MATLAB ® / R Reference March 3, 2009

David Hiebeler Dept. of Mathematics and Statistics University of Maine Orono, ME 04469-5752 http://www.math.umaine.edu/faculty/hiebeler

I wrote the first version of this reference during the Spring 2007 semester, as I learned R while teaching my course "MAT400, Modeling & Simulation" at the University of Maine. The course covers population and epidemiological modeling, including deterministic and stochastic models in discrete and continuous time, along with spatial models. Half of the class meetings are in a regular classroom, and half are in a computer lab where students work through modeling & simulation exercises. When I taught earlier versions of the course, it was based on MATLAB only. In Spring 2007, some biology graduate students in the class who had learned R in statistics courses asked if they could use R in my class as well, and I said yes. My colleague Bill Halteman was a great help as I frantically learned R to stay ahead of the class. As I went, every time I learned how to do something in R for the course, I added it to this reference, so that I wouldn't forget it later. Some items took a huge amount of time searching for a simple way to do what I wanted, but at the end of the semester, I was pleasantly surprised that almost everything I do in MATLAB had an equivalent in R. I was also inspired to do this after seeing the "R for Octave Users" reference written by Robin Hankin. I've continued to add to the document, with many additions based on topics that came up while teaching courses on Advanced Linear Algebra and Numerical Analysis.

This reference is organized into general categories. There is also a MATLAB index and an R index at the end, which should make it easy to look up a command you know in one of the languages and learn how to do it in the other (or if you're trying to read code in whichever language is unfamiliar to you, allow you to translate back to the one you are more familiar with). The index entries refer to the item numbers in the first column of the reference document, rather than page numbers.

Any corrections, suggested improvements, or even just notification that the reference has been useful will be appreciated. I hope all the time I spent on this will prove useful for others in addition to myself and my students. Note that sometimes I don't necessarily do things in what you may consider the "best" way in a particular language; I often tried to do things in a similar way in both languages. But if you believe you have a "better" way (either simpler, or more computationally efficient) to do something, feel free to let me know.

Acknowledgements: Thanks to Alan Cobo-Lewis and Isaac Michaud for correcting some errors; and Stephen Eglen, David Khabie-Zeitoune, Lee Pang, Manas A. Pathak, and Corey Yanofsky for contributions.

Copyright ©2007–2009 David Hiebeler

Permission is granted to make and distribute verbatim copies of this manual provided this permission notice is preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation.

Contents

1	Online help	3
2	Entering/building/indexing matrices 2.1 Cell arrays and lists 2.2 Structs and data frames	4 6 6
3	Computations 3.1 Basic computations 3.2 Complex numbers 3.3 Matrix/vector computations 3.4 Root-finding 3.5 Function optimization/minimization 3.6 Numerical integration / quadrature 3.7 Curve fitting	7 7 8 13 14 14 15
4	Conditionals, control structure, loops	16
5	Functions, ODEs	19
6	Probability and random values	21
7	Graphics 7.1 Various types of plotting	25 25 32 33
8	Working with files	34
0	Miscellaneous	
9	9.1 Variables 9.2 Strings and Misc.	35 35 36
	9.1 Variables	35
10	9.1 Variables 9.2 Strings and Misc.	35 36

1 Online help

No.	Description	Matlab	R
1	Show help for a function (e.g.	help sqrt, or helpwin sqrt to see	help(sqrt) or ?sqrt
	sqrt	it in a separate window	
2	Show help for a built-in key-	help for	help('for') or ?'for'
	word (e.g. for)		
3	General list of many help top-	help	library() to see available libraries,
	ics		or library(help='base') for very
			long list of stuff in base package which
			you can see help for
4	Explore main documentation	doc or helpbrowser (previously it	help.start()
	in browser	was helpdesk, which is now being	
		phased out)	
5	Search documentation for	lookfor binomial	help.search('binomial')
	keyword or partial keyword		
	(e.g. functions which refer to		
	"binomial")		

2 Entering/building/indexing matrices

No.	Description	Matlab	R
1NO. 6	Enter a row vector $\vec{v} =$	$\mathbf{v} = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$	R v=c(1,2,3,4) or alternatively
0	Enter a row vector $v = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$	V=[1 2 3 4]	v=c(1,2,3,4) or alternatively $v=scan()$ then enter "1 2 3 4" and
			press Enter twice (the blank line
			terminates input)
	[1]		terminates input)
	2		
7	Enter a column vector $\begin{bmatrix} 2\\3 \end{bmatrix}$	[1; 2; 3; 4]	c(1,2,3,4)
	LJ		(R does not distinguish between row
			and column vectors.)
8	Enter a matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	[1 2 3 ; 4 5 6]	To enter values by row:
0	Enter a matrix $\begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$	[1 2 3 , 4 3 0]	matrix(c(1,2,3,4,5,6), nrow=2,
			byrow=TRUE) To enter values by
			column: matrix(c(1,4,2,5,3,6),
			nrow=2)
9	Access an element of vector ${\bf v}$	v(3)	v[3]
10	Access an element of matrix	A(2,3)	A[2,3]
	A		
11	Access an element of matrix	A(5)	A[5]
	A using a single index: in-		
	dices count down the first col-		
	umn, then down the second column, etc.		
12	Build the vector [2 3 4 5 6 7]	2:7	2:7
$12 \\ 13$	Build the vector $\begin{bmatrix} 2 & 5 & 4 & 5 & 6 & 7 \end{bmatrix}$ Build the vector $\begin{bmatrix} 7 & 6 & 5 & 4 & 3 & 2 \end{bmatrix}$	7:-1:2	7:2
13	Build the vector $\begin{bmatrix} 7 & 5 & 4 & 5 & 2 \end{bmatrix}$ Build the vector $\begin{bmatrix} 2 & 5 & 8 & 11 & 14 \end{bmatrix}$	2:3:14	seq(2,14,3)
15	Build a vector containing	linspace(a,b,n)	<pre>seq(2,14,3) seq(a,b,length.out=n) or just</pre>
10	n equally-spaced values be-	11115pace (a, b, ii)	<pre>seq(a,b,len=n)</pre>
	tween a and b inclusive		
16	Build a vector of length k	zeros(k,1) (for a column vector) or	rep(0,k)
	containing all zeros	zeros(1,k) (for a row vector)	
17	Build a vector of length k	j*ones(k,1) (for a column vector)	rep(j,k)
	containing the value j in all	or j*ones(1,k) (for a row vector)	
	positions		
18	Build an $m \times n$ matrix of zeros	zeros(m,n)	<pre>matrix(0,nrow=m,ncol=n) or just</pre>
			<pre>matrix(0,m,n)</pre>
19	Build an $m \times n$ matrix con-	j*ones(m,n)	<pre>matrix(j,nrow=m,ncol=n) or just</pre>
	taining j in all positions		<pre>matrix(j,m,n)</pre>
20	$n \times n$ identity matrix I_n	eye(n)	diag(n)
21	Build diagonal matrix A us-	diag(v)	diag(v,nrow=length(v)) (Note: if
	ing elements of vector \mathbf{v} as di-		you are sure the length of vector \mathbf{v} is 2
	agonal entries		or more, you can simply say diag(v).)
22	Extract diagonal elements of matrix A	v=diag(A)	v=diag(A)
23	"Glue" two matrices a1 and	[a1 a2]	cbind(a1,a2)
20	a2 (with the same number of	[ai a2]	(DIHU(aI,aZ)
	rows) side-by-side		
24	"Stack" two matrices a1 and	[a1; a2]	rbind(a1,a2)
2' '	a2 (with the same number of	[41, 42]	- ····································
	columns) on top of each other		
	containing) on top of cuch other		

