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Macroecology is a rapidly growing branch of ecology.
The essence of macroecology can be summarized as a
two-step process: 1) find large-scale patterns and 2) find
the explanations/mechanisms for those patterns. Much
of the work on step 1 has focused on identifying the
shape of various curves. This includes some of the most
famous of all macroecological patterns: the power-law
(S = cA?) species area relationship (SPAR), the hollow
curve distribution of species abundances (SAD), and
the skewed-lognormal distribution of body size (BSD).
A large number of papers have debated the correct
curve shapes. For example it has been suggested that
SPARs should really be logarithmic, sigmoidal, or
asymptotic (such as the Michaelis—Menton) instead of
the power law (Connor and McCoy 1979, Sugihara
1981, Connor et al. 1983, Williams 1995, Lomolino
2000, 2002, Lomolino and Weiser 2001, Williamson et
al. 2001). Over two-dozen different distributions have
been suggested for the SAD (Pielou 1977, Tokeshi
1993). Moreover, much of the work on step 2 has
proceeded by testing theories according to whether they
produce curves of the correct shape (i.e. the shape
observed in nature). In short, it is fair to say that
macroecology has been practiced as a study of curve
shapes.

I argue that this focus on curve shapes is unfortunate
and even counterproductive for macroecology. To see
why, let us explore in more detail how macroecological
mechanisms are identified. Unfortunately, macroeco-
logical questions are, almost by definition, too large to
perform the type of replicated, manipulative, controlled
experiments that form the backbone of scientific pro-
gress in much of the rest of ecology. Thus, the search
for mechanism usually proceeds through theory. A
theory is built which suggests that if certain mecha-
nisms are important, then certain predictions should be
true. If the predictions fail, the mechanisms lose cre-
dence; if they succeed, the mechanisms accumulate sup-
port. Of course, the strength of this method depends on
the quality of the predictions. In practice, often the sole
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prediction made is the shape of the curve (with parame-
ters free to maximize fit).

The weakness of this mode of testing is most pain-
fully obvious in the search for mechanisms in one of the
oldest and most well known patterns in macroecology:
the species abundance distribution (SAD). The SAD
describes the relative abundances of different species
within a community — many rare species and a few
highly abundant species (known as a hollow curve).
Well over two dozen different curves have been sug-
gested as the “right” curve with more coming every
year (Pielou 1977, Tokeshi 1993, Sichel 1997, Harte et
al. 1999, Dewdney 2000, Hubbell 2001). This work on
SADs has proceeded as I previously described: a hy-
pothesized mechanism leads to a theory that makes one
prediction about curve shape. Macroecologists ought to
worry that dozens of theories have been proposed and
all fit the data. Macroecologists must also worry that
few if any curves (and their mechanisms) have been
decisively rejected. In short, this mode of testing has
failed to reject most of the dozens of proposed theories.

In the rest of this paper, I will first try to demonstrate
that testing exclusively by curve fitting is very weak and
a poor way for macroecology to proceed in the search
for mechanisms. Then, I will look at some ways to
make stronger tests.

Why curve fitting is a weak test

There are at least four reasons why testing by curve
fitting is weak.

Reason no. 1 — multiple explanations

More than one mechanism can produce any given set of
data. Pielou noted this in the context of SADs (1977, p.
123). She pointed out that for many probability distri-
butions, mathematical theorems show there are multi-
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ple mechanistic hypotheses that can lead to a given
distribution. In a similar spirit, Cohen (1968) derived
two biological models of SADs which produce a bro-
ken stick distribution (MacArthur 1957). Cohen pro-
duces broken-stick distributions despite starting from
biological = assumptions  very  different  from
MacArthur’s. One of these models starts from assump-
tions almost the opposite of MacArthur’s, yet ends up
producing the same distribution.

Reason no. 2 — free parameters

When parameters are left free and then set to maximize
the fit to the data, they surely ought to produce a good
fit most of the time. This is vividly captured in a
famous quote that I have seen attributed to various
sources including Linus Pauling and Euler which says,
“give me three free parameters and I will draw you an
elephant, give me four and I will wag the trunk.”

