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2.1 Introduction

Ecologists conduct research to gain information about ecological patterns and
processes (chapter 1). An underlying, fundamental goal for all research, therefore,
is to generate the maximum amount of information from a given input of effort,
which can be measured as time, money, and other similarly limited resources.
Consequently, after we develop a clear set of questions, objectives, or hypotheses
the most critical aspect of ecological research is design. .

Designing a new study involves making a series of interrelated choices, each
of which will influence the amount of information gained and, ultimately, the
likelihood that study objectives will be met. For a manipulative experiment,
choices must be made about the number of treatments to apply and the way in
which treatments are assigned to experimental units. Similarly, for an observa-
tional study, samples must be selected in some way from the larger population of
interest. In both types of research, a critical decision is the number of replicates
(experimental units receiving the same treatment) or samples to choose. When
considering these issues, it is helpful to have a tool to compare different potential
designs. Statistical power analysis is one such tool. ﬁ

In this chapter, we focus on the use of power analy31s in research design,
called prospective (or a priori) power analysis. We review some basic theory and
discuss the practical details of doing prospective power analyses. We also con-
sider the usefulness of calculating power after data have been collected and ana-
lyzed, called retrospective (or a posteriori or post hoc) power analysis. Power
“analysis is most appropriate when data are to be analyzed using formal hypothe-
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sis-testing procedures. However, parameter estimation is often a more appropriate
and informative approach by which to make inferences, so we discuss related
‘techniques when estimation is the main goal of the study. Our discussion stays
‘within the frequentist statistical paradigm: issues within the likelihood and Bayes-
1an frameworks are considered elsewhere (chapter 17; Berger 1985; Royall 1997;
Burnham and Anderson 1998; Barpett 1999).

Power analysis is increasing in popularity, as evidenced by the spate of intro-
ductory articles recently published in the biological literature (e.g., Hayes 1987;
Peterman 1990; Muller and Benignus 1992: Taylor and Gerrodette 1993; Searcy-
Bernal 1994; Thomas and Juanes 1996; Steidl et al. 1997). These all provide
 somewhat different perspectives and, in some cases, different background mate-
rial than we present here. Unfortunately, power is given only cursory treatment
In many biometry textbooks (e.g., Sokal and Rohlf 1995: Steel et al. 1996), al-
though this has been changing to some extent (e.g., Rao 1998; Zar 1996). In
addition, some specialized texts (Kraemer and Thiemann 1987; Cohen 1988; Lip-
sey 1990) and an excellent introductory monograph (N emac 1991) focus on im-
plementing power analysis using SAS. We provide other selected references

throughout this chapter.

2.2 Statistical Issues

221 Statistical Hypothesis Testing

The theory of power analysis falls within the larger framework of statistical hy-
pothesis testing (the so-called N eyman—Pearson approach; Neyman and Pearson
1928; Barnett 1999). In this framework, a research question is phrased as a pair
of complementary statistical hypotheses, the null (H,) and alternative (H,) hypoth-
eses. The finding that would be of interest to the researcher is stated typically as
the alternative hypothesis, and a negative finding is stated as the null hypothesis.
For example, suppose we were interested in assessing whether the average amount
of plant biomass harvested per plot differs between control and treatment plots
subjected to some manipulation. Typically, the null and alternative hypotheses of
interest (in this case as two-tailed hypotheses) would be phrased as '

Hy:  ur=pe, which represen.ts. the .case of equal p0pillaﬁon means

H,: ur# lUc, which represents the case of unequal population means

Imagine that we have collected data from 20 plots, 10 treatment and 10 control.
We can use these data to calculate a test statistic that provides a measure of
evidence against the null hypothesis of equal means. If we make a few assump-
tions about the distribution of this statistic, we can calculate the probability of
finding a test statistic at least as extreme as the one observed, if the null hypothe-
s1s 1s true. This probability is often called the P-value or significance level of the
test. Lower P-values suggest that the test statistic we calculated would be an
unlikely result if the null hypothesis were indeed true, whereas higher P-values



~In this example, imagine that the amount of plant biomass averaged 113 -
kg/ha on treatment plots and 103 kg/ha on control plots (i.e.; estimates of true
population means Wy and i are ¥Yr=113 and y. =103, respectively). From these -
data, we also determined s =15, which is an estimate of the pooled population -
standard deviation, 6. With this information and presuming the data approximate
‘the: necessary assumptions;,, ‘We can use. 'a-?f--'tWOf_-fS'am;)Ie t-test to generate a test
statistic for the null hypothesis of py=pe: O

This test statisic, based on a sample size of 20 (and therefore 18 degrees of
resuiom for (his tes) s associated with a two-tailed P = 0.008, indicating that the
- probability of obtaining a test statistic at least as extreme as the one we observed

(2.98) if the null hypothesis of equal means is true is about 8 in 1,000—a reason-
ably unlikely occurrence, L T TR R Eapoc
- If we apply the -hyp()thesis_'-testing framework rigorously (Which we do not
advocate, but which is necessary for this discussion), we would use the value of

- the test statistic as the_'basi_s for a d_iChot_omo_us.deCisiOn about whether to reject

- the null hypothesis in favor of the alternative hypothesis. If the test statistic ex-
ceeds an arbitrary threshold value, called a critical value, then we conclude that
the null hypothesis is false because evidence p ovided by the data suggests that at-

 taining a test statistic as extreme as the one we observed is unlikely to occur by
~ chance. The critical value is the value of the test statistic tha yields P =q, where

ois the Type T error rate established by the--"ré-SQarc-h-ér'- before the experiment is
- performed (see subsequent discussion). In this example, if we had chosen a Type
T error rate of o = 0.05, then 7, =2.10. Because the observed t-value is greater
~ than the critical- value, we reject the null hypothesis, which is a “statistically
significant” result at the given a-level. - e e

‘Therefore, each time a decision is made to reject or not reject a nuil hypothesis,

thee are (w0 types of errors that can be made (able 2.1). First, a null hypothesis

. Table 2.1 Possible outcomes of statistical hypothesis tests®

.
. . - . .
-, _.- . L]

. Decision and result IR

- nulf hypothesis -  null hypothesis =~
~ Nullhypothesis is rue comect(l-@) - Typelemor(o)
- Null hypothesis is false Type llerror B) Correct a-p

" Reality

hE ”Prubabxlltws assaéihmd -with each decision are given in parentheses,
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~that is actually true might be rejected incorrectly (a Type I error; a false positive).
As in the previous example, the rate at which a Type I error will be accepted is
the o-level and is established by the researcher. Second, a null hypothesis that is
‘actually false might not be rejected (a Type Il error; a false negative). The proba-
bility of a Type II error is denoted as 3. Statistical power is equal to 1 — [} and is
defined as the probability of correctly rejectmg the null hypothems gwen that the
| '_altematlve hypothesis is true (figure 2.1). - . .