27 Row 7 of matrix \mathbf{A} $\mathbf{A}(7,:)$ $\mathbf{A}[7,]$ Note: that vector. To make the trix instead, do \mathbf{A} 27 Row 7 of matrix \mathbf{A} $\mathbf{A}(7,:)$ $\mathbf{A}[7,]$ Note: that vector. To make the trix instead, do \mathbf{A} 28 All elements of \mathbf{A} as a vector, column-by-column $\mathbf{A}(:)$ (gives a column vector) $\mathbf{c}(\mathbf{A})$ 29 Rows 2–4, columns 6–10 of \mathbf{A} (this is a 3×5 matrix) $\mathbf{A}(2:4,6:10)$ $\mathbf{A}[2:4,6:10]$ 30 $\mathbf{A} 3 \times 2$ matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order) $\mathbf{A}([7 \ 7 \ 6], [2 \ 1])$ $\mathbf{A}[\mathbf{c}(7,7,6), \mathbf{c}(2, 7,6), \mathbf{c}(3, 7,6)$	gives the result as a he result a $m \times 1$ ma- [,2,drop=FALSE] gives the result as a
26Column 2 of matrix A $A(:,2)$ $A[,2]$ Note: that vector. To make the trix instead, do A27Row 7 of matrix A $A(7,:)$ $A[7,]$ Note: that vector. To make the trix instead, do A28All elements of A as a vector, column-by-column $A(:)$ (gives a column vector) $c(A)$ 29Rows 2-4, columns 6-10 of A (this is a 3×5 matrix) $A(2:4,6:10)$ $A[2:4,6:10]$ 30A 3×2 matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order) $A([7 7 6], [2 1])$ $A[c(7,7,6), c(2, 6)]$ 31Given a single index ind into an $m \times n$ matrix A, compute $[r, c] = ind2sub(size(A), ind)$ $r = ((ind-1))^{3/2}$	he result a $m \times 1$ ma- [,2,drop=FALSE]
27 Row 7 of matrix A $A(7,:)$ $vector.$ To make the trix instead, do A 27 Row 7 of matrix A $A(7,:)$ $A[7,]$ Note: that vector. To make the trix instead, do A 28 All elements of A as a vector, column-by-column $A(:)$ (gives a column vector) $c(A)$ 29 Rows 2–4, columns 6–10 of A (this is a 3×5 matrix) $A(2:4,6:10)$ $A[2:4,6:10]$ 30 A 3×2 matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order) $A([7 7 6], [2 1])$ $A[c(7,7,6),c(2, 1), c(2, $	he result a $m \times 1$ ma- [,2,drop=FALSE]
27Row 7 of matrix A $A(7,:)$ trix instead, do A27Row 7 of matrix A $A(7,:)$ $A[7,]$ Note: that vector. To make the trix instead, do A28All elements of A as a vector, column-by-column $A(:)$ (gives a column vector) $c(A)$ 29Rows 2–4, columns 6–10 of A (this is a 3 × 5 matrix) $A(2:4,6:10)$ $A[2:4,6:10]$ 30A 3 × 2 matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order) $A([7 7 6], [2 1])$ $A[c(7,7,6),c(2, 0)]$ 31Given a single index ind into 	[,2,drop=FALSE]
27Row 7 of matrix A $A(7,:)$ $A[7,]$ Note: that vector. To make the trix instead, do A28All elements of A as a vector, column-by-column $A(:)$ (gives a column vector) $c(A)$ 29Rows 2-4, columns 6-10 of A (this is a 3×5 matrix) $A(2:4,6:10)$ $A[2:4,6:10]$ 30A 3×2 matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order) $A([7 7 6], [2 1])$ $A[c(7,7,6),c(2, 0)]$ 31Given a single index ind into an $m \times n$ matrix A, compute $[r, c] = ind2sub(size(A), ind)$ $r = ((ind-1) \sqrt{2}$	
28All elements of A as a vector, column-by-columnA(:) (gives a column vector)vector. To make the trix instead, do A29Rows 2-4, columns 6-10 of A (this is a 3×5 matrix)A(:) (gives a column vector)c(A)30A 3×2 matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order)A([7 7 6], [2 1])A[c(7,7,6),c(2, an $m \times n$ matrix A, compute31Given a single index ind into an $m \times n$ matrix A, compute[r c] = ind2sub(size(A) ind)r = ((ind-1) 1/2/2)	gives the result as a
128 All elements of \mathbf{A} as a vector, column-by-column $\mathbf{A}(:)$ (gives a column vector) $\mathbf{c}(\mathbf{A})$ 29 Rows 2–4, columns 6–10 of \mathbf{A} (this is a 3 × 5 matrix) $\mathbf{A}(2:4,6:10)$ $\mathbf{A}[2:4,6:10]$ 30 \mathbf{A} 3 × 2 matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order) $\mathbf{A}([7 \ 7 \ 6], [2 \ 1])$ $\mathbf{A}[\mathbf{c}(7,7,6), \mathbf{c}(2, \mathbf{c})]$ 31 Given a single index ind into an $m \times n$ matrix \mathbf{A} , compute $[\mathbf{r}, \mathbf{c}] = ind2sub(size(\mathbf{A}), ind)$ $\mathbf{r} = ((ind-1))^{2/2}$	
28All elements of A as a vector, column-by-columnA(:) (gives a column vector) $c(A)$ 29Rows 2-4, columns 6-10 of A (this is a 3×5 matrix)A(2:4,6:10)A[2:4,6:10]30A 3×2 matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order)A([7 7 6], [2 1])A[c(7,7,6),c(2, matrix A, compute31Given a single index ind into an $m \times n$ matrix A, compute $[r, c] = ind2sub(size(A), ind)$ $r = ((ind-1) \sqrt[n]{10}$	
column-by-columnA(2:4,6:10)29Rows 2-4, columns 6-10 of A (this is a 3×5 matrix)A(2:4,6:10)30A 3×2 matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order)A([7 7 6], [2 1])31Given a single index ind into an $m \times n$ matrix A, compute $[r, c] = ind2sub(size(A), ind)$ $r = ((ind-1) \%)$	[7,,drop=FALSE]
29Rows 2-4, columns 6-10 of A (this is a 3×5 matrix)A(2:4,6:10)A[2:4,6:10]30A 3×2 matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order)A([7 7 6], [2 1])A[c(7,7,6),c(2,31Given a single index ind into an $m \times n$ matrix A, compute[r c] = ind2sub(size(A) ind)r = ((ind-1) 1/2/2)	
(this is a 3×5 matrix)A([7 7 6], [2 1])A[c(7,7,6),c(2, rows 7, 7, and 6 and columns 2 and 1 of A (in that order)31Given a single index ind into an $m \times n$ matrix A, compute[r c] = ind2sub(size(A) ind)r = ((ind-1) 1/2)	
30A 3×2 matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order)A([7 7 6], [2 1])A[c(7,7,6),c(2,31Given a single index ind into an $m \times n$ matrix A, compute[r c] = ind2sub(size(A) ind)r = ((ind-1) %	
rows 7, 7, and 6 and columns 2 and 1 of A (in that order)31Given a single index ind into an $m \times n$ matrix A, compute[r c] = ind2sub(size(A) ind)r = ((ind-1) %)	1)]
2 and 1 of A (in that order)31Given a single index ind into an $m \times n$ matrix A, compute[r c] = ind2sub(size(A) ind)r = ((ind-1) %)	1)]
31 Given a single index ind into an $m \times n$ matrix A, compute [r c] = ind2sub(size(A) ind) r = ((ind-1) $\%$	
an $m \times n$ matrix A , compute $[r, c] = ind2sub(size(A), ind) = ((ind-1)) \%$	
the row r and countin c of that position (also works if	1) / m) + 1
ind is a vector)	
32 Given the row r and column	
c of an element of an $m \times n$ ind = sub2ind(size(A), r, c) ind = (c-1)*m +	r
matrix A , compute the single	-
index ind which can be used	
to access that element of A	
(also works if \mathbf{r} and \mathbf{c} are vec-	
tors)	
33 Given equal-sized vectors r and c (each of length k), set inde = cub2ind(cize(A) r c); inde = chind(r	
1110S - SUDZINU(SIZe(A), 1, C), 1110S - CDINU(1, C), 110S - CDIN	c)
and columns (given by \mathbf{c}) of $A(inds) = 12;$ $A[inds] = 12$	
matrix A equal to 12. That	
is, k elements of A will be	
modified.	
34 Truncate vector \mathbf{v} , keeping $\mathbf{v} = \mathbf{v}(1:10)$ $\mathbf{v} = \mathbf{v}[1:10]$, or	r length(v) = 10
only the first 10 elements also works	
35 Reshape matrix A, making it $A = reshape(A,m,n)$ dim(A) = c(m,n)	
an $m \times n$ matrix with ele-	
ments taken columnwise from	
the original A (which must	
$\frac{1}{26} \text{France triangeneration} \text{In a trial (A)}$	
36 Extract the lower-triangular $L = tril(A)$ $L = A; L[upper.$	tr1(L)]=0
portion of matrix A 37 Extract the upper-triangular U = triu(A) U = A; U[lower.	$+\pi i (II)] = 0$
$\begin{bmatrix} 37 \\ \text{portion of matrix } A \end{bmatrix} = \text{triu(A)} \qquad \qquad$	011(0)]-0
	this is part of the
	which you'll need to
	295 for how to in-
stall/load package	
	(Note that
e.g. a $3 \times 4 \times 2$ array with the reshape(1:24, [3 4 2]) a matrix is 2-I	
	array is more gen-
erally <i>N</i> -D)	~

2.1 Cell arrays and lists

No.	Description	Matlab	R
40	Build a vector \mathbf{v} of length \mathbf{n} , capable of containing differ- ent data types in different el- ements (called a <i>cell array</i> in MATLAB, and a <i>list</i> in R)	<pre>v = cell(1,n) In general, cell(m,n) makes an $m \times n$ cell array. Then you can do e.g.: v{1} = 12 v{2} = 'hi there' v{3} = rand(3)</pre>	<pre>v = vector('list',n) Then you can do e.g.: v[[1]] = 12 v[[2]] = 'hi there' v[[3]] = matrix(runif(9),3)</pre>
41	Extract the i^{th} element of a cell/list vector \mathbf{v}	<pre>w = v{i} If you use regular indexing, i.e. w = v(i), then w will be a 1 × 1 cell matrix containing the contents of the ith element of v.</pre>	<pre>w = v[[i]] If you use regular indexing, i.e. w = v[i], then w will be a list of length 1 containing the contents of the ith element of v.</pre>
42	Set the name of the i^{th} element in a list.	(MATLAB does not have names asso- ciated with elements of cell arrays.)	<pre>names(v)[3] = 'myrandmatrix' Use names(v) to see all names, and names(v)=NULL to clear all names.</pre>

2.2 Structs and data frames

No	Description	Matlab	R
43	Create a matrix-like object	<pre>avals=2*ones(1,6);</pre>	v=c(1,5,3,2,3,7); d=data.frame(
	with different named columns	yvals=6:-1:1; v=[1 5 3 2 3 7];	cbind(a=2, yy=6:1), v)
	(a <i>struct</i> in MATLAB, or a	d=struct('a',avals,	
	$data \ frame \ in \ R)$	'yy', yyvals, 'fac', v);	

Note that I (surprisingly) don't use R for statistics, and therefore have very little experience with data frames (and also very little with MATLAB structs). I will try to add more to this section later on.