The ability of curve fitting with free parameters to fit
curves that are fundamentally not a match can be seen
in the following example, which I draw from SPARs.
We know that a SPAR must be a monotonically in-
creasing, decelerating function. I will now show
through a simple Monte Carlo simulation that the
power law (S = cA?) will fit the data of any functional
form that meets the basic requirements of being a
monotonically increasing, decelerating function regard-
less of all other attributes. I generated data from five
different underlying functions: power law (S =cA?),
logarithm (S =log(c +zA), two with an asymptote
(Michaelis—Menton and Ivlev) and one sigmoidal (lo-
gistic). All five of these functions are monotonic in-
creasing, decelerating and have two free parameters. |
then added noise to the data. Finally, I tried fitting two
different functional forms (power law, Michaelis—Men-
ton) to this noisy data, and calculated a mean-corrected
non-linear 2.

The results are presented in Table 1 and 2. Overall,
we can see that any functional form will fit any other
functional form quite well (r> > 0.89 and usually r* >
0.98). The goodness of the fit depends heavily on where

Table 1. Fit of the power and Michaelis—Menton functions to
various underlying models with noise. Average of nonlinear,
mean-centered 12 across 100 simulations presented in each
cell. The amount of noise and number of points sampled had
very small effects (Ar?<0.012). We can see that either func-
tion fits any other function “well”. It is still possible to make
distinctions between grossly different curves (e.g. fits to data
based on logistic fit worse than others) and MM fits the
similar Ivlev function better than the power, as we would
expect given the similarity in functional forms.

Power MM Log Logit Ivlev
MM 0.990 1.000 1.000  0.890 0.995
Power 1.000 0.970 0996  0.932 0.947
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Table 2. Fits of the power function depend on the range
explored. The XRange column indicates spatial extent. The
logit functions had an inflection point at 1, while the MM
function reached its half-saturation level at x = 1. Thus if the
scale ran from 0.5 to 1.5 (i.e. XRange = 1) centered around
the intermediate region or even from 0 to 2 (i.e. XRange = 2),
then relatively little of the asymptotic region was sampled. At
this scale, all functions fit well. When the x-scale ran from 0 to
10, then the region from 2 to 10 (80% of the sample) was very
close to the asymptote. At this scale, functions with an
asymptote fit the power function markedly worse than func-
tions without an asymptote (Power, Log)

XRange Power MM Log Logit Ivlev
1 1 0.989 0.999 0.989 0.975
2 1 0.97 0.995 0.938 0.947

10 1 0.878 0.988 0.895 0.648

we sample along the x-axis (Table 2). Not surprisingly,
the fit is better when we don’t sample the region where
the asymptotes occur. The fit is exceedingly good if we
don’t sample this region, and still decent even if we do
sample it moderately.

Thus, through the power of curve fitting, functional
forms which are fundamentally different from the
known underlying functional form still fit the data very
well. The only place this breaks down is if we have an
asymptote and we sample a very large region of the
asymptote (e.g. 80% of the sample range is in the
asympote). Curve fitting with free parameters offers no
hope for differentiating among subtly different theories.

Reason no. 3 — there is no such thing as a curve
that fits “‘best”

To illustrate this point, I will give some data from a
brief empirical example. I used data from the North
American Breeding Bird Survey or BBS (Robbins et al.
1986, Price et al. 1995) averaged over 5 years to elimi-
nate noise. I randomly sampled 100 routes that meet
certain quality criteria. I fit five distributions commonly
used as a SAD using either moment matching or maxi-
mum likelihood methods (Evans et al. 1993). I then
compared the goodness of fit using 9 different mea-
sures: Kolmogorov-Smirnov, likelihood, three based on
different measures comparing the actual and observed
CDF using various nonlinear versions of r* (Wilkinson
1997), and four based on a ¥ test using different
binning schemes. All of the measures of fit that I used
have been previously applied to this problem with the
possible exception of likelihood. Some measures em-
phasize fit over the whole range of the data, others
emphasize fit in a region of special interest (e.g. where
most of the probability density is). Depending on the
context, any of these differences might be desirable.
The results are presented in Table 3. Usually, the
lognormal performed the best, but the “best distribu-
tion” depended on the measure of fit that we use. The
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Table 3. Number of times each distribution was the best fit for various measures. The “best” distribution is highlighted in bold
for each measure of goodness-of-fit. The Ist 32 is based on 10 bins on a arithmetic scale. The 2nd is based on Preston-type
binning on a log scale. The 3rd used 10 bins on an arithmetic scale for the lowest 80% and one bin for the rest. The 4th column
used 5 bins on an arithmetic scale. Notice that the “best” fitting distribution depends on the measure of goodness of fit used.