- The statistical power of a test is determlned by four factors in the follewmg
-fways.. power increases as sample size, o-level, and effect size (difference between
the null and alternative hypothesis) increase; power decreases as variance in-
creases. Some measures of effect size incorporate variance, leaving only three
components. Effect size is the component of power least familiar to many re-
searchers; we discuss this in detail in the next section.

2 2. 2 Measures of Effect Slze o

In the context of power analyms effect size 1s deﬁned bmadly as the difference
between the null hypothesis and a specific alternative hypothesis. The null hy-
pothesis is often one of no effect, and in these cases effect size is the same as the
alternative hypothesis. For example, in the plant biomass experiment, the null
hypothesis is no difference in mean biomass between treatment and control plots.
One specific alternative 'hypothesis states that a 20 kg/ha difference between treat-
ment and control plots exists. Effect size, in this case, is (20 - 0) =20 kg/ha |
‘However, other measures of effect size could have been used.

- Choosing a meaningful effect size (or range of effect sizes) to use in experi-
me_ntal planning is usually the most challenging aspect of power analysis. In gen-

-, critical
| value /™

Measured Response )

Flgure 2 I Grapmcal 111ustrat10n of q, B power (1- [3) and the cntlcal value for a statlstl-
cal test of a null (H,) versus alternative (Ha) hypothesm | | -
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- of interest is present in the population of interest: (for obfserva{tional f--:studie_'s)’:f Ef-
fect-size used in power analysis is not a ‘population parameter; rather it is 3
hypothetical value that is determined by the null and alternative hypotheses as

*

specified by the researcher. This point is critical and causes a great deal of confu-

of effect size available for 3 given statlsnca] test (Richardson 1996) We ig.t_fqduée

several measures of effect size. and comment on their use,

. Simple effects. - When the question of interest can be reduced to one abouta
single parameter, such as questions about the difference between two population
means (or any other parameter) or the difference ‘between a single bopulation -

Hi~ Ml =0. A useful measure for specitying abs_.t_ﬂu’tej fe‘__ffe:c-t- size, _:theref-orej, 18 the
difference between Population means (or equivalently, the difference between the

between the slope of the ¢ egression line and a slope of zero (or any other fixed,

‘meaningful value, such as the ‘annual rate of change in a monitored 'popu:la't'i:(in_

that would tri gg.er”managé_ment action). In logistic regression, a measure of abso-

lute effect size is the deviation from an odds ratio of 1 (chapter 1 1). Because

absolute effect sizes are related directly to measurements made by researchers,

they are the easiest to spc?éify_and_intel‘pret'; I e
In research studies with a temporal or spatia] control, measures of relative

elfect size are useful because they represent the change in the response variable

due to a treatment relative to the control (r — pe)/c. Relative effect sizes are
usually expressed as percentages, for example_, the percentage Increase in popula-
‘tion size due to treatment. In the plant biomass example, we could specify that

We are interested in a 20% increase in yield. Thi_s would :__c':o'rrespond to a yield of

120 kg/ha if the trye 'éverage harvest in the contro] plot were 100 kg/ha (120 -~
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_-standard deviation. In the plant blomass example if the population standard
~deviation were 15 and the true yield from control plets were 100 kg/ha, then an
absolute effeet size of 20 kg/ha would correspond to a standardized effect size
of [120 — -100]/15 = 1.33. Standardized measures are unitless and therefore com-
parable across studies. They can be useful in research planning as a way to
specify effect size when no previous data exist (for example, when there i 18 no
information about ). However, they may be more difficult to interpret in terms
_ of bteloglcal importance, so we prefer specxfymg absolute or relative measures
.where possible and considering the vanance component of power analysm sepa-
rately . | L | o |
| Camplex eﬁ’ects Estabhshmg a meamngful effect 31ze when an expenment
1neludes ‘multiple factors or multiple levels of a single factor is cenmderably more
_ .:challengmg For example, if the plant biomass experiment were extended to in-
clude additional treatment levels, one possible null hypothesis for this new experi-
“ment would be Hy: ;= Mz = =My, Where Y, 1s the control yield and W, through
1 are the yield of the (k— 1) treatment levels (a one-factor fixed-effect ANOVA).
In thlS context, a useful absolute effect 51ze can. be based on the variance of the
.populatmn means: o o D

A 2 (u: u)

Subsequently, ((52)“2 or G, provides an absolute measure of effect size in the same
units-as the original data, much like the two-sample measure |y, — 1, | discussed
previously. Unlike the two-sample case, however, bmlogteal mterpretatlon of Gu
~with more than two groups can be challenging. el e

- Four approaches have been used to establish effect sizes for these more com-
.fplex situations. The first approach is to specify all of the cell means (the L,’s). In
an experiment with three treatments and a control, for example, we might specify
.that we are interested in examining power given a control yield of 100 kg/ha and
_treatment yields of 120, 130, and 140 kg/ha. This approach requires researchers
to make an explicit statement in terms of the experimental effects they consider
to: be bmloglcally important. Altheugh this exercise is challengmg, these state-
,.ments are easily interpretable. The second approach is to use measures of effect
size such as Oy, but to seek to understand their meaning by experimenting with
different Values of the u,’s. For example, ylelds of 100, 120, 130, and 140 kg/ha,
‘correspond to a G, of 7.4. After some experimentation with different yields, we
‘may conclude that O, 27 represents a biologically important effect. The third -
-approach is to simplify the problem to one of comparing only two parameters.
“For example, in a one-factor ANOVA, we could define a measure of absolute
effect size as (},tm Hmin), Which places upper and lower bounds on power, each
'-ef which can be calculated (Cohen 1988; Nemac 1991). The fourth approach is
0 assess power at prespecified levels of standardized effect sizes (e.g., o,/c for
the ‘previous ANOVA example or |, — 1, |/G for a two-sample #-test) that have
been: suggested for a range of tests (Cohen 1988) In the absence of other guid-
-ance, power can be calculated at three levels as implied by the adjectives small,
_).metllum and large (Cohen 1988). These: conventions are used widely in psychel-
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- ogy and other disciplines, where a medium standardized effect size may corre-
spond to median effect sizes used in psychological research (Sedlmeier and Giger-
“enzer 1989). There is no guarantee, however, that these standardized effect sizes
have any meaning in ecological research, so we recommend this approach only
as a last resort. |

2.3 Types of Power Analyses o

2.3. 1 Prospectlve Power Analyses

Prospective power analyses are perfonned when planmng a study They are ex-
ploratory in nature and provide the opportunity to investigate—individually or in
some combination—how changes in study design and the eomponents of power
~ (sample size, o, effect size, and within-population variance) influence the ability
~ to achieve study goals. Most commonly, prospective power analyses are used to
determine (1) the number of replicates or samples (1) necessary to ensure a speci-
fied level of power for tests of the null hypotheses, given specified effect sizes,
o, and variance, (2) the power of tests of the null hypothesis likely to result when
the maximum number of replicates possible is constrained by cost or logistics,
given the effect sizes, o, and variance, and (3) the minimum effect size that can
be detected, given a target level of power, ¢, variance, and sample size.

