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Function lmodel2 computes model II simple linear regression using the follow-
ing methods: major axis (MA), standard major axis (SMA), ordinary least squares
(OLS), and ranged major axis (RMA). Information about these methods is avail-
able, for instance, in section 10.3.2 of Legendre and Legendre (1998) and in sections
14.13 and 15.7 of Sokal and Rohlf (1995)1. Parametric 95% confidence intervals are
computed for the slope and intercept parameters. A permutation test is available to
determine the significance of the slopes of MA, OLS and RMA and also for the cor-
relation coefficient. This function represents an evolution of a Fortran program
written in 2000 and 2001.

Bartlett’s three-group model II regression method, described by the above men-
tioned authors, is not computed by the program because it suffers several draw-
backs. Its main handicap is that the regression lines are not the same depending on
whether the grouping (into three groups) is made based on x or y. The regression
line is not guaranteed to pass through the centroid of the scatter of points and the
slope estimator is not symmetric, i.e. the slope of the regression y = f(x) is not
the reciprocal of the slope of the regression x = f(y).

Model II regression should be used when the two variables in the regression
equation are random, i.e. not controlled by the researcher. Model I regression
using least squares underestimates the slope of the linear relationship between the
variables when they both contain error; see example in chapter 5.4 (p. 11). Detailed
recommendations follow.

Date: Id: mod2user.Rnw 593 2008-11-24 19:14:59Z jarioksa .
1In Sokal and Rohlf (Biometry, 2nd edition, 1981: 551), the numerical result for MA regression

for the example data set is wrong. The mistake has been corrected in the 1995 edition.
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Table 1. Application of the model II regression methods. The numbers in the
left-hand column refer to the corresponding paragraphs in the text.

Par. Method Conditions of application Test possible

1 OLS Error on y � error on x Yes

3 MA Distribution is bivariate normal Yes

Variables are in the same physical units or dimensionless
Variance of error about the same for x and y

4 Distribution is bivariate normal

Error variance on each axis proportional to variance of
corresponding variable

4a RMA Check scatter diagram: no outlier Yes

4b SMA Correlation r is significant No
5 OLS Distribution is not bivariate normal Yes

Relationship between x and y is linear

6 OLS To compute forecasted (fitted) or predicted y values Yes
(Regression equation and confidence intervals are irrelevant)

7 MA To compare observations to model predictions Yes

1. Recommendations on the use of model II regression methods

Considering the results of simulation studies, Legendre and Legendre (1998) offer
the following recommendations to ecologists who have to estimate the parameters of
the functional linear relationships between variables that are random and measured
with error (Table 1).

(1) If the magnitude of the random variation (i.e. the error variance2) on the
response variable y is much larger (i.e. more than three times) than that
on the explanatory variable x, use OLS. Otherwise, proceed as follows.

(2) Check whether the data are approximately bivariate normal, either by look-
ing at a scatter diagram or by performing a formal test of significance. If
not, attempt transformations to render them bivariate normal. For data
that are or can be made to be reasonably bivariate normal, consider rec-
ommendations 3 and 4. If not, see recommendation 5.

(3) For bivariate normal data, use major axis (MA) regression if both vari-
ables are expressed in the same physical units (untransformed variables
that were originally measured in the same units) or are dimensionless (e.g.
log-transformed variables), if it can reasonably be assumed that the error
variances of the variables are approximately equal.

When no information is available on the ratio of the error variances and
there is no reason to believe that it would differ from 1, MA may be used
provided that the results are interpreted with caution. MA produces unbi-
ased slope estimates and accurate confidence intervals (Jolicoeur, 1990).

MA may also be used with dimensionally heterogeneous variables when
the purpose of the analysis is (1) to compare the slopes of the relationships
between the same two variables measured under different conditions (e.g.
at two or more sampling sites), or (2) to test the hypothesis that the major
axis does not significantly differ from a value given by hypothesis (e.g. the
relationship E = b1m where, according to the famous equation of Einstein,
b1 = c2, c being the speed of light in vacuum).