R2 R2MC R2Corr K L 1’ Log %> x? bin+1 x? 5 bins
MLE power 0 0 0 0 0 2 0 0 0
Mom power 1 1 2 0 0 1 0 0 1
Lognormal 28 28 28 62 100 32 6 27 33
Trunc LN 34 34 17 37 0 49 27 67 47
LogSeries 15 15 27 0 0 15 47 4 13
Neg binomial 18 18 17 1 0 1 11 1 S

lognormal, truncated lognormal, and logseries are all
the “best distribution” depending on the measure of fit.
There is no a priori reason why we should choose one
measure over another. This suggests it will be hard to
come up with rigorous scientific tests based on the
concept of “best fit to the data.”

Reason no. 4 — statistical limit theorems

Most biologists know that the central limit theorem
(CLT) of statistics (Grimmett and Stirzaker 1992) states
that we should find normal distributions any time many
variables interact additively. In addition, most macroe-
cologists are familiar with the fact that by simple
properties of the logarithm, the CLT predicts that when
many variables interact multiplicatively, we should find
a lognormal distribution (McAlister 1879, MacArthur
1960, May 1975). Two common processes in ecology
produce interaction of multiplicative random variables.
One is a “sequence-of-hurdles”. Fitness is a good exam-
ple (see also Shockley 1957): W = p,p,psps... where p,
is the probability of surviving to maturity, p, is the
probability of surviving the first winter, p; is the proba-
bility of holding a territory, p, is the probability of
finding a mate, etc. Thus, log W = Z log p; should be
normally distributed. The other common process is
“compound-growth” (e.g. Caswell 2001). In compound
growth, the final state, say population size N, is given
by N, =Nyt AAs...A. Hence, the final state is the
product of independent random variables (i.e. the A;’s
which here represent annual growth rates of a popula-
tion but might also be growth rates of an individual’s
body size).

A distribution that is closely related to the lognormal
is the power or Pareto or Zipf-Mandelbrot distribution
(Mandelbrot 1982, Schroeder 1991, Evans et al. 1993).
The power distribution can either be derived as a limit
of the lognormal or through various statistical argu-
ments in its own right. The lognormal distribution
converges to the power distribution as the variance goes
to infinity. This can be shown analytically (West and
Shlesinger 1989) and graphically (Fig. 1). A formula
calculating the degree of error (West and Shlesinger
1989) shows that they are extremely close over many
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orders of magnitude. We expect the variance to be high
in ecological systems both because the number of vari-
ables involved is high (which by the CLT leads to high
variance) and because ecological systems are notori-
ously noisy. There are also deep CLT-like statistical
reasons for why we might find a power distribution (
Simon 1955, Mandelbrot 1963, Bak et al. 1987, West
and Shlesinger 1989, Dewdney 2000, Allen et al. 2001,
Bianconi and Barabasi 2001). In practice, because the
power distribution is the limit of the lognormal and
because they are so close to each other even when
variance is fairly small, it is often difficult to distinguish
between them empirically. And theoretically it is unnec-
essary to do so. Hence, I will refer to these distributions
collectively as POLO (power lognormal) throughout
the remainder of this paper.

Why do these POLO limit theorem arguments mean
that curve fitting is a weak test? First, recall our context
of testing mechanisms by producing theories containing
mechanisms which match the data. The CLT POLO
arguments show that:

1. Data will be POLO distributed. Most of the classical
patterns in macroecology are close to POLO distri-

Lognormal vs power distribution
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Fig. 1. The probability density function (PDF) for the power
distribution and low- to high-variance lognormal distributions.
Note how the high variance lognormal distribution is similar
in shape to the power distribution.
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butions — e.g. lognormal distributions of abundance
(Preston 1948, Whittaker 1965), body size (Maurer
and Brown 1988, Brown and Nicoletto 1991), and
size of geographic range (Pagel et al. 1991). Even
the deviations from lognormal such as the “excess”
of rare species are often universal (e.g. found in
distribution of human incomes or the sizes of cities)
and come from CLT-like arguments (Montroll and
Shlesinger 1982).

2. Any complex theory that invokes multiplication of

complex factors will produce POLO-like distribu-
tions. 1 like to think of this as the “central limit
theorem of theories”. Although I know of no exact
mathematical theorem stating this, arguments such
as the central limit theorem suggest that theories
which are complex enough and invoke mechanisms
similar enough to those of the central limit theorem
(e.g. multiplication of independent random vari-
ables) will converge in some limit to a CLT distribu-
tion (such as the lognormal). Thus, Sugihara’s
random fraction model of SADs (1980) converges to
the lognormal (Pielou 1975) as do many others (e.g.
Engen and Lande 1996). Similarly, a great many
different theories have found a power distribution as
the limit. The broken stick distribution (MacArthur
1957) converges to the power distribution (Perline
1996), as does the logseries distribution when x — 1.