Example 1. Sample sizes necessary to achieve a specified level of power,
where population variance is known. Imagine that we are planning a new plant
‘biomass experiment. Assume from previous work that field plots yielded an aver-
age of 103 kg/ha under control conditions and that the population standard devia-
tion, 0, was 16. In this new experiment, we decide to consider the treatment
effective if it increases or decreases plant biomass on plots by an average of 20%
(i.e., we will use a two-tailed test). The relative effect size of interest, therefore,
is 20%, and the absolute effect size is 20% of control plots or 103 kg/ha x 0.20 =
20.6 kg/ha. After some consideration of the relative consequences of Type I and
Type H errors in this experiment (section 2.5.4), we establish o = B=0.1, so the
target power is 1 — 3 =0.9. Because the population standard deviation is known,
we use a Z-test for analysis. We then calculate that 22 samples are required (11
controls and 11 treatments) to meet a power of 0.9 for 20% effect size and © =
16 (see http://www.oup-usa.org/sc/0195131878/). | o

In addition to the challenges involved in choosmg bmloglcally meaningful
effect sizes (section 2.3.2), this example illustrates similar challenges establishing
the relative importance of Type I and Type II errors (o and J3, respectlvely, table
2.1) in power analyses, which we explore in section 2.5.4. -

‘The previous example is somewhat unrealistic because we assumed that the
population variance was known in advance, a rare scenario. In real-world prospec-
tive analyses, we need methods to estimate variance. Undoubtedly, the preferred
method for obtaining a priori estimates of variance for power analysis is to con-
duct a pilot study. Pilot studies offer a number of other advantages, including the
opportunity to test field methods and to train observers. We recommend using
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not just the variance ostimated from the pilot study, but also the upper and lower
confidence limits of the variance estimate to assess the sensitivity of the results
and to provide approximate “hest case” and “worst case” scenarios (see example
7). A second method for obtaining variances is to use those from similar studies
performed previously on the same or similar systems, which can be gathered from
‘colleagues or from the literature. Again, it is useful to repeat the power analyses
using the highest and lowest variances available (preferably based on confidence
intervals) or values somewhat higher and lower than any single estimate gathered.
If variance estimates are obtained from systems other than the study system, the
intervals used should be correspondingly wider. Finally, if no previously collected
' data are available, then the only choice 1s to perform power analyses using a
" range of plausible values of variance and hope that these encompass the true

value. ' o '
 Example 2. Sample sizes necessary to achieve a specified level of power, where
~a previous estimate of population variance is used. In almost all cases, the pop-
ulation variance used for prospective analyses will not be known. In example 1,
assume the estimated standard deviation is still 16 but was based on a previous
study where the sample size was 50. Because we are not assuming that the vari-
ance is known, we use 2 t-test for analysis. This means that the sample size
required given a population standard deviation of 16 will be slightly higher than
in example 1—in this case 24 rather than 22 (see http://www.oup—usa.org/sc/
0195131878/). ' R I
" To assess the sensitivity of this result, we can recalculate the required sample
size using, for example, 90% confidence limits, 12.63 and 22.15, on the estimate
of the standard deviation (see the appendix). These lead to required sample sizes
of 14 and 44, respectively. If the population variance in the new experiment 18
the same as in the previous study, then the probability of obtaining a variance
Jarger than the upper 90% confidence limit is (1 — 0.9)/2 = 0.05. Theretore, if we
are conservative and use the larger sample size, we have a 95% chance of obtain-
ing the level of power desired. Substituting confidence limits on variance into
power calculations 1n this way leads to exact confidence limits on power for any
t.test or fixed effect F-test (Dudewicz 1972; Len Thomas, 1999, unpublished ms).
~_If instead we are constrained to a maximum sample size of 24, we can use
confidence limits on the variance estimate to calculate confidence limits on the
expected power given a fixed sample size. Using this approach and n = 24, 90%
confidence limits on power are 0.72 and 0.98. If a power of 0.72 is not acceptable,
' then we must use a higher o-level or perhaps reevaluate and increase treatment -
intensity (and therefore the likely effect size) used 1n the study. |

Most prospective power analyses are more complex than these examples be-
cause many components of the research design can be altered, each of which can
. fluence the resulting power of the effort (singly or in combination with other
components). In addition, study goals often are not defined so sharply, and power
analysis begins as an investigation of what 18 possible. At this stage, therefore,
we recommend producing tables or graphs displaying the interactions among
plausible levels of the design components and their effects on power (e.g., figure
2.2). Further, multiple goals or hypotheses are usually considered in most research
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o84 [ " Effectsize=023 |

Power

024/ " Effectsize=009

R a= 0 05 |

 Figure 22 The influence of number of replicates on statistical power to detect small (0.09), |
medium (0.23), and large (0.36) effect sizes (differences in the probability of predation) |
between six large and six small trout using a Wilcoxon signed-ranks test. Power was |

designs. This entails multiple, related power analyses, and the consideration of
the relative importance of these different goals. Finally, study design is usually
- more complex than- comparing samples from two populations. In these ‘cases,
considering alternative possible designs is important, as power often can be in- |
creased within a fixed budget and sample size by imaginative design decisions |
(e.g., Steidl et al. 1997). These include increasing the likely effect size by increas- B
-ing the range or intensity of treatment levels, reducing’ experimental error by
blocking. (chapter 4) or measuring covariables. and selecting an efficient method
of assigning treatments to-experimental units (usually the number of replicates
- should be highest in treatment combinations where the variance is expected to be
‘highest). Using a statistical model for data analysis that is consistent with the
- design can also have a strong influence on power (Hatfield et al. 1996; Steidl et
al. 1997). These and other techniques for increasing efficiency- are discussed in
texts on experimental and sampling design (e.g., Thompson 1992; Kuehl 1994).