(4) For bivariate normal data, if MA cannot be used because the variables are
not expressed in the same physical units or the error variances on the two

2Contrary to the sample variance, the error variance on x or y cannot be estimated from the
data. An estimate can only be made from knowledge of the way the variables were measured.
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axes differ, two alternative methods are available to estimate the param-
eters of the functional linear relationship if it can reasonably be assumed
that the error variance on each axis is proportional to the variance of the
corresponding variable, i.e. (the error variance of y / the sample variance
of y) (the error variance of x / the sample variance of x). This condition is
often met with counts (e.g. number of plants or animals) or log-transformed
data (McArdle, 1988).
(a) Ranged major axis regression (RMA) can be used. The method is

described below. Prior to RMA, one should check for the presence of
outliers, using a scatter diagram of the objects.

(b) Standard major axis regression (SMA) can be used. One should first
test the significance of the correlation coefficient (r) to determine if the
hypothesis of a relationship is supported. No SMA regression equation
should be computed when this condition is not met.
This remains a less-than-ideal solution since SMA slope estimates can-
not be tested for significance. Confidence intervals should also be used
with caution: simulations have shown that, as the slope departs from
±1, the SMA slope estimate is increasingly biased and the confidence
interval includes the true value less and less often. Even when the
slope is near ±1 (e.g. example §5.5), the confidence interval is too
narrow if n is very small or if the correlation is weak.

(5) If the distribution is not bivariate normal and the data cannot be trans-
formed to satisfy that condition (e.g. if the distribution possesses two or
several modes), one should wonder whether the slope of a regression line is
really an adequate model to describe the functional relationship between the
two variables. Since the distribution is not bivariate normal, there seems
little reason to apply models such as MA, SMA or RMA, which primarily
describe the first principal component of a bivariate normal distribution.
So, (1) if the relationship is linear, OLS is recommended to estimate the
parameters of the regression line. The significance of the slope should be
tested by permutation, however, because the distributional assumptions of
parametric testing are not satisfied. (2) If a straight line is not an appro-
priate model, polynomial or nonlinear regression should be considered.

(6) When the purpose of the study is not to estimate the parameters of a
functional relationship, but simply to forecast or predict values of y for
given x’s, use OLS in all cases. OLS is the only method that minimizes
the squared residuals in y. The OLS regression line itself is meaningless.
Do not use the standard error and confidence bands, however, unless x is
known to be free of error (Sokal and Rohlf, 1995, p. 545, Table 14.3); this
warning applies in particular to the 95% confidence intervals computed for
OLS by this program.

(7) Observations may be compared to the predictions of a statistical or deter-
ministic model (e.g. simulation model) in order to assess the quality of the
model. If the model contains random variables measured with error, use
MA for the comparison since observations and model predictions should be
in the same units.

If the model fits the data well, the slope is expected to be 1 and the
intercept 0. A slope that significantly differs from 1 indicates a difference
between observed and simulated values which is proportional to the ob-
served values. For relative-scale variables, an intercept which significantly
differs from 0 suggests the existence of a systematic difference between ob-
servations and simulations (Mesplé et al., 1996).



4 PIERRE LEGENDRE

(8) With all methods, the confidence intervals are large when n is small; they
become smaller as n goes up to about 60, after which they change much
more slowly. Model II regression should ideally be applied to data sets
containing 60 observations or more. Some of the examples presented below
have fewer observations; they are only presented for illustration.

2. Ranged major axis regression

Ranged major axis regression (RMA) is described in (Legendre and Legendre,
1998, 511–512). It is computed as follows:

(1) Transform the y and x variables into y′ and x′, respectively, whose range is
1. Two formulas are available for ranging, depending on the nature of the
variables:
• For variables whose variation is expressed relative to an arbitrary zero

(interval-scale variables, e.g. temperature in ◦C), the formula for rang-
ing is:

y′i =
yi − ymin

ymax − ymin
or x′i =

xi − xmin

xmax − xmin
(1)

• For variables whose variation is expressed relative to a true zero value
(ratio-scale or relative-scale variables, e.g. species abundances, or tem-
perature expressed in ◦K), the recommended formula for ranging as-
sumes a minimum value of 0; eq. 1 reduces to:

y′i =
yi

ymax
or x′i =

xi

xmax
(2)

(2) Compute MA regression between the ranged variables y′ and x′. Test the
significance of the slope estimate by permutation if needed.