3 Computations

3.1 Basic computations

No.	Description	Matlab	R
44	a+b, a-b, ab, a/b	a+b, a-b, a*b, a/b	a+b, a-b, a*b, a/b
44		sqrt(a)	
40	\sqrt{a} a^b		sqrt(a)
-	а а	a^b	a^b
47	a (note: for complex ar-	abs(a)	abs(a)
	guments, this computes the		
48	$\frac{\text{modulus}}{e^a}$		
		exp(a)	exp(a)
49	$\ln(a)$	log(a)	log(a)
50	$\log_2(a), \log_{10}(a)$	log2(a), log10(a)	log2(a), log10(a)
51	$\sin(a), \cos(a), \tan(a)$	sin(a), cos(a), tan(a)	sin(a), cos(a), tan(a)
52	$\sin^{-1}(a), \cos^{-1}(a), \tan^{-1}(a)$	asin(a), acos(a), atan(a)	asin(a), acos(a), atan(a)
53	$\sinh(a), \cosh(a), \tanh(a)$	<pre>sinh(a), cosh(a), tanh(a)</pre>	<pre>sinh(a), cosh(a), tanh(a)</pre>
54	$\sinh^{-1}(a), \qquad \cosh^{-1}(a),$	asinh(a), acosh(a), atanh(a)	asinh(a), acosh(a), atanh(a)
	$\tanh^{-1}(a)$		
55	$n \mod k$ (modulo arith-	mod(n,k)	n %% k
	metic)		
56	Round to nearest integer	round(x)	round(x) (Note: R uses IEC 60559
			standard, rounding 5 to the even digit
			— so e.g. round(0.5) gives 0 , not 1 .)
57	Round down to next lowest	floor(x)	floor(x)
	integer		
58	Round up to next largest in-	ceil(x)	ceiling(x)
	teger		
59	Sign of x (+1, 0, or -1)	<pre>sign(x) (Note: for complex values,</pre>	sign(x) (Does not work with com-
		this computes x/abs(x).)	plex values)
60	Error function $\operatorname{erf}(x) =$	erf(x)	2*pnorm(x*sqrt(2))-1
	$\left(2/\sqrt{\pi}\right)\int_0^x e^{-t^2} dt$		
61	Complementary er-	erfc(x)	2*pnorm(x*sqrt(2),lower=FALSE)
	ror function $\operatorname{cerf}(x) =$		
	$(2/\sqrt{\pi})\int_x^\infty e^{-t^2}dt = 1\text{-}\mathrm{erf}(x)$		
62	Inverse error function	erfinv(x)	qnorm((1+x)/2)/sqrt(2)
63	Inverse complementary error	erfcinv(x)	qnorm(x/2,lower=FALSE)/sqrt(2)
	function		

Note: the various functions above (logarithm, exponential, trig, abs, and rounding functions) all work with vectors and matrices, applying the function to each element, as well as with scalars.

3.2 Complex numbers

No.	Description	Matlab	R
64	Enter a complex number	1+2i	1+2i
65	Modulus (magnitude)	abs(z)	abs(z) or Mod(z)
66	Argument (angle)	angle(z)	Arg(z)
67	Complex conjugate	conj(z)	Conj(z)
68	Real part of z	real(z)	Re(z)
69	Imaginary part of z	<pre>imag(z)</pre>	Im(z)

3.3 Matrix/vector computations

No.	Description	Matlab	R
70	Matrix multiplication AB	A * B	A %*% B
71	Element-by-element multiplication of A and B	A .* B	A * B
72	Transpose of a matrix, A^T	A' (This is actually the complex con- jugate (i.e. Hermitian) transpose; use A.' for the non-conjugate trans- pose if you like; they are equivalent for real matrices.)	t(A) for transpose, or Conj(t(A)) for conjugate (Hermitian) transpose
73	Solve $A\vec{x} = \vec{b}$	A\b Warning: if there is no solution, MATLAB gives you a least-squares "best fit." If there are many solu- tions, MATLAB just gives you one of them.	solve(A,b) Warning: this only works with square invertible matrices.
74	Reduced echelon form of A	rref(A)	${\sf R}$ does not have a function to do this
75	Compute inverse of \mathbf{A}	inv(A)	solve(A)
76	Compute AB^{-1}	A/B	A %*% solve(B)
77	Element-by-element division of A and B	А./В	A / B
78	Compute $A^{-1}B$	A∖B	solve(A,B)
79	Square the matrix A	A^2	A %*% A
80	Raise matrix A to the k^{th} power	A^k	(No easy way to do this in R other than repeated multiplication A %*% A %*% A)
81	Raise each element of A to the k^{th} power	A.^k	A^k
82	Rank of matrix A	rank(A)	qr(A)\$rank
83	Set w to be a vector of eigenvalues of A , and V a matrix containing the corresponding eigenvectors	[V,D]=eig(A) and then w=diag(D) since MATLAB returns the eigenval- ues on the diagonal of D	<pre>tmp=eigen(A); w=tmp\$values; V=tmp\$vectors</pre>
84	Permuted <i>LU</i> factorization of a matrix	[L,U,P]=lu(A) then the matrices satisfy $PA = LU$. Note that this works even with non-square matrices	tmp=expand(lu(Matrix(A))); L=tmp\$L; U=tmp\$U; P=tmp\$P then the matrices satisfy $A = PLU$, i.e. $P^{-1}A = LU$. Note that the lu and expand functions are part of the Ma- trix package (see item 295 for how to install/load packages). Also note that this doesn't seem to work correctly with non-square matrices. L , U , and P will be of class Matrix rather than class matrix; to make them the latter, instead do L=as.matrix(tmp\$L), U=as.matrix(tmp\$U), and P=as.matrix(tmp\$P) above.

No.	Description	Matlab	R
85	Singular-value decomposi- tion: given $m \times n$ matrix A with rank r , find $m \times r$ matrix P with orthonormal columns, diagonal $r \times r$ matrix S , and $r \times n$ matrix Q^T with orthonormal rows so that $PSQ^T = A$	[P,S,Q]=svd(A,'econ')	<pre>tmp=svd(A); U=tmp\$u; V=tmp\$v; S=diag(tmp\$d)</pre>
86	Schur decomposi- tion of square matrix, $A = QTQ^{H} = QTQ^{-1}$ where Q is unitary (i.e. $Q^{H}Q = I$) and T is upper triangular; $Q^{H} = \overline{Q^{T}}$ is the Hermitian (conjugate) transpose	[Q,T]=schur(A)	<pre>tmp=Schur(Matrix(A)); T=tmp@T; Q=tmp@Q Note that Schur is part of the Matrix package (see item 295 for how to install/load packages). T and Q will be of class Matrix rather than class matrix; to make them the latter, instead do T=as.matrix(tmp@T) and Q=as.matrix(tmp@Q) above.</pre>
87	Cholesky factorization of a square, symmetric, positive definite matrix $A = R^T R$, where R is upper-triangular	R = chol(A)	R = chol(A) Note that chol is part of the Matrix package (see item 295 for how to install/load packages).
88	QR factorization of matrix A , where Q is orthogonal (sat- isfying $QQ^T = I$) and R is upper-triangular	[Q,R]=qr(A) satisfying $QR = A$, or [Q,R,E]=qr(A) to do permuted $QRfactorization satisfying AE = QR$	<pre>z=qr(A); Q=qr.Q(z); R=qr.R(z); E=diag(n)[,z\$pivot] (where n is the number of columns in A) gives permuted QR factorization satisfying AE = QR</pre>
89	Vector norms	norm(v,1) for 1-norm $\ \vec{v}\ _1$, norm(v,2) for Euclidean norm $\ \vec{v}\ _2$, norm(v,inf) for infinity-norm $\ \vec{v}\ _{\infty}$, and norm(v,p) for <i>p</i> -norm $\ \vec{v}\ _p = (\sum v_i ^p)^{1/p}$	R does not have a norm function for vectors; only one for matrices. But the following will work: norm(matrix(v),'1') for 1-norm $\ \vec{v}\ _1$, norm(matrix(v),'i') for infinity-norm $\ \vec{v}\ _{\infty}$, and sum(abs(v)^p)^(1/p) for <i>p</i> -norm $\ \vec{v}\ _p = (\sum v_i ^p)^{1/p}$
90	Matrix norms	norm(A,1) for 1-norm $ A _1$, norm(A) for 2-norm $ A _2$, norm(A,inf) for infinity-norm $ A _{\infty}$, and norm(A,'fro') for Frobenius norm $(\sum_i (A^T A)_{ii})^{1/2}$	norm(A,'1') for 1-norm $ A _1$, max(svd(A)\$d) for 2-norm $ A _2$, norm(A,'i') for infinity-norm $ A _{\infty}$, and norm(A,'f') for Frobenius norm $(\sum_i (A^T A)_{ii})^{1/2}$
91	Condition number $\operatorname{cond}(A) = A _1 A^{-1} _1$ of A , using 1- norm	<pre>cond(A,1) (Note: MATLAB also has a function rcond(A) which computes reciprocal condition estimator using the 1-norm)</pre>	1/rcond(A,'1')
92	Condition number $\operatorname{cond}(A) = \ A\ _2 \ A^{-1}\ _2$ of A , using 2- norm	cond(A,2)	<pre>kappa(A, exact=TRUE) (leave out the "exact=TRUE" for an esti- mate)</pre>
93	Condition number $\operatorname{cond}(A) = \ A\ _{\infty} \ A^{-1}\ _{\infty}$ of A , using infinity-norm	<pre>cond(A,inf)</pre>	1/rcond(A,'I')