When we combine points 1 and 2 above together, we
see that almost any theory will match almost any data
as long as we only look at the shape of the distribution;
that shape will usually be POLO in nature! So, it is
impossible to test a mechanistic theory merely by pro-
ducing a theory which generates the shape of the data if
there is a CLT argument for that shape.

Making curve fitting a stronger test

None of the deficiencies of the previous section can be
repaired — we cannot simply improve curve fitting to
address them. The best solution is to develop new
methods of testing. I do this in the next section. Yet,
even within the domain of curve fitting, we can make
our results much stronger.

I suggest that there is a hierarchy of progressively
stronger definitions of what it means to fit “well”:

Level 1) The curve fits the data well from an “eye-
ball” point of view (i.e. human perception).

Level 2) The curve fits the data well according to
some objective measure such as r? or 2.

Level 3) The curve fits the data better than the
appropriate  null hypothesis by some objective
measure.

Level 4) The curve is statistically significantly better
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than the appropriate null hypothesis (i.e. we can
reject the null).

Level 5) The curve is statistically significantly better
than the appropriate null hypothesis after penaliza-
tion for extra parameters.

In most areas of ecology, level 4 is the standard re-
quired to publish a paper. In macroecology, levels 1
and 2 have often sufficed. For example, Hubbell’s
recent book (2001) works primarily at level 1. Dewdney
(2000) differs by actually going to level 3.

Because many fundamentally different curves can
have an objectively good fit, we can begin to detect the
“right” curve only in comparison with other curves.
This suggests that level 3 is the lowest acceptable level.
But because there are a large number of measures and
the “best” fit can depend on the measure, we should
probably require more than just a preponderance of
evidence (level 3) and should require level 4 instead.

Level 3 and above require a null hypothesis. We have
already seen that a commonly appropriate null hypoth-
esis is the POLO. Other arguments suggests that the
Poisson (the law of rare events, Taylor and Karlin
1998) and the power law (which fits a wide variety of
data as demonstrated in point 2) are also common null
hypotheses.

Simply achieving level 3 would be much stronger
than most of the results reported to date in macroecol-
ogy (and I expect eliminate a great many of the pro-
posed distributions for SADs). However, the usual
standard for publishing in ecology is level 4. There are
many possible tests of whether a curve fits significantly
better than a null hypothesis. Some of these include:

e F statistics — the ratio of sums of squares (e.g.
Hilborn and Mangel 1997)

e Likelihood ratios — the ratio of the probabilistic
likelihood under two different models is asymptoti-
cally distributed as a x> distribution (e.g. Hilborn
and Mangel 1997).

e Monte Carlo and repeated samples — if we generate
many repetitions either through random simulation
methods or from many datasets (e.g. different
locales), we can see if the proposed model fits better
than the null hypothesis 95% of the time.

e Kolmogorov—Smirnov statistic — when using the
Kolmogoro—Smirnov it is usually important to ap-
ply a Lilliefors type correction (1967), since the
parameters are usually estimated from the data.

e 72 test — these tests involve a loss of power due to
the need to bin continuous data, and there is no a
priori preferred “best” binning method.

The first two methods can only be used on nested
models. The last two can be used only to reject the
possibility that we have sampled from a null-hypothesis
distribution. It cannot accept an alternative to the null.
The Akiake and Bayesian information criteria address
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these problems and also take us up to level 5 by using
likelihood ratios and applying a penalty factor for using
more parameters (Hilborn and Mangel 1997).

In short, tests based on curve fitting can be made
reasonably rigorous if we use existing statistical ma-
chinery. It is a mystery why most macroecologists have
chosen to ignore this well-known machinery for so
long.

Moving beyond curve fitting — strong tests in
macroecology

A heuristic to help us achieve stronger tests is to return
to two of the identified problems with curve fitting: the
central limit theorem and the malleability of free fitting
parameters. If we can address these issues, we will have
stronger tests. The following four methods of testing
theories have no free parameters and are not predicted
by the CLT:

1) Constancy or other patterns in the parameters

2) A priori prediction of the parameters

3) The temporal and spatial scale of exchangeability
4) Correlations and other side predictions

The CLT, by making no predictions in these four areas,
affords us four additional methods of testing a macroe-
cological theory. Each of these four methods improves
the quality of the test beyond mere curve-fitting. Even
at stage one in macroecology (pattern identification), it
may be desirable to explore these rather than the shapes
of curves. At stage two (tests of mechanisms), their use
is essential to provide stronger deductive tests. I will
now give examples of each of these four tests.