- Retrospective power analyses are performed after a study has been completed and
the data analyzed. At this point, the outcome of the statistical test is known: either
the null hypothesis was rejected or it was not. If it was not rejected, we may be
cancemedmth committing a Type I error if the statistical power of the test was
low. At this point; all themfmmatwn | necessary to- calculate power is available,
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sftgn sample size, and o-level used are known, and the effect size and
‘e observed in the sample provide estimates of the effect size and V-a_rianCe
sthe population. Whether any of this information is appropriate for estimating
> sitrospective power is controversial (Thomas 1997). Some researchers believe
"shat the whole concept of retrospective power is invalid ‘within the hypothesis-
¢ gesting framework (Goodman and Berlin 1994: Zumbo and Hubley 1998; Gerard
at..1998; Hoenig and Heisey 2001).. Others feel that it is informative if the

 Wffect size observed is not used in the calculations (Rotenberry and Weins 1985;
 Cohen 1988; Peterman 1990; Muller and Benignus 1992; Searcy-Bernal 1994;
' Steid! et al. 1997; Thomas 1997). Although we believe that retrospective power
ha yses have a place, we favor alternative approaches such as the use of confi-
fence intervals, for reasons discussed here and in section 2.5.2. o

it
Ta )

Retrospectlve power is a concern most often when a statistical test has failed
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t&pmwde sufficient evidence to reject the null hypothesis. In this case, we wish
mdlstmgmsh between the two reasons for failing to reject the null hypothesis:
{k} the true effect size was not biologically important and theretore the null hy-
_ pothesis was true’ or nearly true, and (2) the true effect size was biologically
sortant but we failed to reject the false null hypothesis (i.e., we committed a
~ Type 1 error). To make this distinction, we can calculate the power to-detect a
uummumbmloglcally important effect, given the sample size, o-level used, and
“ mnance estimated in the study. If power -at this etfect size is large, then true
~ effect sizes of the magnitude of the minimum biologically important effect would
- likely lead to statistically significant results. Given that the test was not signifi-
_ cant, we can infer that the true effect size is likely not this large. Using similar
- logic, if power at this effect size is small, we can infer that the true effect size
- could be large or small, so the results are inconclusive. =~~~ R
‘Example 3. Retrospective power analysis. . In an attempt to explain regional
differences in reproductive success of ospreys. (Pandion haliaetus), thickness of
‘eggshells (an indicator of organochlorine contamination) was compared between -
a colony with low reproduction and one with normal reproduction (Steidl et al.
- 1991). A two-tailed, two-sample t-test comparing mean thickness between: colo-
nies yielded t,=1.32, P=0.19, which is not statistically significant at any rea-
sonable o-level (low reproduction: y=0.459 mm, n= 10; normal reproduction:
§=0.481 mm, n=41; pooled s =0.0480). o L

&. | ]

- In this case, failing to detect a biologically important difference in eggshell
thickness could lead to incorrect conservation decisions. One way to address the
possibility that a biologically important difference existed but was not detected
by the statistical test is through retrospective power analysis. This raises the ques-
tion of what comprises a biologically important difference. In this case, assume
that previous research has suggested that a 5% -reduction is. eggshell thickness
would likely impair reproduction. This would translate into an absolute difference
of 0.024 mm (0.481 X 0.05), which gives an estimated power of 0.29 for a two-
tailed #-test using the observed value of s and a=0.05, with 95% confidence
limits of 0.20 to 0.39 (see http://www.oup-usa.org/sc/0195 131878/). Of course,
- power to detect a larger 10% difference (0.048 mm) in eggshell thickness is higher
at 0.80, with 95% confidence limits of 0.61 and 0.92. L ST R
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Another relevant approach is to estimate the minimum detectable effect size
for a given level of power, which is the minimum effect size that would have
ylelded P<o.. In this example (5% reduction) and with o= 0.05, s = 0,048 and

-power = 0.8, the minimum detectable eggshell thickness is 0.048 mm (95% conﬁ
dence limits of 0.040 and 0.060). Similarly, you could also estimate the sample |
size that would have been necessary to detect the observed effect size. In this

€xample, the sample size necessary to. detect the ‘observed effect size (O..481 -
0.459 = 0.022 mm) would have been 128 (approximate 95% confidence limits of

90 and 197) (see http://www.oup-usa.org/sc/0195131878/).

- Although the use of retrospective power analysis when the null hypothesis 1s

s1ze (or effect size for a giVﬁn- power) can be translated into a Statement of confi- -
dence about the true effect size. For example, “given the null was not rejected

and that retrospective power for effect size x is l - o, then we have at least (1~

®)100% confidence that the interval (=x; x) contains the true etfect size.” How- -
cver, such a statement has never been justified formally (Hoenig and Heisey

2001). Second, performing retrospective power calculations only when the null

hypothesis is not rejected compromises these analysis. Third, confidence intervals

about the estimates of power or the detectable effect sjze are conservative (i.e.,

too wide), although there are methods for correcting them (Muller and Pasour

1997). Fourth, because retrospective power calculations do not use information

about the observed effect size, they are inefficient compared to the inferences that

tion effect size. Such calculations are uninformative and potentially misleading
(Steidl et al. 1997; Thomas -1997;. Gerard et al. 1998). First, they do not take into
account the biological significance of the effect size used. Second, the observed
power estimates are simply a reexpression of the P-value: low P-values lead to
high power and vice versa Third, even as estimates of “true” power, they are
biased and imprecise. S | o

2.4 Statistical Solutions: Calculating Power

,2.4,_1: ’-Powe;r_ AnaJYSiS Using Standard Tables x SOftware" N

Power can be estimated for common statistical tests using tables or figures in

statistics texts (e.g., Rao 1 998; Zar 1996) or specialized monographs (Kraemer

and Thiemann 1987: Cohen 1988; Lipsey 1990). This approach can provide an
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; easy way to obtain quick, approximate results but is not ideal for an in- depth
~study of power for two reasons. First, estimates of power and related parameters
- {such as minimum detectable effect size) often are inaccurate, either because they
~ must be interpolated from tabulated values or read from a graph, or in some cases
~because the tabulated values are themselves based on approximations (Bradley et
~ al.'1996). Second, an in-depth study requires calculating the desired statistics at
- ‘many levels of the other parameters and graphmg the results, which is laborious
if done by hand. S o

-~ Alternatively, a growing number of computer programs perform power analy-
sts (http://www.oup-usa.org/sc/0195131878/). These range from “freeware” pro-
~grams to large, relatively sophisticated commercial packages. Further, some
- general-purpose statistical and spreadsheet software packages have built-in power
~ analysis capabilities or add-on modules or macros (e.g., the SAS module Unify-
~Pow; O’Brien 1998).Thomas and Krebs (1997) performed a detailed review of
29 programs, comparing their breadth, ease of learning, and ease of use. Although
their specific recommendations about packages will become increasingly outdated
as new software is released, the criteria they used and their general comments
- remain relevant. They considered an ideal program to be one that (1) covers the
- test situations most commonly encountered by researchers; (2) is flexible enough
‘to-deal with new or unusual situations; (3) produces accurate results; (4) calcu-
lates power, sample size, and detectable effect size; (5) allows easy exploration
of multiple values of input parameters; (6) accepts a wide variety of measures of
effect size as input, both raw and standardized; (7) allows estimation of sampling
variance from pilot data and from the sampling variability statistics commonly
reported in the literature; (8) gives easy-to-interpret output; (9) produces presenta-
‘tion-quality tables and graphs for inclusion in reports; (10) allows easy transfer
of results to other applications; and (11) is well documented. They recommended
that beginner to intermediate users consider the specialized commercial power
analysis programs nQuery Advisor, PASS, or Stat Power, whereas those on a
budget try some of the freeware packages such as GPower and PowerPlant (see
http://www.oup-usa. 0rg/sc/0195 131878/ for an up-to-date list of available soft-
‘ware). _ S o | _