No.	Description	Matlab	R
94	Compute mean of all ele-	mean(v) for vectors, mean(A(:)) for	mean(v) or mean(A)
	ments in vector or matrix	matrices	
95	Compute means of columns	mean(A)	colMeans(A)
	of a matrix		
96	Compute means of rows of a	mean(A,2)	rowMeans(A)
	matrix		
97	Compute standard deviation	<pre>std(v) for vectors, std(A(:)) for</pre>	sd(v) for vectors, sd(c(A)) for ma-
	of all elements in vector or	matrices. This normalizes by $n-1$.	trices. This normalizes by $n-1$.
	matrix	Use $std(v,1)$ to normalize by n .	
98	Compute standard deviations	std(A). This normalizes by $n-1$.	sd(A). This normalizes by $n-1$.
	of columns of a matrix	Use $std(A,1)$ to normalize by n	
99	Compute standard deviations	std(A,0,2) to normalize by $n-1$,	apply(A,1,sd). This normalizes by
	of rows of a matrix	std(A,1,2) to normalize by n	n-1.
100	Compute variance of all ele-	<pre>var(v) for vectors, var(A(:)) for</pre>	<pre>var(v) for vectors, var(c(A)) for</pre>
	ments in vector or matrix	matrices. This normalizes by $n-1$.	matrices. This normalizes by $n-1$.
		Use $var(v,1)$ to normalize by n .	
101	Compute variance of columns	var(A). This normalizes by $n-1$.	apply(A,2,var). This normalizes by
102	of a matrix	Use $var(A, 1)$ to normalize by n	n-1.
102	Compute variance of rows of	var(A,0,2) to normalize by $n-1$,	apply(A,1,var). This normalizes by
102	a matrix	var(A,1,2) to normalize by n	n-1.
103	Compute covariance for two vectors of observations	cov(v,w) computes the 2 × 2 co-	cov(v,w)
	vectors of observations	variance matrix; the off-diagonal ele-	
104	Compute covariance matrix,	ments give the desired covariance cov(A)	var(A) or cov(A)
104	giving covariances between		VAL(A) OF COV(A)
	columns of matrix A		
105	Given matrices A and B ,	I don't know of a direct way to	cov(A,B)
100	build covariance matrix C	do this in Matlab. But one way is	
	where c_{ij} is the covariance be-	[Y,X]=meshgrid(std(B),std(A));	
	tween column i of A and col-	X.*Y.*corr(A,B)	
	umn j of B		
106	Compute Pearson's linear	corr(v, w) Note: v and w must	cor(v,w)
	correlation coefficient be-	be column vectors. To make it	
	tween elements of vectors ${\bf v}$	work regardless of whether they	
	and \mathbf{w}	are row or column vectors, do	
	~	corr(v(:),w(:))	
107	Compute Kendall's tau corre-	<pre>corr(v,w,'type','kendall')</pre>	<pre>cor(v,w,method='kendall')</pre>
	lation statistic for vectors \mathbf{v}		
100	and w Compute Spearman's rho	<pre>corr(v,w,'type','spearman')</pre>	<pre>cor(v,w,method='spearman')</pre>
108	Compute Spearman's rho correlation statistic for	COII(V,w, Lype', spearman')	cor(v,w,method='spearman')
	vectors \mathbf{v} and \mathbf{w}		
109	Compute pairwise Pearson's	corr(A) The 'type' argument may	cor(A) The method argument may
	correlation coefficient be-	also be used as in the previous two	also be used as in the previous two
	tween columns of matrix	items	items
	A containing of matrix		
110	Compute matrix C of pair-	corr(A,B) The 'type' argument	cor(A,B) The method argument
	wise Pearson's correlation co-	may also be used as just above	may also be used as just above
	efficients between each pair of		~ U · · · · ·
	columns of matrices A and B ,		
	i.e. so c_{ij} is the correlation		
	between column i of A and		
I	column j of B		

No.	Description	Matlab	R
111	Compute sum of all elements	<pre>sum(v) for vectors, sum(A(:)) for</pre>	<pre>sum(v) or sum(A)</pre>
	in vector or matrix	matrices	
112	Compute sums of columns of	sum(A)	colSums(A)
	matrix		
113	Compute sums of rows of ma-	sum(A,2)	rowSums(A)
	trix		
114	Compute matrix exponential	expm(A)	<pre>expm(Matrix(A)), but this is part of</pre>
	$e^A = \sum_{k=0}^{\infty} A^k / k!$		the Matrix package which you'll need
			to install (see item 295 for how to in-
			stall/load packages).
115	Compute cumulative sum of	cumsum(v)	cumsum(v)
	values in vector		
116	Compute cumulative sums of	cumsum(A)	apply(A,2,cumsum)
	columns of matrix		
117	Compute cumulative sums of	cumsum(A,2)	<pre>t(apply(A,1,cumsum))</pre>
	rows of matrix		
118	Compute cumulative sum	<pre>cumsum(A(:))</pre>	cumsum(A)
	of all elements of matrix		
110	(column-by-column)		
119	Cumulative product of ele-	cumprod(v) (Can also be used in the	cumprod(v) (Can also be used in the
100	ments in vector v	various ways cumsum can)	various ways cumsum can)
120	Cumulative minimum or	I don't know of an easy way to do	<pre>cummin(v) or cummax(v)</pre>
	maximum of elements in	this in MATLAB	
101	vector v		
121	Compute differences between consecutive elements of vec-	diff(v)	diff(v)
	tor \mathbf{v} . Result is a vector		
	tor \mathbf{v} . Result is a vector \mathbf{w} 1 element shorter than \mathbf{v} ,		
	where element i of w is ele-		
	ment $i+1$ of v minus element		
	i of \mathbf{v}		
122	Make a vector \mathbf{y} the same size	z = [3 4]; y = z((x > 5)+1)	y = ifelse(x > 5, 4, 3)
122	as vector \mathbf{x} , which equals 4	2 [0 +], y = 2((x > 0) + 1)	y 110186(x > 0, 1, 0)
	everywhere that \mathbf{x} is greater		
	than 5, and equals 3 every-		
	where else (done via a vector-		
	ized computation).		
123	Compute minimum of values	min(v)	min(v)
	in vector \mathbf{v}		
L		1	

No.	Description	Matlab	R
124	Compute minimum of all val-	min(A(:))	min(A)
	ues in matrix \mathbf{A}		
125	Compute minimum value of	min(A) (returns a row vector)	apply(A,2,min) (returns a vector)
	each column of matrix \mathbf{A}		
126	Compute minimum value of	<pre>min(A, [], 2) (returns a column</pre>	apply(A,1,min) (returns a vector)
	each row of matrix \mathbf{A}	vector)	
127	Given matrices \mathbf{A} and \mathbf{B} ,	min(A,B)	pmin(A,B)
	compute a matrix where each		
	element is the minimum of		
	the corresponding elements of		
	\mathbf{A} and \mathbf{B}		
128	Given matrix \mathbf{A} and scalar	min(A,c)	<pre>pmin(A,c)</pre>
	\mathbf{c} , compute a matrix where		
	each element is the minimum		
	of \mathbf{c} and the corresponding el-		
	ement of \mathbf{A}		
129	Find minimum among all val-	min([A(:) ; B(:)])	min(A,B)
	ues in matrices \mathbf{A} and \mathbf{B}		
130	Find index of the first time	[y,ind] = min(v)	<pre>ind = which.min(v)</pre>
	min(v) appears in v , and		
	store that index in ind		

Notes:

- MATLAB and R both have a max function (and R has pmax and which.max as well) which behaves in the same ways as min but to compute maxima rather than minima.
- Functions like exp, sin, sqrt etc. will operate on arrays in both MATLAB and R, doing the computations for each element of the matrix.

No.	Description	Matlab	R
131	Number of rows in A	<pre>size(A,1)</pre>	nrow(A)
132	Number of columns in A	size(A,2)	ncol(A)
133	Dimensions of A , listed in a	size(A)	dim(A)
	vector		
134	Number of elements in vector	length(v)	length(v)
	v		
135	Total number of elements in	numel(A)	length(A)
	matrix A		
136	Max. dimension of A	length(A)	<pre>max(dim(A))</pre>
137	Sort values in vector \mathbf{v}	sort(v)	sort(v)
138	Sort values in \mathbf{v} , putting	[s,idx]=sort(v)	<pre>tmp=sort(v,index.return=TRUE);</pre>
	sorted values in \mathbf{s} , and indices		s=tmp\$x; idx=tmp\$ix
	in \mathbf{idx} , in the sense that $\mathbf{s}[\mathbf{k}]$		
	= x[idx[k]]		
139	To count how many values in	sum((x > 4) & (x <= 7))	sum((x > 4) & (x <= 7))
	the vector \mathbf{x} are between 4		
	and 7 (inclusive on the upper		
	end)		
140	Given vector \mathbf{v} , return list of	find(v > 5)	which($v > 5$)
	indices of elements of ${\bf v}$ which		
	are greater than 5		

No.	Description	Matlab	R
141	Given matrix \mathbf{A} , return list	find(A > 5)	which($A > 5$)
	of indices of elements of \mathbf{A}		
	which are greater than 5, us-		
	ing single-indexing		
142	Given matrix \mathbf{A} , generate	[r,c] = find(A > 5)	<pre>w = which(A > 5, arr.ind=TRUE);</pre>
	vectors \mathbf{r} and \mathbf{c} giving rows		r=w[,1]; c=w[,2]
	and columns of elements of \mathbf{A}		
	which are greater than 5		
143	Given vector \mathbf{x} (of presum-	<pre>v = unique(x); c = hist(x,v);</pre>	<pre>w=table(x); c=as.numeric(w);</pre>
	ably discrete values), build a		v=as.numeric(names(w))
	vector \mathbf{v} listing unique val-		
	ues in \mathbf{x} , and corresponding		
	vector \mathbf{c} indicating how many times those values appear in		
	times those values appear in x		
144	\mathbf{x} Given vector \mathbf{x} (of presum-	[c,m] = hist(x,k)	<pre>w=hist(x,seq(min(x),max(x),</pre>
144	ably continuous values), di-		<pre>length.out=k+1), plot=FALSE);</pre>
	vide the range of values into k		m=w\$mids; c=w\$counts
	equally-sized bins, and build		
	a vector m containing the		
	midpoints of the bins and a		
	corresponding vector c con-		
	taining the counts of values in		
	the bins		
145	Convolution / polynomial	conv(x,y)	<pre>convolve(x,rev(y),type='open')</pre>
	multiplication (given vectors		Note: the accuracy of this is not
	\mathbf{x} and \mathbf{y} containing polyno-		as good as MATLAB; e.g. doing
	mial coefficients, their convo-		v=c(1,-1); for (i in 2:20)
	lution is a vector containing		<pre>v=convolve(v,c(-i,1),</pre>
	coefficients of the product of		type='open') to generate the
	the two polynomials)		20^{th} -degree Wilkinson polynomial
			$W(x) = \prod_{i=1}^{20} (x-i)$ gives a coefficient
			of ≈ -780.19 for x^{19} , rather than the
			correct value -210.

