® exp(Z5)

with Z; ~ N(0,07), where i = 1,2, then
WXY) = ajoo,MP B2 exp[o?2 + 032 + cov(Z,,Z,)].
If Z, and Z, are independent, then W(XY) = o;0,MP'* P2 exp(03/2 + ¢3/2).

For each of the functions involving two random variables, if the appropriate
independence structure is present, combining the component means (on the right
side of each equation) yields an estimator with a smaller standard error in the
final result than that obtained by combining the components and then averaging

them.
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DISCUSSION

From the examples given here and from numerous others in the literature, it is
apparent that many results in the biological literature are based on an assumption,
one rarely made explicit, of independence of multiplicative components. Yet, the
nature of biological systems is such that independence of the traits of individuals
is an exception rather than the common situation.

Although the population is a set of individuals in most of the given examples of
population means, all of the results presented here apply equally to ‘‘populations’’
in the general statistical sense of the term. Thus, when obtaining mean values for
the traits of an individual, the same problem of nonindependence arises if the
mean values of traits are to be multiplied or otherwise combined in a nonlinear
fashion. For example, in estimating the mean distance that an individual walks per
day, the population is the set of distances traveled daily by that individual. The
mean daily distance for an individual can be estimated accurately from the
product of that individual’s mean pace length and mean daily pace frequency only
if the covariance between the two is negligible; the covariance would not be
negligible if, say, the length of the animal’s pace was appreciably longer for days
during which it walked more (i.e., took more paces). Similarly, if an animal’s food
intake rates at different food patches are the population units being sampled, the
animal may feed more rapidly in patches containing more food; thus, the mean
intake per patch may not be only the product of the mean intake rate and of the
mean time per patch.

Although the empirical literature provides numerous examples of the false
assumption that the mean of the product of two or more random variables equals
the product of their means, theoretical papers are not immune. For example,
theorists in optimal foraging (Krebs and McCleery 1984; Lucas 1985, eq. 1) define
the expected reward (e.g., energy return) E from foraging for a given amount of
time T as E = TIV, where I is the mean prey-item encounter rate, and V is the
mean reward from a single prey item. This formula, however, ignores potential
correlations between encounter rate and value (e.g., foragers may encounter high-
yield prey at a lower rate than low-yield prey). In another vein of theorizing,
Studd and Robertson (1985) defined a male’s expected lifetime reproductive
success as the product of (1) the proportion of subadults surviving to breed, (2) the
average annual rate of offspring production by adult males, and (3) the expected
life span of a breeding male, ignoring any patterns of covariance between (1), (2),
and (3), which are expected values. An example of nonindependence of these
components was given by Partridge and Farquhar (1981), who demonstrated that
fruit fly males that mate frequently have shorter life spans.

For situations in which measurement of component variables on the same
individuals is possible, individual product-trait values should be calculated and
then averaged. Alternatively, if the covariances are known, the formulas given
above can be used, though in such situations the individual values almost invari-
ably are known and the mean of the products can be obtained directly. When
measuring component variables on the same individuals is not possible or not
feasible, one of several options is available. In some situations, independence of
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component variables can reasonably be assumed, and the justification for that
assumption can be provided. If so, the product of component means can be used
as an estimate of the mean of the products of the components. For situations in
which the relationship between the variables is unknown, the product of compo-
nent means can be presented along with the caveat that the product equals the
mean only if the variables are independent. Finally, when the differences between
means of product traits in two different populations (e.g., different individuals,
groups, or species) are compared, if the covariances between the component
variables in the two groups can be assumed equal, they can be ignored because
they would cancel out in calculating the differences.

SUMMARY

In the biological literature, the mean of the product of two or more random
variables is frequently calculated from the product of their means. However,
unless the variables are independent, an exceptional occurrence in biological
systems, the two are not equivalent. Corresponding false assumptions commonly
are made about ratios of means and various other functions of means. These
assumptions are examples of perhaps the most common statistical fallacy in the
biological literature, the fallacy of averages: the false assumption that the mean of
a nonlinear function of several variables equals the function of the means of those
variables. We provide the relationship between functions of means and means of
functions for common functions of one variable (linear, reciprocal, and exponen-
tial functions), for two or more variables (product, ratio, sum), and for the product
of allometric relationships.
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