2 4.2 Programrmng Power Analysm Using General-purpose
- Statistical Software

Most statlstlcal tests performed by ecologists are based on the Z-, ¢-, F-, or xz— -
distributions. Power analysis for these tests can be programmed in any general-
purpose statistical package that contains the appropriate distribution functions
(http://www.oup-usa.org/sc/0195131878/). The advantage of this approach is that
power analyses can be tailored exactly to the experimental or sampling design
being considered. This is particularly useful for relatively complex designs that
are not supported by most dedicated power-analysis software. This approach may
be most convenient for those who already own a suitable statistics package.

- Programming your own power analyses for the t-, F-, and ’-tests requires
an understanding of noncentral distributions and noncentrality parameters. The
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parametric distributions commonly used for testing are known as central distribu-
tions, which are special cases of more general distributions called ‘noncentral
distributions. Whereas central distributions describe the. distribution of a statistic
under the assumption that the null hypothesis is true, noncentral distributions
describe the .diS-tr?ib.ution' under any specified alternative hypothesis. Compared to
central distributions, noncentral distributions contain one additional parameter,
called a noncentrality parameter, which corresponds to the relevant measure of

effect size. For example, the noncentrality parameter, § for the noncentral ~distri-
- bution, assuming. a two-sample #-test,is o

‘The exact way in which software packages define noncentrality parlamcters.;call )
vary. As this formula illustrates, the noncentrality parameter can be considered
as a measure of standardized effect size (in this case |y, — Wz |/0), with an addi-
tional term that depends on the way in which sample units are allocated to treat-
ments (O’Brien and Muller 1 993). When the .--noncentrality parameter is zero (0=

measure of effect size used in._tﬁ';;-a'.--non_eentral-ityJ.pa_ramﬂter; then using this value .
in the appropriate noncentral distribution function. Only central distributions are
required for power analysis using Z-tests or random effects F-tests (Sheffé 1959,

P- 227). SAS code for the examples in this chapter-and other relevant SAS- proba-

bility functions are provided at h-ttp_:/_/www.oup:-usa:,.'@rg{sc/OIQS 131878/ - .

~Sooner or later, we encounter a statistical test for which the previous two ap-
proaches are not appropriate. This may be because the test is not covered by
tables or accessible software, or because there is no agreed-upon method of calcu-
lating power for that test. One example of the second situation is nonparametric

~ tests, where the distribution of the processes producing the data are not fully-

~ Specified so their distribution under the alternative hypothesis is unknown (see
the following example). Specific examples in. ecology include analyzing multi-
site trends (Gibbs and Melvin 1997), modeling predator functional responses
(Marshal and ‘Boutin 1999), and assessing trends in fish populations (Peterman
- In these situations, power analyses can be performed using stochastic (Monte
Carlo) simulations. The approach is- simple. First, write a ‘computer routine that
mimics the actual experiment, 1including the analysis. In the plant biomass experi-
ment, for example, the program would use a pseudorandom number generator to
create 10 biomass measurements from ‘a normal distribution with mean ‘Ue and
standard deviation ¢ for controls, and 10 ‘measurements from a normal distribu-
tion with mean W, and standard deviation & for treatments. The routine then
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* would analyze these data using a r-test. Second, for each level of the input param-

~ eters (in this case Hc, M and ©), program- the routine to run many times (see
~ subsequent discussion), and tally whether the results were statistically significant
- for each run. Finally, calculate ‘the proportion of results that were significant. If
~the computer model is an accurate representation of the real experiment, then the
~ probability of getting a statistically significant result from the model is equal to
~ the probability of getting a statistically significant result in the real experiment,
in other words, the statistical power-. ‘Hence, the proportion of significant results

fmm the simulation runs 1s an estimate of power SRR

- The number of simulation runs required depends on the desired precision of

~ the power estimate (table 2.2 and appendix). For precision to one decimal place,
1,000 runs should suffice, whereas for precision to two decimal places, 100,000

 Example 4. Power analyses by simulation for a nonparametric test. In an

' experimént- investigating the effect of prey size on predation rates, several repli-

 cate groups of six large and six small juvenile fish were exposed to a predatory

fish; the number of small and large fish depredated was recorded for each group.
A Wilcoxon signed-ranks test (a nonparametric. equivalent of the one-sample
' ttest) was used to test the null hypothesis that the median difference in the num-
ber killed between size classes was zero. Thomas and Juanes (1996) explored the
~ power of this experiment using simulations. They assumed that, within a group,

~ the number of fish killed in each size class was a binomial random variable, and

~ they varied the number of replicate groups (the sample. size) and the difference
~ in probability of predation between large and small fish. Their results (figure 2.2)
 suggested that at least 14. groups were necessary to -achieve power of 0.8 given a
~difference in survival between size classes: (effect size) of 0.23. -
~ To simulate experiments analyzed using nonparametric tests; such as the previ-
‘ous one, we must specify fully the data-generating process. In these -situations,
simulations allow us to explore the power of the experiment under a range of
different assumptions. In the example, the probability that a fish is depredated
- was assumed to be constant within each size class. We could arguably make the

model more realistic by allowing probability of predation to vary within groups

~ according to some distribution (for example, the beta distribution). However,

" Table 2.2 Dependence of the precision of power
. estimates from Monte Carlo simulations on the number
 of simulation runs* B

© simulaions ~ SE@®) 9% U

100 0 0050 03710629
1000 . . . 0016 . 0460-0541 -
10000 . 0005  0487-0513

“t00000 . 0002  0.496-0.504

A a'iCalcu1::'11:14{?&1&‘.artfz perfﬂrmedat a true 'pﬁﬁef' (B) of 0.5 and therefore =~ -
- represent minimum Tevels: nfprecismn(seeappendm) o . RECEE
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there is always a trade-off between simplicity and realism, and we should be
content to stop adding complexity to models when they adequately mimic the
features of the experiment and subsequent data that are of particular interest. In
the example, the variance of the data generated by the model was similar to that
of the experimental data, providing a degree of confidence in the model. |
 Another related approach is the use of bootstrap resampling (chapter 14) to
obtain 'retrospective power estimates from experimental data. In this approach,
many bootstrap data sets are generated from the original data, and the same statis-
tical test is performed on each one. The proportion yielding statistically sigmfi-
cant results is an estimate of the power of the test for the given experiment.
Unless modified in some way, this approach will estimate power at the observed
effect size, which 1s not useful (section 2.3.2). Therefore, power must be esti-
mated over a range of effect sizes, by adding and subtracting effects 1o the ob-
served data (e.g., Hannon et al. 1993). L 5 S