3.4 Root-finding

No.	Description	Matlab	R
146	Find roots of polynomial	roots(v)	polyroot(rev(v)) (This function
	whose coefficients are stored		really wants the vector to have the
	in vector \mathbf{v} (coefficients in \mathbf{v}		constant coefficient first in v ; rev re-
	are highest-order first)		verses their order to achieve this.)
147	Find zero (root) of a function	Define function $f(x)$, then do	Define function $f(\mathbf{x})$, then do
	f(x) of one variable	<pre>fzero(f,x0) to search for a root</pre>	uniroot(f, c(a,b)) to find a root
		near x0 , or fzero(f,[a b]) to find	between a and b , assuming the sign
		a root between a and b , assuming	of $f(x)$ differs at $x = a$ and $x = b$.
		the sign of $f(x)$ differs at $x = a$	Default forward error tolerance (i.e.
		and $x = b$. Default forward error	error in x) is fourth root of machine
		tolerance (i.e. error in x) is machine	epsilon, $(\epsilon_{\rm mach})^{0.25}$. To specify e.g.
		epsilon $\epsilon_{\rm mach}$.	a tolerance of 2^{-52} , do uniroot(f,
			c(a,b), tol=2^-52).

No. Description MATLAB R Find value m which mini-Define function $f(\mathbf{x})$, then do Define function $f(\mathbf{x})$, then do 148 mizes a function f(x) of one m = optimize(f,c(a,b))\$minimum m = fminbnd(f, a, b)variable within the interval from a to b149Find value m which mini-Define function **f**(**x**,**p1**,**p2**), then use Define function **f**(**x**,**p1**,**p2**), then: mizes a function $f(x, p_1, p_2)$ an "anonymous function": # first define values for p1 with given extra parameters % first define values for p1 # and p2, and then do: (but minimization is only oc-% and p2, and then do: m = optimize(f, c(a,b), p1=p1,curing over the first argum=fminbnd(@(x) f(x,p1,p2),a,b) p2=p2)\$minimum ment), in the interval from ato b. 150Find values of x, y, z which First write function $f(\mathbf{v})$ which ac-First write function $f(\mathbf{v})$ which acminimize function f(x, y, z), cepts a vector argument \mathbf{v} containing cepts a vector argument \mathbf{v} containing using a starting guess of x =values of x, y, and z, and returns the values of x, y, and z, and returns the scalar value f(x, y, z), then do: scalar value f(x, y, z), then do: 1, y = 2.2, and z = 3.4. fminsearch(@f,[1 2.2 3.4]) optim(c(1,2.2,3.4),f)\$par 151 Find values First write function f(v,p1,p2) First write function **f**(**v**,**p1**,**p2**) which of x, y, zwhich minimize function accepts a vector argument \mathbf{v} containwhich accepts a vector argument **v** containing values of x, y, xing values of x, y, and z, along with $f(x, y, z, p_1, p_2),$ using a starting guess of x = 1, z, along with the extra paramethe extra parameters, and returns the y = 2.2, and z = 3.4, where ters, and returns the scalar value scalar value $f(x, y, z, p_1, p_2)$, then do: the function takes some extra $f(x, y, z, p_1, p_2)$, then do: optim(c(1,2.2,3.4), f, p1=p1, parameters (useful e.g. for fminsearch(@f,[1 2.2 3.4], ... p2=p2)\$par doing things like nonlinear [], p1, p2) least-squares optimization where you pass in some data Or use an anonymous function: vectors as extra parameters). fminsearch(@(x) f(x,p1,p2), ... [1 2.2 3.4])

3.5 Function optimization/minimization

3.6 Numerical integration / quadrature

No.	Description	Matlab	R
152	Numerically integrate func- tion $f(x)$ over interval from a to b	quad(f,a,b) uses adaptive Simpson's quadrature, with a default absolute tolerance of 10^{-6} . To specify absolute tolerance, use quad(f,a,b,tol)	quadrature with default absolute and relative error tolerances being

3.7 Curve fitting

No.	Description	Matlab	R
153	Fit the line $y = c_1 x + c_0$ to data in vectors x and y .	<pre>p = polyfit(x,y,1)</pre>	p = coef(lm(y ~ x))
		The return vector \mathbf{p} has the coefficients in descending order, i.e. $\mathbf{p(1)}$ is c_1 , and $\mathbf{p(2)}$ is c_0 .	The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is c_0 , and $\mathbf{p}[2]$ is c_1 .
154	Fit the quadratic polynomial $y = c_2 x^2 + c_1 x + c_0$ to data in vectors x and y .	<pre>p = polyfit(x,y,2)</pre>	$p = coef(lm(y ~ x + I(x^2)))$
		The return vector \mathbf{p} has the coefficients in descending order, i.e. $\mathbf{p(1)}$ is c_2 , $\mathbf{p(2)}$ is c_1 , and $\mathbf{p(3)}$ is c_0 .	The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is c_0 , $\mathbf{p}[2]$ is c_1 , and $\mathbf{p}[3]$ is c_2 .
155	Fit n^{th} degree polynomial $y = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0$ to data in vectors x	<pre>p = polyfit(x,y,n)</pre>	There isn't a simple function built into the standard R distribution to do this, but see the polyreg function in
	and y .	The return vector \mathbf{p} has the coefficients in descending order, $\mathbf{p(1)}$ is c^n , $\mathbf{p(2)}$ is c^{n-1} , etc.	the mda package (see item 295 for how to install/load packages).
156	Fit the quadratic polynomial with zero intercept, $y = c_2 x^2 + c_1 x$ to data in vectors x and y .	(I don't know a simple way do this in MATLAB, other than to write a function which computes the sum of squared residuals and use fmin -	p=coef(lm(y ~ -1 + x + I(x^2)))
	x and y.	search on that function. There is likely an easy way to do it in the Statistics Toolbox.)	The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is c_1 , and $\mathbf{p}[2]$ is c_2 .
157	Fit natural cubic spline $(S''(x) = 0$ at both endpoints) to points (x_i, y_i) whose coordinates are in vectors x and y ; evaluate at	<pre>pp=csape(x,y,'variational'); yy=ppval(pp,xx) but note that csape is in MATLAB's Spline Toolbox</pre>	<pre>tmp=spline(x,y,method='natural', xout=xx); yy=tmp\$y</pre>
	points whose x coordinates are in vector \mathbf{xx} , storing corresponding y 's in \mathbf{yy}		
158	Fit cubic spline using Forsythe, Malcolm and Moler method (third deriva- tives at endpoints match third derivatives of exact cu-	I'm not aware of a function to do this in MATLAB	<pre>tmp=spline(x,y,xout=xx); yy=tmp\$y</pre>
	bics through the four points at each end) to points (x_i, y_i) whose coordinates are in		
	vectors \mathbf{x} and \mathbf{y} ; evaluate at points whose x coordinates are in vector \mathbf{xx} , storing corresponding y 's in \mathbf{yy}		

No.	Description	Matlab	R
159	Fit cubic spline such that	<pre>pp=csape(x,y); yy=ppval(pp,xx)</pre>	I'm not aware of a function to do this
	first derivatives at endpoints	but csape is in MATLAB's Spline	in R
	match first derivatives of ex-	Toolbox	
	act cubics through the four		
	points at each end) to points		
	(x_i, y_i) whose coordinates are		
	in vectors \mathbf{x} and \mathbf{y} ; evaluate		
	at points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in $\mathbf{y}\mathbf{y}$		
160	Fit cubic spline with periodic	<pre>pp=csape(x,y,'periodic');</pre>	<pre>tmp=spline(x,y,method=</pre>
	boundaries, i.e. so that first	yy=ppval(pp,xx) but csape is in	'periodic', xout=xx); yy=tmp\$y
	and second derivatives match	MATLAB's Spline Toolbox	
	at the left and right ends		
	(the first and last y values		
	of the provided data should		
	also agree), to points (x_i, y_i)		
	whose coordinates are in vec-		
	tors \mathbf{x} and \mathbf{y} ; evaluate at		
	points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in yy		
161	Fit cubic spline with "not-	<pre>yy=spline(x,y,xx)</pre>	I'm not aware of a function to do this
	a-knot" conditions (the first		in R
	two piecewise cubics coincide,		
	as do the last two), to points		
	(x_i, y_i) whose coordinates are		
	in vectors \mathbf{x} and \mathbf{y} ; evaluate		
	at points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in $\mathbf{y}\mathbf{y}$		

4 Conditionals, control structure, loops

No.	Description	Matlab	R
162	"for" loops over values in a vector v (the vector v is of- ten constructed via a:b)	for i=v command1 command2 end	<pre>If only one command inside the loop: for (i in v) command or for (i in v) command If multiple commands inside the loop: for (i in v) { command1 command2 }</pre>

No.	Description	Matlab	R
163	"if" statements with no else clause	if cond command1 command2 end	<pre>If only one command inside the clause: if (cond) command or if (cond) command If multiple commands: if (cond) { command1 command2 }</pre>
164	"if/else" statement	<pre>if cond command1 command2 else command3 command4 end Note: MATLAB also has an "elseif" statement, e.g.: if cond1 command1 elseif cond2 command2 elseif cond3 command3 else command4 end</pre>	<pre>If one command in clauses: if (cond) command1 else command2 or if (cond) cmd1 else cmd2 If multiple commands: if (cond) { command1 command2 } else { command3 command3 command4 } Warning: the "else" must be on the same line as command1 or the "}" (when typed interactively at the com- mand prompt), otherwise R thinks the "if" statement was finished and gives an error. R does not have an "elseif" state- ment.</pre>

Logical comparisons which can be used on scalars in "if" statements, or which operate element-byelement on vectors/matrices:

MATLAB	R	Description
x < a	x < a	True if x is less than a
x > a	x > a	True if x is greater than a
x <= a	x <= a	True if x is less than or equal to a
x >= a	x >= a	True if x is greater than or equal to a
$\mathbf{x} == \mathbf{a}$	$\mathbf{x} == \mathbf{a}$	True if x is equal to a
x ~= a	x != a	True if x is not equal to a

Scalar logical operators:

Description	Matlab	R
a AND b	a && b	a && b
a OR b	a b	a b
a XOR b	xor(a,b)	xor(a,b)
NOT a	~a	!a

The && and || operators are short-circuiting, i.e. && stops as soon as any of its terms are FALSE, and || stops as soon as any of its terms are TRUE.