(3) Back-transform the estimated slope, as well as its confidence interval limits,
to the original units by multiplying them by the ratio of the ranges:

b1 = b′1
ymax − ymin

xmax − xmin
(3)

(4) Recompute the intercept b0 and its confidence interval limits, using the
original centroid (x̄, ȳ) of the scatter of points and the estimates of the
slope b1 and its confidence limits:

b0 = ȳ − b1x̄ (4)

The RMA slope estimator has several desirable properties when the variables x
and y are not expressed in the same units or when the error variances on the two
axes differ. (1) The slope estimator scales proportionally to the units of the two
variables: the position of the regression line in the scatter of points remains the
same irrespective of any linear change of scale of the variables. (2) The estimator
is sensitive to the covariance of the variables; this is not the case for SMA. (3)
Finally, and contrary to SMA, it is possible to test the hypothesis that an RMA
slope estimate is equal to a stated value, in particular 0 or 1. As in MA, the test
may be done either by permutation, or by comparing the confidence interval of the
slope to the hypothetical value of interest. Thus, whenever MA regression cannot
be used because of incommensurable units or because the error variances on the
two axes differ, RMA regression can be used. There is no reason, however, to use
RMA when MA is justified.

Prior to RMA, one should check for the presence of outliers, using a scatter
diagram of the objects. RMA should not be used in the presence of outliers be-
cause they cause important changes to the estimates of the ranges of the variables.
Outliers that are not aligned fairly well with the dispersion ellipse of the objects
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may have an undesirable influence on the slope estimate. The identification and
treatment of outliers is discussed in (Sokal and Rohlf, 1995, Section 13.4). Outliers
may, in some cases, be eliminated from the data set, or they may be subjected to
a winsorizing procedure described by these authors.

3. Input file

A data frame with objects in rows and variables in columns.

4. Output file

The output file obtained by print.lmodel2 contains the following results:
(1) The call to the function.
(2) General regression statistics: number of objects (n), correlation coefficient

(r), coefficient of determination (r2) of the OLS regression, parametric P -
values (2-tailed, one-tailed) for the test of the correlation coefficient and
the OLS slope, angle between the two OLS regression lines, lm(y ~ x) and
lm(x ~ y).

(3) A table with rows corresponding to the four regression methods. Column 1
gives the method name, followed by the intercept and slope estimates, the
angle between the regression line and the abscissa, and the permutational
probability (one-tailed, for the tail corresponding to the sign of the slope
estimate).

(4) A table with rows corresponding to the four regression methods. The
method name is followed by the parametric 95% confidence intervals (2.5
and 97.5 percentiles) for the intercept and slope estimates.

(5) The eigenvalues of the bivariate dispersion, computed during major axis
regression, and the H statistic used for computing the confidence interval
of the major axis slope (notation following Sokal and Rohlf 1995).

For the slopes of MA, OLS and RMA, the permutation tests are carried
out using the slope estimates b themselves as the reference statistics. In
OLS simple linear regression, a permutation test of significance based on
the r statistic is equivalent to a permutation test based on the pivotal
t-statistic associated with bOLS (Legendre and Legendre, 1998, 21). On
the other hand, across the permutations, the slope estimate (bOLS) differs
from r by a constant (sy/sx) since bOLS = rxysy/sx, so that bOLS and
r are equivalent statistics for permutation testing. As a consequence, a
permutation test of bOLS is equivalent to a permutation test carried out
using the pivotal t-statistic associated with bOLS . This is not the case in
multiple linear regression, however, as shown by Anderson and Legendre
(1999).