2.5 Related Issues and Techniques .

© 2.5.1 Bioequivalence Testing. S

There have been numerous criticisms of the hypothesis-testing approach (e.g.,
 Yoccoz 1991; Nester 1996: Johnson 1999; references in Harlow et al. 1997 and
Chow 1998). One criticism is that the null hypothesis can virtually never be
true and therefore is of no interest. For example, no matter how homogeneous a
population, no two samples drawn from the population will be identical if mea-
sured finely enough. Consequently, bioequivalence testing was developed in part
to counter this criticism (Chow and Liu 1999) and is used commonly in pharma-
ceutical studies and increasingly in ecological studies (e.g., Dixon and Garrett
 Bioequivalence testing reverses the usual burden of proof, so that a treatment

is considered biologically important until evidence suggests otherwise. This 1is
“achieved by switching the roles of the null and alternative hypotheses. First, a
minimum effect size that is considered biologically important 1s defined (say,
A..). Next, the null hypothesis in stated such that the true effect size 18 greater
than or equal to Ag. Finally, the alternative hypothesis 1s stated such that true
effect size is less than Ac. The plant biomass experiment discussed previously,
for example, could be phrased as: IR S | '

Hy  |ur— el 2 Acits which represents"'thé_ case whei'e a biologically important ef-

fect exists | : o o _ |

H: |ur—Mcl< Agﬁ;,'Which' represents the case where no b_iolagicﬁlly important ef-

| fect exists

In this context, a Type I error occurs when the researcher concludes incorrectly
that no biologically important difference exists when one does. This is the type
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of error that is addressed by power analysis within the standard hypothesis-testing
framework; in bioequivalence testing, this error rate is controlled a priori by set-
ting the a-level of the test. Some have argued that this approach is preferable and
eliminates the need for retrospective power analysis (Hoenig and Heisey 2001).
However, Type II errors still exist within this framework when the researcher

“concludes incorrectly that an important difference exists when one does not. If
this type of error is a concern, then a retrospective investigation will still be
necessary when the null hypothesis is not rejected.

2.5.2 Estimating Effect Sizes and- Conﬁdénce Intervals

Another criticism of hypothesis testing is that the statistical significance of a test
does not reflect the biological importance of the result, because any two samples
will differ significantly if measured finely enough. For example, a statistically
significant result can be found for a biologically trivial effect size when sample
sizes are large enough or variance small enough. Conversely, a statistically insig-
nificant result can be found either because the effect is not biologically important
or because the sample size is small or the variance large. These scenarios can be
 distinguished by reporting an estimate of the effect size and its associated confi-
dence interval, rather than simply reporting a P-value. -
 Confidence intervals can function to test the null hypothesis. When estimated
" for an observed effect size, a confidence interval represents the likely range of
| numbers generated from the data that cannot be excluded as possible values of
the true effect size with probability 1 — o It the 100(1 — o)% confidence interval
~ for the observed effect does not include the value established by the null hypothe-

| 515, youcan conclude with 100(1 — )% confidence that a hypothesis test would
o be s_tati'stiCally signiﬁCant_' at level o. In addition, however, confidence intervals

.

'\.'.\'

- provide more information than hypothesis tests because they establish approxi-
* mate bounds on the likely value of the true effect size. More precisely, on aver-
" age, 100(1 — o)% confidence intervals will contain the true value of the estimated
- parameter 100(1 — o)% of the time. Therefore, mn situations where the null hy-
. pothesis would not be rejected by a hypothesis test, we can use the confidence

‘interval to assess whether a biologically important effect is plausible (figure 2.3).
ffﬁleconﬁdence interval does not include a value large enough to be considered
- biologically impeortant, then we can conclude with 100(1 — o)% confidence that
iﬁbmlo gically important effect occurred. Conversely, if the interval does include
i bielogically important values, then results are inconclusive. This effectively an-
wem the question posed by retrospective power analysis, making such analyses
.. unnecessary (Goodman and Berlin 1994; Thomas 1997; Steidl et al. 1997; Gerard
& +-Confidence interval estimation and retrospective power analysis are related but
®  Hotidentical. In the estimation approach, the focus is on establishing plausible
. Bounds on the true effect size and determining whether biologically important
§ffect sizes are contained within these bounds. In power analysis, the focus 1s on
abability of obtaining a statistically significant result if the effect size were

truly biologically important. Despite these differences, the conclusions drawn

-r'!."t- B .o
.‘-\.I.l.ﬁ_' vt - s -
: ~ -
R _ . .‘-—:.
ut -
-
3
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‘Minimum 'B'lelogleally' i

Meamngfui Effect (+) | B
c _' 'ZereiEﬁedtf ——
Minimum Biologically | [ _
Meaningful Eflect () [~ — — — — —— — —————————
Reject Reject . - o “Aceept” Rejeet ..
B:elogicaf Statrstical R Blelogical Stattst:cal Null not”™
Null ~Null Incencluswe _Null - Biological Null

Flgure 2 3 Hypothetrcal observed effects (elrcles) and thelr asseelated 100(1 - (x)% conﬁ-'
denee 1nterva1s The sohd line ; represents Zero effeet, and dashed lrnes represent minimum

brelngrcally nnportant effects In case A, the eunﬁdence 1nterval for the esnmated effect

excludes zero effect and mcludes only brologreally 1n1portant effects, so the study is both
| statlsttcally and brelogrcally 1n1portant In case B, the cenﬁdence interval excludes Zero

effect, so the study is stattstleally srgniﬁeant ‘however, the confidence lnterval also in- : -
cludes values' beluw those thought to be brolegtcally nnportant so-the study s inconclu- |
sive brelegrca]ly In case C, the confidence interval includes zero effect. and blelegrcally o

important effects, so the study is both statistically and blelngreally inconclusive, In case D, |
the cnnﬁdence interval includes zero effect but excludes all effects considered bmlegrcally |
nnpertant so-the “practlcal’ null hypnthes;ls ef no breleglcally important effect can be

accepted. Wlth 100(1 - 05)% cenﬁdence In case E the eenﬁdenee mterval exeludes Zero '

effect but dues not mclude effects cons1dered btelegrcally nnportant so the study s statls-_, o
| -ucally bnt not btoluglcally 1mpertant L |