Matrix logical operators (they operate element-by-element):

Description	Matlab	R
a AND b	a & b	a & b
a OR b	a b	a b
a XOR b	xor(a,b)	xor(a,b)
NOT a	~a	!a

No.	Description	Matlab	R
165	To test whether a scalar value	if ((x > 4) && (x <= 7))	if ((x > 4) && (x <= 7))
	\mathbf{x} is between 4 and 7 (inclu-		
	sive on the upper end)		
166	To count how many values in	sum((x > 4) & (x <= 7))	sum((x > 4) & (x <= 7))
	the vector \mathbf{x} are between 4		
	and 7 (inclusive on the upper		
	end)		
167	Test whether all values in	all(v)	all(v)
	a logical/boolean vector are		
	TRUE		
168	Test whether any values in	any(v)	any(v)
	a logical/boolean vector are		
	TRUE		

No.	Description	Matlab	R
169	"while" statements to do iter- ation (useful when you don't know ahead of time how many iterations you'll need). E.g. to add uniform ran- dom numbers between 0 and 1 (and their squares) until their sum is greater than 20:	<pre>mysum = 0; mysumsqr = 0; while (mysum < 20) r = rand; mysum = mysum + r; mysumsqr = mysumsqr + r^2; end</pre>	<pre>mysum = 0 mysumsqr = 0 while (mysum < 20) { r = runif(1) mysum = mysum + r mysumsqr = mysumsqr + r^2 } (As with "if" statements and "for" loops, the curly brackets are not nec- essary if there's only one statement in- side the "while" loop.)</pre>

No.	Description	Matlab	R
170	"Switch" statements for inte- gers	<pre>switch (x) case 10 disp('ten') case {12,13} disp('dozen (bakers?)') otherwise disp('unrecognized') end</pre>	<pre>R doesn't have a switch statement ca- pable of doing this. It has a function which is fairly limited for integers, but can which do string matching. See ?switch for more. But a basic ex- ample of what it can do for integers is below, showing that you can use it to return different expressions based on whether a value is 1, 2, mystr = switch(x, 'one', 'two', 'three') print(mystr) Note that switch returns NULL if x is larger than 3 in the above case. Also, continuous values of x will be trun- cated to integers.</pre>

5 Functions, ODEs

No.	Description	Matlab	R
171	Implement a function	Put the following in add.m :	Enter the following, or put it in a file
	$\operatorname{add}(x,y)$	function retval=add(x,y)	and source that file:
		retval = x+y;	add = function(x,y) {
			return(x+y)
		Then you can do e.g. add(2,3)	}
			Then you can do e.g. add(2,3).
			Note, the curly brackets aren't needed
179	Turnel and the formation	Write function as follows:	if your function only has one line. Write function as follows:
172	$\begin{array}{llllllllllllllllllllllllllllllllllll$	write function as follows:	write function as follows:
	tiple values, and store those	function $[a,b] = f(x,y,z)$	<pre>f = function(x,y,z) {</pre>
	return values in variables \mathbf{u}	a = x*y+z; b=2*sin(x-z);	a = x*y+z; b=2*sin(x-z)
	and \mathbf{v}	Then call the function by doing:	<pre>return(list(a,b)) }</pre>
		[u,v] = f(2,8,12)	ſ
			Then call the function by do-
			ing: tmp=f(2,8,12); u=tmp[[1]];
			v=tmp[[2]]. The above is most general, and will work even when u and
			\mathbf{v} are different types of data. If they
			are both scalars, the function could
			simply return them packed in a vec-
			tor, i.e. return(c(a,b)). If they
			are vectors of the same size, the func-
			tion could return them packed to- gether into the columns of a matrix,
			i.e. return(cbind(a,b)).

No.	Description	Matlab	R
173	Numerically solve ODE	First implement function	First implement function
	dx/dt = 5x from $t = 3$ to t = 12 with initial condition x(3) = 7	<pre>function retval=f(t,x) retval = 5*x;</pre>	<pre>f = function(t,x,parms) { return(list(5*x))</pre>
		Then do $ode45(@f,[3,12],7)$ to plot solution, or [t,x]=ode45(@f,[3,12],7) to get back vector t containing time values and vector x containing correspond- ing function values. If you want function values at specific times, e.g. 3,3.1,3.2,,11.9,12, you can do $[t,x]=ode45(@f,3:0.1:12,7)$. Note: in older versions of MATLAB, use 'f' instead of @f.	<pre>} Then do y=lsoda(7, seq(3,12, 0.1), f,NA) to obtain solution values at times 3, 3.1, 3.2,, 11.9, 12. The first column of y, namely y[,1] contains the time values; the second column y[,2] contains the corre- sponding function values. Note: lsoda is part of the deSolve package (see item 295 for how to install/load packages).</pre>
174	Numerically solve system of ODEs $dw/dt = 5w$, $dz/dt = 3w + 7z$ from $t = 3$ to $t = 12$ with initial conditions $w(3) = 7$, $z(3) = 8.2$	<pre>First implement function function retval=myfunc(t,x) w = x(1); z = x(2); retval = zeros(2,1); retval(1) = 5*w; retval(2) = 3*w + 7*z;</pre>	<pre>First implement function myfunc = function(t,x,parms) { w = x[1]; z = x[2]; return(list(c(5*w, 3*w+7*z))) } Then do y=lsoda(c(7,8.2),</pre>
		Then do ode45(@myfunc, [3,12], [7; 8.2]) to plot solution, or [t,x]=ode45(@myfunc, [3,12], [7; 8.2]) to get back vector t contain- ing time values and matrix x, whose first column containing correspond- ing $w(t)$ values and second column contains $z(t)$ values. If you want function values at specific times, e.g. 3,3.1,3.2,,11.9, 12, you can do [t,x]=ode45(@myfunc,3:0.1:12, [7; 8.2]). Note: in older versions of MATLAB, use 'f' instead of @f.	seq(3,12, 0.1), myfunc,NA) to obtain solution values at times $3, 3.1, 3.2, \ldots, 11.9, 12$. The first column of y, namely y[,1] contains the time values; the second column y[,2] contains the corresponding values of $w(t)$; and the third column contains $z(t)$. Note: Isoda is part of the deSolve package (see item 295 for how to install/load packages).
175	Pass parameters such as $r = 1.3$ and $K = 50$ to an ODE function from the command line, solving $dx/dt = rx(1 - x/K)$ from $t = 0$ to $t = 20$ with initial condition $x(0) = 2.5$.	<pre>First implement function function retval=func2(t,x,r,K) retval = r*x*(1-x/K) Then do ode45(@func2,[0 20], 2.5, [], 1.3, 50). The empty matrix is necessary between the ini- tial condition and the beginning of your extra parameters.</pre>	<pre>First implement function func2=function(t,x,parms) { r=parms[1]; K=parms[2] return(list(r*x*(1-x/K))) } Then do y=lsoda(2.5,seq(0,20,0.1) func2,c(1.3,50))</pre>
			Note: lsoda is part of the deSolve package (see item 295 for how to install/load packages).

6 Probability and random values

No.	Description	Matlab	R
176	Generate a continuous uni- form random value between 0 and 1	rand	<pre>runif(1)</pre>
177	Generate vector of n uniform random vals between 0 and 1	<pre>rand(n,1) or rand(1,n)</pre>	runif(n)
178	Generate $m \times n$ matrix of uni- form random values between 0 and 1	rand(m,n)	<pre>matrix(runif(m*n),m,n) or just matrix(runif(m*n),m)</pre>
179	Generate $m \times n$ matrix of con- tinuous uniform random val- ues between a and b	a+rand(m,n)*(b-a) or if you have the Statistics toolbox then unifrnd(a,b,m,n)	<pre>matrix(runif(m*n,a,b),m)</pre>
180	Generate a random integer between 1 and k	floor(k*rand) + 1	<pre>floor(k*runif(1)) + 1 Note: sample(k)[1] would also work, but I believe in general will be less efficient, because that actually generates many random numbers and then just uses one of them.</pre>
181	Generate $m \times n$ matrix of dis- crete uniform random inte- gers between 1 and k	<pre>floor(k*rand(m,n))+1 or if you have the Statistics toolbox then unidrnd(k,m,n)</pre>	<pre>floor(k*matrix(runif(m*n),m))+1</pre>
182	Generate $m \times n$ matrix where each entry is 1 with probabil- ity p , otherwise is 0	<pre>(rand(m,n)<p)*1 (true="" 1="" also="" back="" by="" could="" do="" double(rand(m,n)<p)<="" false)="" into="" logical="" multiplying="" note:="" numeric="" pre="" re-="" sult="" the="" turns="" values.="" you=""></p)*1></pre>	<pre>(matrix(runif(m,n),m)<p)*1 (note:="" (true="" 1="" as.numeric()="" back="" by="" do="" false)="" into="" it="" logical="" lose="" matrix.)<="" multiplying="" numeric="" of="" pre="" result="" shape="" the="" to="" turns="" using="" values;="" would=""></p)*1></pre>
183	Generate $m \times n$ matrix where each entry is a with probabil- ity p , otherwise is b	b + (a-b)*(rand(m,n) <p)< td=""><td><pre>b + (a-b)*(matrix(runif(m,n),m)<p)< pre=""></p)<></pre></td></p)<>	<pre>b + (a-b)*(matrix(runif(m,n),m)<p)< pre=""></p)<></pre>
184	Generate a random integer between a and b inclusive	<pre>floor((b-a+1)*rand)+a or if you have the Statistics toolbox then unidrnd(b-a+1)+a-1</pre>	<pre>floor((b-a+1)*runif(1))+a</pre>
185	Flip a coin which comes up heads with probability p , and perform some action if it does come up heads	<pre>if (rand < p) some commands end</pre>	<pre>if (runif(1) < p) { some commands }</pre>
186	Generate a random permutation of the integers $1, 2, \ldots, n$	randperm(n)	<pre>sample(n)</pre>
187	Generate a random selection of k unique integers between 1 and n (i.e. sampling with- out replacement)	<pre>[s,idx]=sort(rand(n,1)); ri=idx(1:k) or another way is ri=randperm(n); ri=ri(1:k). Or if you have the Statistics Toolbox, then randsample(n,k)</pre>	ri=sample(n,k)

No.	Description	Matlab	R
188	Choose k values (with re-	L=length(v);	w=sample(v,k,replace=TRUE)
	placement) from the vector \mathbf{v} ,	w=v(floor(L*rand(k,1))+1) Or,	
	storing result in \mathbf{w}	if you have the Statistics Toolbox,	
		w=randsample(v,k,replace=true)	
189	Choose k values (without re-	L=length(v); ri=randperm(L);	w=sample(v,k,replace=FALSE)
	placement) from the vector \mathbf{v} ,	ri=ri(1:k); w=v(ri) Or, if	
	storing result in \mathbf{w}	you have the Statistics Toolbox,	
		<pre>w=randsample(v,k,replace=false)</pre>	
190	Set the random-number gen-	rand('state', 12)	set.seed(12)
	erator back to a known state		
	(useful to do at the beginning		
	of a stochastic simulation		
	when debugging, so you'll get		
	the same sequence of random		
	numbers each time)		

Note that the "*rnd," "*pdf," and "*cdf" functions described below are all part of the MATLAB Statistics Toolbox, and not part of the core MATLAB distribution.