If the objective is simply to assess the relationship between the two variables
under study, one can simply compute the correlation coefficient r and test its sig-
nificance. A parametric test can be used when the assumption of binormality can
safely be assumed to hold, or a permutation test when it cannot.

For the intercept of OLS, the confidence interval is computed using the standard
formulas found in textbooks of statistics; results are identical to those of standard
statistical software. No such formula, providing correct α-coverage, is known for
the other three methods. In the program, the confidence intervals for the intercepts
of MA, SMA and RMA are computed by projecting the bounds of the confidence
intervals of the slopes onto the ordinate; this results in an underestimation of these
confidence intervals.

In MA or RMA regression, the bounds of the confidence interval (C.I.) of the
slope may, on occasions, lie outside quadrants I and IV of the plane centred on
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Figure 1. (a) If a MA regression line has the lower bound of its confidence interval
(C.I.) in quadrant III, this bound has a positive slope (+2.75 in example). (b)
Likewise, if a MA regression line has the upper bound of its confidence interval in
quadrant II, this bound has a negative slope (−5.67 in example).

the centroid of the bivariate distribution. When the lower bound of the confidence
interval corresponds to a line in quadrant III (Fig. 1a), it has a positive slope;
the RMA regression line of example in chapter 5.5 (p. 12) provides an example
of this phenomenon. Likewise, when the upper bound of the confidence interval
corresponds to a line in quadrant II (Fig. 1b), it has a negative slope. In other
instances, the confidence interval of the slope may occupy all 360◦ of the plane,
which results in it having no bounds. The bounds are then noted 0.00000; see
chapter 5.5 (p. 12).

In SMA or OLS, confidence interval bounds cannot lie outside quadrants I and
IV. In SMA, the regression line always lies at a +45◦ or −45◦ angle in the space
of the standardized variables; the SMA slope is a back-transformation of ±45◦ to
the units of the original variables. In OLS, the slope is always at an angle closer
to zero than the major axis of the dispersion ellipse of the points, i.e. it always
underestimates the MA slope in absolute value.

5. Examples

5.1. Surgical unit data.

5.1.1. Input data. This example compares observations to the values forecasted by a
model. A hospital surgical unit wanted to forecast survival of patients undergoing
a particular type of liver surgery. Four explanatory variables were measured on
patients. The response variable Y was survival time, which was log10-transformed.
The data are described in detail in Section 8.2 of Neter et al. (1996) who also provide
the original data sets. The data were divided in two groups of 54 patients. The
first group was used to construct forecasting models whereas the second group was
reserved for model validation. Several regression models were studied. One of them,
which uses variables X3 = enzyme function test score and X4 = liver function test
score, is used as the basis for the present example. The multiple regression equation
is the following:

Ŷ = 1.388778 + 0.005653X3 + 0.139015X4
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This equation was applied to the second data set (also 54 patients) to produce
forecasted survival times. In the present example, these values are compared to
the observed survival times. Fig. 2 shows the scatter diagram with log10(observed
survival time) in abscissa and forecasted values in ordinate. The MA regression line
is shown with its 95% confidence region. The 45◦ line, which would correspond to
perfect forecasting, is also shown for comparison.

5.1.2. Output file. MA, SMA and OLS equations, 95% C.I., and tests of signifi-
cance, were obtained with the following R commands. The RMA method, which
is optional, was not computed since MA is the only appropriate method in this
example.
> data(mod2ex1)

> Ex1.res <- lmodel2(Predicted_by_model ~ Survival, data = mod2ex1,

+ nperm = 99)

> Ex1.res

Model II regression

Call: lmodel2(formula = Predicted_by_model ~ Survival, data =
mod2ex1, nperm = 99)

n = 54 r = 0.8387315 r-square = 0.7034705
Parametric P-values: 2-tailed = 2.447169e-15 1-tailed = 1.223585e-15
Angle between the two OLS regression lines = 9.741174 degrees

Permutation tests of OLS, MA, RMA slopes: 1-tailed, tail corresponding to sign
A permutation test of r is equivalent to a permutation test of the OLS slope
P-perm for SMA = NA because the SMA slope cannot be tested