from both appreaehes are eften snrnlar Nevertheless we prefer the confidence B
interval approach because interpretation of results is. strarghtforward ‘more infor-
mative, and viewed from a biological rather than pmbabrlrsnc context. ~ - - -
- Example 5. Confidence intervals in lieu of retrospective power. In the osprey
eggshell study from example 3, the mean difference in eggshell thickness between
- regions (the observed absolute effect size) was estimated to be 0.022 mm with a
“standard error of 0, 0169. In the hypothesis-testing approach (example 3), assume
we established o at 0.05: we would then use a 100(1 ~o) =95% cunﬁdence o

interval. The 95% confidence interval on thrs observed effect size (mean differ-

- ence) ranges from ~0.012 to 0.056 mm. ‘This interval contains the value of 0
'predlcted by the null. hypothesis, so we knnw the statistical test would not be
rejected at ov=0.05, as we showed previously (P = 0.19). However, our conclu-
sion about the results of- this study will depend on the effect size we consider
| brelegrcally important. If we consider a relative dtfference of 10% (0.048 mm) .
or greater between celnmes te be nnportant then ‘we can consrder the results to
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be inconclusive because the conﬁdence interval includes this value (figure 2.3).
If instead we consider a relative difference of = 20% (0.096 mm) to be important,
- then we can conclude with 95% confidence that the study showed no 1mportant
_ cffect because this value is excluded by the conﬁdence Interval _ o

2 5 3 De31gn Usmg Conﬁdence Intervals -

If the results of a study are to be evaluated using conﬁdence intervals about effect
size, then we might design the study to achieve a specrfled level of precision, or
equwalently, a confidence interval of specrﬁed width, rather than a desired level
of power. For example, we could plan a study to attain a confidence interval that
is narrow enough to exclude the null effect size if the tiue effect size is that
which we establish as the minimum to be blologrcally nnportant The confidence
interval width that we deternune is a random variable, however, so there is a 50%
'chance that it will be wider or narrower than the planned width.. Therefore a
- conservatrve approach to design in an estimation context is important (as it is in
~all aspects of design), and power analysis is a useful tool for th1s approach
| (Greenland 1988; Borenstein 1994; Goodman and Berlin 1994) |

“As mentioned previously, when the reahzed 100(1 — )% conﬁdence interval
excludes the null effect size, this is equwalent to rejecting the null hypothesrs at
level ol Therefore the probability that the confidence interval excludes the null
“effect size, given some specified true effect size, is equal to the power of the test.
'So, to have a (1 - B) probability of achieving 100(1 — of)% confidence intervals
narrow enough to exclude the null hypothesrs at a spec1ﬁed true effect size, we
must have (1 — ) power at that effect size. | D
~ Example 6. Prospective power analysis for prespecyied conﬁdcnce mtcrval
width. - We are planning to evaluate the results of the next plant biomass expen-
ment using confidence intervals. As in example 2, we will assume that the vari-
ance is not known. For plannrng purposes, we will base our calculations on a
previous study where the estimated standard deviation was 16 with. sample size
20. Assume that we wish to have a 90% chance of obtalnrng 90% confidence
limits large enough to exclude zero difference should the true difference be 20%
- or greater (i.e., 2 20.6 kg/ha). Because the confidence limits are symmetnc the
desired confidence interval width is therefore 2x20.6=41.2 kg/ha. -
 This scenario leads to exactly the same power analysis as in example 2. the
estimated sa:mple size required is 24, but when we Incorporate our uncertainty
about the variance estimate, the sample size required is between 14 and 44. Fur-
ther, calculating the exPected confidence interval widths, given the expected vari-
ance and sample size, is instructive. With a sample size of 24 and standard devia-
tion of 16, the expected confidence interval width is 13.5 kg/ha. So, we can be
90% sure of achieving a confidence interval width of less than 41.2 kg/ha, but
'50% sure that the width will be less than 13.5 kg/ha. As with all prospective
design tools, figures displaying how these values change as other factors in the
de51gn change prove extremely useful in research planning. - S
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2.5.4 Consequences and C0n51derat10ns for Estabhshmg
o and 3

Results of all prospective and retrospectlve power analyses depend on the levels

at which o and B are established. In prospective power analyses, for example,
decreasing « (say from 0.10 to 0.05) or increasing the target level of power (say, |

from 0.7 to 0.9) will always increase the sample sizes necessary to detect a given

etfect size. As with establishing meaningful effect sizes, choosing these error rates =

will forever be a challenge. |
In general, establishing o and §3 requlres balancmg the costs and consequences
of Type I and Type II errors (Shrader-Frechette and McCoy 1992; table 2.1).
Traditionally, scientists have focused only on Type I errors (hence the impetus
for this chapter). However, when there are considerable risks associated with
decisions based on the results of hypothesis tests that are not rejected, the conse-
~quences of Type II errors often can exceed those of Type I errors (Hayes 1987;
Peterman 1990; Steidl et al. 1997). Decisions resulting from hypothesis tests that
were not rejected have an underlying, often unreeogmzed assumption about the
relative costs of Type I and Type I errors that is mdependent of their true costs
(Toft and Shea 1983; Cohen 1988; Peterman 1990). In particular, when p=c,
scientists have decided, perhaps unknowmgly, that the costs of Type I errors
exceed those of Type II errors when their recommendations assume that a null
hypothesis that was not rejected was actually true (i.e., when the null hypothesis
was inappropriately accepted). Some have suggested that Type 1I errors be con-
sidered paramount when a decision would result in the loss of unique ‘Thabitats
or species (Toft and Shea 1983; Shrader-Frechette and MeCoy 1992). Other ap-
proaches have been suggested to balance Type I and Type II error rates based on
their relative costs (Osenberg et al. 1994). | | =
As we discussed previously (section 2.5), hypethe51s testmg has been misused
by scientists too often (see also Salsburg 1985, Yoccoz 1991), especially in the
context of environmental decision making. Hypothesis tests assess only “statisti-
cal significance.” The issue of “practical or biological 1mportanee” may be better
evaluated using confidence intervals (section 2.5.2, although we must still choose
the level of confidence to use). We suggest that the reliance on hypothesis testing
in decision-making circumstances be decreased in favor of more informative
methods that better evaluate available information, including confidence intervals
(section 2.5.2), bioequivalence testing (section 2.5.1), Bayesian methods (chapter
17), and decision theory, an extension of Bayesian methods that incorporates the
“cost” of making right and wrong decisions (Barnett 1999). Nearly all resource-
based decisions are complex, and reducing that complexity to a dichotomous
yes=no decision is naive. Typically, the relevant issue is a not whether a particu-
lar effect or phenomenon exists, but whether the magnitude of the effect is biolog-
ically consequential. Hypothesis testing should not be the only tool used in deci-
sion making, especially when the risks associated with an incorrect decision are
considerable. In these instances, knowledge of the potential risks and available
- evidence for each decision should guide the decision-making process. - |
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~ &6 Conclusnons

??'-;.