No.	Description	MATLAB	R
191	Generate a random value	binornd(n,p)	rbinom(1,n,p)
	from the $Binomial(n, p)$ dis-		
	tribution		
192	Generate a random value	poissrnd(lambda)	rpois(1,lambda)
	from the Poisson distribution		
	with parameter λ		
193	Generate a random value	exprnd(mu) or -mu*log(rand) will	rexp(1, 1/mu)
	from the Exponential distri-	work even without the Statistics	
	bution with mean μ	Toolbox.	
194	Generate a random value	unidrnd(k) or floor(rand*k)+1	<pre>sample(k,1)</pre>
	from the discrete uniform dis-	will work even without the Statistics	
	tribution on integers $1 \dots k$	Toolbox.	
195	Generate n iid random values	unidrnd(k,n,1) or	<pre>sample(k,n,replace=TRUE)</pre>
	from the discrete uniform dis-	<pre>floor(rand(n,1)*k)+1 will work</pre>	
	tribution on integers $1 \dots k$	even without the Statistics Toolbox.	
196	Generate a random value	unifrnd(a,b) or (b-a)*rand + a	runif(1,a,b)
	from the continuous uniform	will work even without the Statistics	
	distribution on the interval	Toolbox.	
	(a,b)		
197	Generate a random value	normrnd(mu,sigma) or	rnorm(1,mu,sigma)
	from the normal distribution	mu + sigma*randn will work	
	with mean mu and standard	even without the Statistics Toolbox.	
	deviation σ		
	Notes		

Notes:

- The MATLAB "*rnd" functions above can all take additional **r**,**c** arguments to build an $r \times c$ matrix of iid random values. E.g. **poissrnd(3.5,4,7)** for a 4×7 matrix of iid values from the Poisson distribution with mean $\lambda = 3.5$. The unidrnd(n,k,1) command above is an example of this, to generate a $k \times 1$ column vector.
- The first parameter of the R "r*" functions above specifies how many values are desired. E.g. to generate 28 iid random values from a Poisson distribution with mean 3.5, use rpois(28,3.5). To get a 4 × 7 matrix of such values, use matrix(rpois(28,3.5),4).

No.	Description	Matlab	R
198	Compute probability that a random variable from the Binomial (n, p) distribution has value x (i.e. the density, or pdf).	binopdf(x,n,p) or nchoosek(n,x)*p^x*(1-p)^(n-x) will work even without the Statistics Toolbox, as long as n and x are non-negative integers and $0 \le \mathbf{p}$ ≤ 1 .	dbinom(x,n,p)
199	Compute probability that a random variable from the $Poisson(\lambda)$ distribution has value x .	poisspdf(x,lambda)or $exp(-lambda)*lambda^x /$ factorial(x)will work evenwithout the Statistics Toolbox, aslong as x is a non-negative integerand lambda $\geq 0.$	dpois(x,lambda)
200	Compute probability density function at \mathbf{x} for a random variable from the exponential distribution with mean μ .	<pre>exppdf(x,mu) or (x>=0)*exp(-x/mu)/mu will work even without the Statistics Toolbox, as long as mu is positive.</pre>	dexp(x,1/mu)
201	Compute probability density function at x for a random variable from the Normal dis- tribution with mean μ and standard deviation σ .	<pre>normpdf(x,mu,sigma) or exp(-(x-mu)^2/(2*sigma^2))/ (sqrt(2*pi)*sigma) will work even without the Statistics Toolbox.</pre>	dnorm(x,mu,sigma)
202	Compute probability density function at \mathbf{x} for a random variable from the continuous uniform distribution on inter- val (a, b) .	unifpdf(x,a,b) or ((x>=a)&&(x<=b))/(b-a) will work even without the Statistics Toolbox.	dunif(x,a,b)
203	Compute probability that a random variable from the discrete uniform distribution on integers $1 \dots n$ has value x .	unidpdf(x,n) or ((x==floor(x)) && (x>=1)&&(x<=n))/n will work even without the Statistics Toolbox, as long as n is a positive integer.	((x==round(x)) && (x >= 1) && (x <= n))/n

Note: one or more of the parameters in the above "*pdf" (MATLAB) or "d*" (R) functions can be vectors, but they must be the same size. Scalars are promoted to arrays of the appropriate size.

The corresponding (CDF functions are below:
---------------------	--------------------------

[]	The corresponding CDF functions are below:		
No.	Description	Matlab	R
204	Compute probability that a	binocdf(x,n,p). Without the	<pre>pbinom(x,n,p)</pre>
	random variable from the	Statistics Toolbox, as long	
	$\operatorname{Binomial}(n,p)$ distribution is	as \mathbf{n} is a non-negative in-	
	less than or equal to \mathbf{x} (i.e.	teger, this will work: $r =$	
	the cumulative distribution	0:floor(x); sum(factorial(n)./	
	function, or cdf).	(factorial(r).*factorial(n-r))	
		.*p.^r.*(1-p).^(n-r)). (Unfor-	
		tunately, MATLAB 's nchoosek	
		function won't take a vector argu-	
		ment for \mathbf{k} .)	
205	Compute probability that a	poisscdf(x,lambda). With-	ppois(x,lambda)
	random variable from the	out the Statistics Toolbox, as	
	$Poisson(\lambda)$ distribution is less	long as $lambda \ge 0$, this	
	than or equal to \mathbf{x} .	will work: r = 0:floor(x);	
		<pre>sum(exp(-lambda)*lambda.^r</pre>	
		./factorial(r))	
206	Compute cumulative distri-	expcdf(x,mu) or	pexp(x,1/mu)
	bution function at ${\bf x}$ for a	(x>=0)*(1-exp(-x/mu)) will	
	random variable from the ex-	work even without the Statistics	
	ponential distribution with	Toolbox, as long as mu is positive.	
	mean μ .		
207	Compute cumulative distri-	normcdf(x,mu,sigma) or 1/2 -	pnorm(x,mu,sigma)
	bution function at ${\bf x}$ for a ran-	erf(-(x-mu)/(sigma*sqrt(2)))/2	
	dom variable from the Nor-	will work even without the Statis-	
	mal distribution with mean μ	tics Toolbox, as long as sigma is	
	and standard deviation σ .	positive.	
208	Compute cumulative distri-	unifcdf(x,a,b) or	<pre>punif(x,a,b)</pre>
	bution function at ${\bf x}$ for a ran-	(x>a)*(min(x,b)-a)/(b-a) will	
	dom variable from the contin-	work even without the Statistics	
	uous uniform distribution on	Toolbox, as long as $\mathbf{b} > \mathbf{a}$.	
	interval (a, b) .		
209	Compute probability that a	unidcdf(x,n) or	<pre>(x>=1)*min(floor(x),n)/n</pre>
	random variable from the dis-	(x>=1)*min(floor(x),n)/n will	
	crete uniform distribution on	work even without the Statistics	
	integers $1 \dots n$ is less than or	Toolbox, as long as \mathbf{n} is a positive	
	equal to \mathbf{x} .	integer.	
I		1	

7 Graphics

7.1 Various types of plotting

No.	Description	Matlab	R
210	Create a new figure window	figure	<pre>windows() (when running R in Win- dows), quartz() (in Mac OS-X), or x11() (in Linux)</pre>
211	Select figure number n	<pre>figure(n) (will create the figure if it doesn't exist)</pre>	dev.set(n) (returns the actual device selected; will be different from n if there is no figure device with number n)
212	List open figure windows	get(0,'children') (The 0 handle refers to the root graphics object.)	<pre>dev.list()</pre>
213	Close figure window(s)	close to close the current figure win- dow, close(n) to close a specified figure, and close all to close all fig- ures	<pre>dev.off() to close the currently ac- tive figure device, dev.off(n) to close a specified one, and graphics.off() to close all figure devices.</pre>
214	Plot points using open circles	<pre>plot(x,y,'o')</pre>	plot(x,y)
215	Plot points using solid lines	<pre>plot(x,y)</pre>	<pre>plot(x,y,type='1') (Note: that's a lower-case 'L', not the number 1)</pre>
216	Plotting: color, point mark- ers, linestyle	<pre>plot(x,y,str) where str is a string specifying color, point marker, and/or linestyle (see table below) (e.g. 'gs' for green squares with dashed line)</pre>	<pre>plot(x,y,type=str1, pch=arg2,col=str3, lty=arg4)</pre>
017			See tables below for possible values of the 4 parameters
217	Plotting with logarithmic axes	semilogx, semilogy, and loglog functions take arguments like plot , and plot with logarithmic scales for x, y, and both axes, respectively	plot(, log='x'), plot(, log='y'), and plot(, log='xy') plot with logarithmic scales for x, y , and both axes, respectively
218	Make bar graph where the x coordinates of the bars are in \mathbf{x} , and their heights are in \mathbf{y}	bar(x,y) Or just bar(y) if you only want to specify heights. Note: if A is a matrix, bar(A) interprets each column as a separate set of observa- tions, and each row as a different ob- servation within a set. So a 20×2 matrix is plotted as 2 sets of 20 ob- servations, while a 2×20 matrix is plotted as 20 sets of 2 observations.	Can't do this in R; but barplot(y) makes a bar graph where you specify the heights, barplot(y,w) also spec- ifies the widths of the bars, and hist can make plots like this too.
219	Make histogram of values in x	hist(x)	hist(x)
220	Given vector \mathbf{x} containing integer values, make a bar graph where the x coordi- nates of bars are the values, and heights are the counts of how many times the values appear in \mathbf{x}	<pre>v=unique(x); c=hist(x,v); bar(v,c)</pre>	hist(x,(min(x)5):(max(x)+.5))