Regression results
Method Intercept Slope Angle (degrees) P-perm (1-tailed)

1 OLS 0.6852956 0.6576961 33.33276 0.01
2 MA 0.4871990 0.7492103 36.84093 0.01
3 SMA 0.4115541 0.7841557 38.10197 NA

Confidence intervals
Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope

1 OLS 0.4256885 0.9449028 0.5388717 0.7765204
2 MA 0.1725753 0.7633080 0.6216569 0.8945561
3 SMA 0.1349629 0.6493905 0.6742831 0.9119318

Eigenvalues: 0.1332385 0.01090251

H statistic used for computing C.I. of MA: 0.007515993

The interesting aspect of the MA regression equation in this example is that
the regression line is not parallel to the 45◦ line drawn in Fig. 2. The 45◦ line
is not included in the 95% confidence interval of the MA slope, which goes from
tan−1(0.62166) = 31.87 to tan−1(0.89456) = 41.81. The Figure shows that the
forecasting equation overestimated survival below the mean and underestimated it
above the mean. The OLS regression line, which is often (erroneously) used by
researchers for comparisons of this type, would show an even greater discrepancy
(33.3◦ angle) from the 45◦ line, compared to the MA regression line (36.8◦ angle).

5.2. Eagle rays and Macomona bivalves.
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Figure 2. Scatter diagram of the
2.5 Example 1 data showing the
major axis (MA) regression line
and its 95% confidence region. The
45◦ line is drawn for reference. The
cross indicates the centroid of the
bivariate distribution. The MA re-
gression line passes through this
centroid.
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5.2.1. Input data. The following table presents observations at 20 sites from a study
on predator-prey relationships (Hines et al., 1997). y is the number of bivalves (Ma-
comona liliana) larger than 15 mm in size, found in 0.25 m2 quadrats of sediment;
x is the number of sediment disturbance pits of a predator, the eagle ray (Myliobatis
tenuicaudatus), found within circles of a 15 m radius around the bivalve quadrats.

The variables x and y are expressed in the same physical units and are estimated
with sampling error, and their distribution is approximately bivariate normal. The
error variance is not the same for x and y but, since the data are animal counts, it
seems reasonable to assume that the error variance along each axis is proportional to
the variance of the corresponding variable. The correlation is significant: r = 0.86,
p < 0.001. RMA and SMA are thus appropriate for this data set; MA and OLS are
not. Fig. 3 shows the scatter diagram. The various regression lines are presented
to allow their comparison.

5.2.2. Output file. MA, SMA, OLS and RMA regression equations, confidence in-
tervals, and tests of significance, were obtained with the following R commands.
That the 95% confidence intervals of the SMA and RMA intercepts do not include
0 may be due to different reasons: (1) the relationship may not be perfectly linear;
(2) the C.I. of the intercepts are underestimated; (3) the predators (eagle rays) may
not be attracted to sampling locations containing few prey (bivalves).
> data(mod2ex2)

> Ex2.res = lmodel2(Prey ~ Predators, data = mod2ex2, "relative",

+ "relative", 99)

> Ex2.res

Model II regression

Call: lmodel2(formula = Prey ~ Predators, data = mod2ex2,
range.y = "relative", range.x = "relative", nperm = 99)

n = 20 r = 0.8600787 r-square = 0.7397354
Parametric P-values: 2-tailed = 1.161748e-06 1-tailed = 5.808741e-07
Angle between the two OLS regression lines = 5.106227 degrees

Permutation tests of OLS, MA, RMA slopes: 1-tailed, tail corresponding to sign
A permutation test of r is equivalent to a permutation test of the OLS slope



MODEL II REGRESSION USER’S GUIDE, R EDITION 9

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15

20
30

40
50

60
70

Eagle rays (predators)

B
iv

al
ve

s 
(p

re
y)

OLS
MA
SMA
RMA Figure 3. Scatter diagram of the
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valves as a function of the num-
ber of eagle rays) showing the
major axis (MA), standard ma-
jor axis (SMA), ordinary 50 least-
squares (OLS) and ranged major
axis (RMA) regression lines. SMA
and RMA are the appropriate re-
gression lines in this example. The
cross indicates the centroid of the
bivariate distribution. The four
regression lines pass through this
centroid.