Example of 1). For a long time, it was thought that
all SPARs had z-values approximately equal to 0.25
(May 1975). This would have been a very interesting
and informative fact — at least as important as the
power-law shape of the curves. But Connor and McCoy
(1979) noticed that the z-values have a much larger
range, from about 0.05 to about 1.0. Rosenzweig exam-
ined these z-values and noticed that in fact z-values
were strongly correlated with the temporal scale of the
processes involved in creating the SPAR. Intercontinen-
tal SPARs have a z~ 1.0; SPARs between islands have
a z~0.25; and nested SPARS on the mainland have
z~0.15. By looking at patterns in the parameters,
Rosenzweig was able to start sorting out different scales
and mechanisms behind the SPARs.

Example of 2). As far back as 1962, Preston devel-
oped a theory that attempted to predict the parameters
of a curve. He suggested that SADs follow a very
specific form of the lognormal curve which he called the
canonical distribution. From this he deduced that the
power coefficient (z-value) of the SPAR should be
about 0.26. As the number of SPARs with slopes
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strongly different than 0.26 has increased, this theory
has come to be considered disproved (Rosenzweig
1995) and some faulty assumptions have been identified
(Leitner and Rosenzweig 1997). But this exactly proves
the power of the approach. Had Preston merely shown
that his canonical lognormal distribution produced a
power-law SPAR (i.e. a curve shape with free fitting
parameters), his theory would have been unfalsifiable.

Example of 3). The idea of exchangeability comes
from statistical mechanics and probability. Two entities
are considered exchangeable if they are identical from
the point of view of the question. Looking at the spatial
and temporal scales over which species are and are not
exchangeable can be quite useful. For example, the
abundances in species abundance distributions (SADs)
have been found to often remain constant over large
spatial and temporal scales (McGowan and Walker
1985, Lawton and Gaston 1989, Ebeling et al. 1990,
Boucot 1996, Brett et al. 1996, Hadly and Maurer
2001). This suggests that any mechanism purporting to
explain SADs must operate on similarly large spatial
and temporal scales. For example, there is nothing in
most of the classical niche preemption models (Moto-
mura 1932) to suggest that the same species would
preempt first at each different site and hence attain high
abundance everywhere, yet we find that species that are
abundant at one location are often abundant elsewhere.
Of course, we could start imagining that arrival and
preemption occur on a very large spatial scale, but this
is a good example of the utility of looking at spatial
and temporal scales. Similarly, the core-satellite hy-
pothesis (Hanski 1982) while not explicit about tempo-
ral scales, presumably treats species as exchangeable
over fairly short time scales — a problem for systems
where species abundance is constant over very long
time scales.

Example of 4). It is a truism that any theory that
makes multiple predictions can be tested more strongly.
Rosenzweig and Abramsky (1997) points out that even
the weakest prediction (a qualitative yes or no) can be
part of a robust test if we have enough of them — he
calls this a “dipswitch test”. Hence, a good theory in
macroecology will make multiple predictions, many of
which are unrelated to the shape of curves. For exam-
ple, various correlations or the precise value of certain
measurements might be predicted as well. As a specific
example, a theory of SADs would have to be consid-
ered very strong if it could predict not just the shape of
the curve, but which species would be common or rare
based on individual species traits.

Although this paper has primarily focused on the
SAD, it should be noted that its conclusions and impli-
cations apply to any field of macroecology that is
focusing on the shape of curves. For example, as al-
ready mentioned, considerable energy is currently going
into debating the correct shape of the species area
relationship (SPAR). Our example of the indistin-

683



guishability of curves suggested that we may never
resolve this empirically. Even on a theoretical level,
fractals and colored noise give a CLT-like argument for
the existence of power laws (Mandelbrot 1982, Tokeshi
1999). Ultimately, pursuing the four areas mentioned
above may better advance our understanding of SPARs
than debating the shape of curves. For example, Rosen-
zweig (1995) has made considerable progress by
combining techniques one and three and examining
different temporal scales over which parameters show a
regular pattern.

Macroecology is a vitally important field of ecology
today. It promises much hope in unraveling fundamen-
tal principles as well as being a useful tool for conserva-
tionists. It would be a shame if this utility were to be
considered unreliable because we macroecologists do
not use rigorous tests of our theories.
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