We recommend that researchers evaluate their study design critically before com-

Ef;’z;}f;:;._-;ﬁntting to a particular scheme. Only before serious data collection has begun
and considerable investment been made can research goals be evaluated freely
© gnd details of the experimental design be changed to improve efficiency. We
. recommend power analysis as a tool for evaluating alternatives in design. This

. technique forces us to explicitly state our goals (including effect sizes considered
hiologlcally important and tolerable levels of error) and make a plan for the analy-
@?ifﬁ;;fetrs of the data—something done far too rarely in practice. In many cases, the
-~ power analysis will force us to be more realistic about our goals and perhaps
convince us of the need to consult a statistician, either to help us with the power
Lanalys1s or to help outline the options for study design and analyses. No matter
" how harsh the realism, the insights gained will save much time and effort. As Sir
| -Ronald Fisher once sa1d perhaps the most a statistician can do after data have
'been collected is pronounce a postmortem on the effort B “

':x
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_ ‘Ap'pendix '

Here we present formulae and sample calculations for Examples 1-3. SAS code
for these examples 1s available at ht_tp://Www.oup—usa_.org/sc/Ol95_13l878/. This
appendix also contains the formula for calculating confidence limits for an esti-

mated standard deviation. Confidence intervals on power, required sample size,

or minimum detectable effect size can be calculated by substituting the upper and
lower confidence limits for standard deviation into the power formulas in the
SAS code supphed Fmally, we outline the method used to calculate the precision
of power estimates from Monte Carlo srmulatlon (Table 2.2). | -
Al of the examples in this chapter are of two-tailed two-sample tests, where
the test statistic is a Z or t value. In these cases, power 1s calculated as the
probability that the test statistic is greater than or equal to the upper critical value
of the appropriate distribution, plus the probablhty that the test statistic is less
than or equal to the lower cr1t1cal value of the dlStl‘lbllthIl For a Z-test, power

(1-P) is: S .
1=B =1~ FAZian = Zny)) + FAZar ~ Ziy) (1)

where F,(x) 1s the cumulative distribution-function of the Z distribution at x, and
Z,,, 18 the 100p percentile from the standard normal distribution, calculated as:
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priate, and (5) cannat b wesa ~o MOWN, the 7-test rathe
(5) cannot be used. Instead, we provide an initial estimate of » required

We t;;hcbsgte | the caleulated noncentrality (5) into (3), and calculate power |
oo o t0 adjust our estimate of n until we. equal or exceed ﬂl'P lwri o

22 (From o itied. For example, beginning with an estimated n; =n,= 11 or p= |
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1 -B=(1- ,(1 725}20 3. 02))-J-F, -1 725[20 3 02)
o —1-—-0102030+O“0002 0897 B

_ -Thrs is shghtly less than power of 0. 9 specdied so :mcrease the estlmate of n to_ _
. -Hl — H2'= 12 Wthh y16ldS 8 3 154 V 22 tggS 22 - 1 717 tg{ﬁ 22 —"""1 717 SO -
._ power is:.. oo S o

1 = B - F(1. 717|22 3.15)) +F,(—1 717}22 3 15)
R '--—-1-0079325+0000001-0921

: Therefore 12 samples from each group are necessary to meet the specrﬁed level -

o of power, yielding a total n = 24, _ .

~ Example 3. ‘Retrospective power analysxs Frrst estimate power for a hypothe-
sig test already conducted. that was not rejected given a minimum biologically

. _'_.1mportant difference in means between two. groups (A= |1, — W, |), sample size,

oo, and an estimate (s) of the pooled standard deviation (0‘) In tlns example A =

= W] =0.024 mm, 5 = 0.048, n; = 10, ny=41, and o= 0.05. o

- Calculate an estlmate of noncentrahty appropnate for the two-talled two—sam— _
ple t—test (4) o Ll . - :

_':_-: ._Calculate degrees of freedom v=n+ ngl-—-— 2 49 o, 975, 49 = 2 010 and toﬂes 49 =-— _
_.*2 010 and estlmate power usrng equatlon (3) R S

1 --B (1 Ff(2 010]49 1 418)) +F,(——2 010[49 I 418)
L ”*1—071567+0m40 0285

m]mum detectable effect size (Amdﬂ) 1s: estrmated 1terat1vely Begm Wlth an arbr-
B ‘trary estimate of detectable effect size, calculate power, then adjust Amde until the
*_specified level of power is obtamed For example begm with an estmate of Amde '
Q) 030 in (4) - o I |

. ;3"-3:5{-:alculate degrees of freedom v=n+n,- 2 49 tg 75, 0 = 2 010 and f 925 49 =~
2 010 and substltute the estimate. of 5 from above mto (3) to. calculate power |

1 - ﬁ (1 -_-' ,(2 010]49 1 '772)) +F(——2 010|49 1 772)
N .-—058808+000011—0412

-"_:I'---.;'_WhJCh is. below the power of 0 9 spec1f'1ed Therefore increase the estimate of
unt11 you detemnne that the mlmmum effect srze that could have detected @
Fmally, the sample size that would have been necessary to detect the observed
f:;_}};effect size (A) at the specrfied level of power (0.80) is also calculated iteratively.
"'.;-';__ilegm with an arbltrary estlmate of sample size, calculate power, then. adjust the
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. _ ~2=58, fogms, ss=2.001, and fops, 58 =
_2.001, and substitute the estimate of & from above into (3) to calculate power:

1-PB=(1 - F(2.00158,1.936)) + F(-2.001|58,1.936)
=1-0.52216 + 0.00006 =0.478 o

Calculate degrees' of freedom v=n;+n;—

which is well below the power of 0.9 specified, so we increase the estimate of n
until we determine that n = 128 (64 per group) were necessary to detect the ob-
served effect size at the level of power specified. L S
" Confidence limits for population standard deviation . |
The (1 — o) confidence limits for the population standard deviation, based on
an estimated standard deviation, s, are given by o | o |

ey o YKo-amy

‘where V is the degrees of freedom (n—2 for the examples in this chapter) and
y, is the 100p percentile from a ? distribution with v degrees of freedom (e.g.,
Zar 1996, p. 113-115). e e
Precision of power estimates from Monte-Carlo simulations’ -
Each simulation is assumed to be an independent Bernoulli trial with probabil-

ity of success, {3, equal to the true '

. ‘power of the test. Under these conditions,
SE(B) = B(1 — B)/n, where n is- the. number of simulations. SE(P) will be at its
maximum (and so precision at its minimum) when B=05. B
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