P-perm for SMA = NA because the SMA slope cannot be tested

Regression results
Method Intercept Slope Angle (degrees) P-perm (1-tailed)

1 OLS 20.02675 2.631527 69.19283 0.01
2 MA 13.05968 3.465907 73.90584 0.01
3 SMA 16.45205 3.059635 71.90073 NA
4 RMA 17.25651 2.963292 71.35239 0.01

Confidence intervals
Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope

1 OLS 12.490993 27.56251 1.858578 3.404476
2 MA 1.347422 19.76310 2.663101 4.868572
3 SMA 9.195287 22.10353 2.382810 3.928708
4 RMA 8.962997 23.84493 2.174260 3.956527

Eigenvalues: 269.8212 6.418234

H statistic used for computing C.I. of MA: 0.006120651

[1] In this table of the output file, the rows correspond, respectively, to the MA,
OLS and RMA slopes and to the coefficient of correlation r (Corr). Stat. is the
value of the statistic being tested for significance. As explained in the Output file
section, the statistic actually used by the program for the test of the MA slope,
in this example, is the inverse of the bMA slope estimate (1/3.46591 = 0.28852)
because the reference value of the statistic in this permutation test must not exceed
1. One-tailed probabilities (One-tailed p) are computed in the direction of the
sign of the coefficient. For a one-tailed test in the upper tail (i.e. for a coefficient
with a positive sign), p = (EQ + GT)/(Number of permutations + 1). For a test in
the lower tail (i.e. for a coefficient with a negative sign), p = (LT + EQ)/(Number
of permutations + 1), where

• LT is the number of values under permutation that are smaller than the
reference value;

• EQ is the number of values under permutation that are equal to the refer-
ence value of the statistic, plus 1 for the reference value itself;
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• GT is the number of values under permutation that are greater than the
reference value.

5.3. Cabezon spawning.

5.3.1. Input data. The following table presents data used by Sokal and Rohlf (1995,
Box 14.12) to illustrate model II regression analysis. They concern the mass (x) of
unspawned females of a California fish, the cabezon (Scorpaenichthys marmoratus),
and the number of eggs they subsequently produced (y). One may be interested to
estimate the functional equation relating the number of eggs to the mass of females
before spawning. The physical units of the variables are as in the table published
by Sokal and Rohlf (1995, 546).

Since the variables are in different physical units and are estimated with er-
ror, and their distribution is approximately bivariate normal, RMA and SMA are
appropriate for this example; MA is inappropriate. The OLS regression line is
meaningless; in model II regression, OLS should only be used for forecasting or
prediction. It is plotted in Fig. 4 only to allow comparison.

The RMA and SMA regression lines are nearly indistinguishable in this example.
The slope of RMA can be tested for significance (H0: bRMA = 0), however, whereas
the SMA slope cannot. The 95% confidence intervals of the intercepts of RMA and
SMA, although underestimated, include the value 0, as expected if a linear model
applies to the data: a female with a mass of 0 is expected to produce no egg.

Another interesting property of RMA and SMA is that their estimates of slope
and intercept change proportionally to changes in the units of measurement. One
can easily verify that by changing the decimal places in the Example 2 data file and
recomputing the regression equations. RMA and SMA share this property with
OLS. MA regression does not have this property; this is why it should only be used
with variables that are in the same physical units, as those of Example 1.

5.3.2. Output file. MA, SMA, OLS and RMA equations, 95% C.I., and tests of
significance, were obtained with the following R commands:
> data(mod2ex3)

> Ex3.res = lmodel2(No_eggs ~ Mass, data = mod2ex3, "relative",

+ "relative", 99)

> Ex3.res

Model II regression

Call: lmodel2(formula = No_eggs ~ Mass, data = mod2ex3, range.y
= "relative", range.x = "relative", nperm = 99)

n = 11 r = 0.882318 r-square = 0.7784851
Parametric P-values: 2-tailed = 0.0003241737 1-tailed = 0.0001620869
Angle between the two OLS regression lines = 5.534075 degrees

Permutation tests of OLS, MA, RMA slopes: 1-tailed, tail corresponding to sign
A permutation test of r is equivalent to a permutation test of the OLS slope
P-perm for SMA = NA because the SMA slope cannot be tested

Regression results
Method Intercept Slope Angle (degrees) P-perm (1-tailed)

1 OLS 19.766816 1.869955 61.86337 0.01
2 MA 6.656633 2.301728 66.51716 0.01
3 SMA 12.193785 2.119366 64.74023 NA
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Figure 4. Scatter diagram of the
Example 3 data (number of eggs
produced as a function of the mass
of unspawned females) with the
ranged major axis (RMA), stan-
dard major axis (SMA) and or-
dinary least-squares (OLS) regres-
sion lines. RMA and SMA are the
appropriate regression lines in this
example. The cross indicates the
centroid of the bivariate distribu-
tion. The three regression lines
pass through this centroid.

4 RMA 13.179672 2.086897 64.39718 0.01

Confidence intervals
Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope

1 OLS -4.098376 43.63201 1.117797 2.622113
2 MA -36.540814 27.83295 1.604304 3.724398
3 SMA -14.576929 31.09957 1.496721 3.001037
4 RMA -18.475744 35.25317 1.359925 3.129441

Eigenvalues: 494.634 17.49327

H statistic used for computing C.I. of MA: 0.02161051

5.4. Highly correlated random variables.

5.4.1. Input data. Mesplé et al. (1996) generated a variable X containing 100 values
drawn at random from a uniform distribution in the interval [0, 10]. They then
generated two other variables, N1 and N2, containing values drawn at random from
a normal distribution N (0, 1). These variables were combined to create two new
variables x = (X + N1) and y = (X + N2). The relationship constructed in this
way between x and y is perfect and should have a slope of 1, despite the fact that
there is normal error added independently to x and y.

5.4.2. Output file. The various model II regression methods were applied to this
data set with the following results, were obtained with the following R commands:
> data(mod2ex4)

> Ex4.res = lmodel2(y ~ x, data = mod2ex4, "interval", "interval",

+ 99)

> Ex4.res

Model II regression

Call: lmodel2(formula = y ~ x, data = mod2ex4, range.y =
"interval", range.x = "interval", nperm = 99)

n = 100 r = 0.896898 r-square = 0.804426
Parametric P-values: 2-tailed = 1.681417e-36 1-tailed = 8.407083e-37
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Angle between the two OLS regression lines = 6.218194 degrees

Permutation tests of OLS, MA, RMA slopes: 1-tailed, tail corresponding to sign
A permutation test of r is equivalent to a permutation test of the OLS slope
P-perm for SMA = NA because the SMA slope cannot be tested

Regression results
Method Intercept Slope Angle (degrees) P-perm (1-tailed)

1 OLS 0.7713474 0.8648893 40.85618 0.01
2 MA 0.2905866 0.9602938 43.83962 0.01
3 SMA 0.2703395 0.9643118 43.95915 NA
4 RMA 0.3142417 0.9555996 43.69937 0.01

Confidence intervals
Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope

1 OLS 0.2663618 1.2763329 0.7794015 0.950377
2 MA -0.2121756 0.7477724 0.8695676 1.060064
3 SMA -0.1795065 0.6820701 0.8826059 1.053581
4 RMA -0.1848274 0.7702125 0.8651145 1.054637

Eigenvalues: 17.56697 0.9534124

H statistic used for computing C.I. of MA: 0.002438452

The noticeable aspect is that with OLS regression, the confidence interval of the
slope does not include the value 1 and the confidence interval of the intercept does
not include the value 0. The OLS slope underestimates the real slope of the bivariate
functional relationship, which is 1 by construct in this example. This illustrates the
fact that OLS, considered as model I regression method, is inadequate to estimate
the slope of the functional relationship between these variables. As a model II
regression method, OLS would only be appropriate to predict the values ŷ from x
(point 6 in Table 1).

With all the other model II regression methods, the confidence intervals of the
slopes include the value 1 and the confidence intervals of the intercepts include the
value 0, as expected for this data set because of the way the data were generated.

5.5. Uncorrelated random variables.

5.5.1. Input data. Two vectors of 100 random data drawn from a normal distribu-
tion N (0, 1) were generated. One expects to find a null correlation with this type
of data which were submitted to the model II regression program.

5.5.2. Output file. MA, SMA, OLS and RMA equations, 95% C.I., and tests of
significance, were obtained with the following R commands. Fig. 5 shows the scatter
diagram. The various regression lines are presented to allow their comparison.
> data(mod2ex5)

> Ex5.res <- lmodel2(random_y ~ random_x, data = mod2ex5,

+ "interval", "interval", 99)

> Ex5.res

Model II regression

Call: lmodel2(formula = random_y ~ random_x, data = mod2ex5,
range.y = "interval", range.x = "interval", nperm = 99)
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Figure 5. Scatter diagram of the
Example 5 data (random numbers)
showing the major axis (MA),
standard major axis (SMA), or-
dinary least-squares (OLS) and
ranged major axis (RMA OLS re-
gression lines. The correlation co-
efficient is not significantly differ-
ent from zero. The cross indicates
the centroid of the bivariate distri-
bution. The four regression lines
pass through this centroid.

n = 100 r = -0.0837681 r-square = 0.007017094
Parametric P-values: 2-tailed = 0.4073269 1-tailed = 0.2036634
Angle between the two OLS regression lines = 80.41387 degrees

Permutation tests of OLS, MA, RMA slopes: 1-tailed, tail corresponding to sign
A permutation test of r is equivalent to a permutation test of the OLS slope
P-perm for SMA = NA because the SMA slope cannot be tested

Confidence interval = NA when the limits of the confidence interval
cannot be computed. This happens when the correlation is 0
or the C.I. includes all 360 deg. of the plane (H >= 1)

Regression results
Method Intercept Slope Angle (degrees) P-perm (1-tailed)

1 OLS 0.07074386 -0.08010978 -4.580171 0.16
2 MA 0.11293376 -0.60004584 -30.965688 0.16
3 SMA 0.14184407 -0.95632810 -43.721176 NA
4 RMA 0.26977945 -2.53296649 -68.456190 0.16

Confidence intervals
Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope

1 OLS -0.1220525 0.26354020 -0.2711429 0.1109234
2 MA NA NA NA NA
3 SMA 0.1278759 0.15887844 -1.1662547 -0.7841884
4 RMA 0.0965427 -0.06826575 1.6330043 -0.3980472

Eigenvalues: 1.071318 0.8857145

H statistic used for computing C.I. of MA: 1.106884

Neither the correlation nor any of the regression coefficients are significant; this is
as expected from the way the data were generated. Note that the slope estimates
differ widely among methods. The MA slope is bMA = −0.60005 but its confidence
interval, noted NA for ‘Not available’ or ‘Missing value’, covers all 360◦ of the plane,
as stated in the comment above the regression table. The RMA slope estimate
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is bRMA = −2.53297. OLS, which should only be used to predict the values ŷ
from x (point 6 in Table 1), tends to produce slopes near zero for random data:
bOLS = 0.08011.

Since the correlation is not significant, SMA should not have been computed.
This method tends to produce slopes near ±1; with the present example, the slope
is indeed near ±1 (bSMA = 0.95633) since the standard deviations of the two
variables are nearly equal (sx = 1.01103, sy = 0.96688). This example shows that
RMA does not necessarily produce results that are similar to SMA.

The confidence intervals of the slope and intercept of RMA provide an example
of the phenomenon of inversion of the confidence limits described in Fig. 1.
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