No.	Description	Matlab	R
221	Given vector \mathbf{x} containing continuous values, lump the data into k bins and make a histogram / bar graph of the binned data	<pre>[c,m] = hist(x,k); bar(m,c) or for slightly different plot style use hist(x,k)</pre>	<pre>hist(x,seq(min(x), max(x), length.out=k+1))</pre>
222	Make a plot containing error- bars of height s above and be- low (x, y) points	errorbar(x,y,s)	errbar(x,y,y+s,y-s) Note: errbar is part of the Hmisc package (see item 295 for how to install/load pack- ages).
223	Make a plot containing error- bars of height a above and b below (x, y) points	errorbar(x,y,b,a)	errbar(x,y,y+a,y-b) Note: errbar is part of the Hmisc package (see item 295 for how to install/load pack- ages).
224	Other types of 2-D plots	<pre>stem(x,y) and stairs(x,y) for other types of 2-D plots. polar(theta,r) to use polar coordinates for plotting.</pre>	pie(v)
225	Make a 3-D plot of some data points with given x, y, z co- ordinates in the vectors \mathbf{x}, \mathbf{y} , and \mathbf{z} .	<pre>plot3(x,y,z) This works much like plot, as far as plotting symbols, line- types, and colors.</pre>	<pre>cloud(z[*]x*y) You can also use arguments pch and col as with plot. To make a 3-D plot with lines, do cloud(z[*]x*y,type='l', panel.cloud=panel.3dwire)</pre>
226	Surface plot of data in matrix \mathbf{A}	<pre>surf(A)</pre>	persp(A)
		You can then click on the small curved arrow in the figure window (or choose "Rotate 3D" from the "Tools" menu), and then click and drag the mouse in the figure to ro- tate it in three dimensions.	You can include shading in the im- age via e.g. persp(A,shade=0.5). There are two viewing angles you can also specify, among other pa- rameters, e.g. persp(A, shade=0.5, theta=50, phi=35).
227	Surface plot of $f(x, y) = sin(x + y)\sqrt{y}$ for 100 values of x between 0 and 10, and 90 values of y between 2 and 8	<pre>x = linspace(0,10,100); y = linspace(2,8,90); [X,Y] = meshgrid(x,y); Z = sin(X+Y).*sqrt(Y); surf(X,Y,Z) shading flat</pre>	<pre>x = seq(0,10,100) y = seq(2,8,90) f = function(x,y) return(sin(x+y)*sqrt(y)) z = outer(x,y,f) persp(x,y,z)</pre>
228	Other ways of plotting the data from the previous command	<pre>mesh(X,Y,Z), surfc(X,Y,Z), surfl(X,Y,Z), contour(X,Y,Z), pcolor(X,Y,Z), waterfall(X,Y,Z). Also see the slice command.</pre>	<pre>contour(x,y,z) Or do s=expand.grid(x=x,y=y), and then wireframe(z~x*y,s) or wireframe(z~x*y,s,shade=TRUE) (Note: wireframe is part of the lattice package; see item 295 for how to load packages). If you have vectors x, y, and z all the same length, you can also do symbols(x,y,z).</pre>

Adding	various	lahels	\mathbf{or}	making	adjustments	to	nlots
Auung	various	labels	UI	making	aujustments	00	pious

	-	making adjustments to plots	
No.	Description	Matlab	R
229	Set axis ranges in a figure	axis([x1 x2 y1 y2])	You have to do this when
	window		you make the plot, e.g.
			<pre>plot(x,y,xlim=c(x1,x2),</pre>
			<pre>ylim=c(y1,y2))</pre>
230	Add title to plot	<pre>title('somestring')</pre>	<pre>title(main='somestring')</pre>
			adds a main title,
			title(sub='somestring') adds
			a subtitle. You can also include
			main= and sub= arguments in a
			plot command.
231	Add axis labels to plot	xlabel('somestring') and	<pre>title(xlab='somestring',</pre>
	_	ylabel('somestring')	ylab='anotherstr'). You can
			also include xlab = and ylab =
			arguments in a plot command.
232	Include Greek letters or sym-	You can use basic TeX com-	<pre>plot(x,y,xlab=</pre>
	bols in plot axis labels	mands, e.g. plot(x,y);	expression(phi ² + mu['i,j']))
	-	xlabel('\phi^2 + $mu_{i,j}$ ')	or plot(x,y,xlab=expression(
		or xlabel('fecundity \phi')	<pre>paste('fecundity ', phi)))</pre>
		See also help tex.m and parts of	See also help(plotmath) and p.
		doc text_props for more about	98 of the <i>R</i> Graphics book by Paul
		building labels using general LaTeX	Murrell for more.
		commands	
233	Change font size to 16 in plot	For the legends and numerical axis	For on-screen graphics, do
	labels	labels, use set(gca, 'FontSize',	par(ps=16) followed by e.g. a plot
		16), and for text labels on axes	command. For PostScript or PDF
		do e.g. xlabel('my x var',	plots, add a pointsize=16 argument,
		'FontSize', 16)	e.g. pdf('myfile.pdf', width=8,
			height=8, pointsize=16) (see
			items 245 and 246)
234	Add grid lines to plot	grid on (and grid off to turn off)	grid() Note that if you'll be
			printing the plot, the default style
			for grid-lines is to use gray dot-
			ted lines, which are almost invis-
			ible on some printers. You may
			want to do e.g. grid(lty='dashed',
			col='black') to use black dashed
			lines which are easier to see.
235	Add figure legend to top-left	legend('first', 'second',	legend('topleft',
	corner of plot	'Location', 'NorthWest')	<pre>legend=c('first', 'second'),</pre>
	Ĩ		<pre>col=c('red', 'blue'),</pre>
			pch=c('*','o'))

MATLAB note: sometimes you build a graph piece-by-piece, and then want to manually add a legend which doesn't correspond with the order you put things in the plot. You can manually construct a legend by plotting "invisible" things, then building the legend using them. E.g. to make a legend with black stars and solid lines, and red circles and dashed lines: h1=plot(0,0,'k*-'); set(h1,'Visible', 'off'); h2=plot(0,0,'k*-'); set(h2,'Visible', 'off'); legend([h1 h2], 'blah, 'whoa'). Just be sure to choose coordinates for your "invisible" points within the current figure's axis ranges.

No.	Description	Matlab	R
236	Adding more things to a fig- ure	hold on means everything plotted from now on in that figure window is added to what's already there. hold off turns it off. clf clears the figure and turns off hold.	points() and lines() work like plot , but add to what's already in the figure rather than clearing the figure first. points and lines are basically identical, just with different default plotting styles. Note: axes are not recalculated/redrawn when adding more things to a figure.
237	Plot multiple data sets at once	plot(x,y) where x and y are 2-D matrices. Each column of x is plot- ted against the corresponding col- umn of y. If x has only one column, it will be re-used.	<pre>matplot(x,y) where x and y are 2-D matrices. Each column of x is plotted against the corresponding column of y. If x has only one column, it will be re-used.</pre>
238	Plot $\sin(2x)$ for x between 7 and 18	fplot('sin(2*x)', [7 18])	<pre>curve(sin(2*x), 7, 18, 200) makes the plot, by sampling the value of the function at 200 values between 7 and 18 (if you don't specify the number of points, 101 is the default). You could do this manually yourself via commands like tmpx=seq(7,18,200); plot(tmpx, sin(2*tmpx)).</pre>
239	Plot color image of integer values in matrix A	<pre>image(A) to use array values as raw indices into colormap, or imagesc(A) to automatically scale values first (these both draw row 1 of the matrix at the top of the image); or pcolor(A) (draws row 1 of the matrix at the bottom of the image). After using pcolor, try the commands shading flat or shading interp.</pre>	image(A) (it rotates the matrix 90 de- grees counterclockwise: it draws row 1 of A as the left column of the im- age, and column 1 of A as the bottom row of the image, so the row number is the x coord and column number is the y coord). It also rescales colors. If you are using a colormap with k en- tries, but the value k does not appear in A, use image(A,zlim=c(1,k)) to avoid rescaling of colors. Or e.g. image(A,zlim=c(0,k-1)) if you want values 0 through $k-1$ to be plot- ted using the k colors.
240	Add colorbar legend to image plot	colorbar, after using image or pcolor.	Use filled.contour(A) rather than image(A), although it "blurs" the data via interpolation, or use levelplot(A) from the lat- tice package (see item 295 for how to load packages). To use a colormap with the latter, do e.g. levelplot(A,col.regions= terrain.colors(100)).
241	Set colormap in image	<pre>colormap(hot). Instead of hot, you can also use gray, flag, jet (the default), cool, bone, copper, pink, hsv, prism. By default, the length of the new colormap is the same as the currently-installed one; use e.g. colormap(hot(256)) to specify the number of entries.</pre>	<pre>image(A, col=terrain.colors(100)). The parameter 100 specifies the length of the colormap. Other colormaps are heat.colors(), topo.colors(), and cm.colors().</pre>

No.	Description	Matlab	R
242	Build your own colormap us-	Use an $n \times 3$ matrix; each row	Use a vector of hexadecimal strings,
	ing Red/Green/Blue triplets	gives R,G,B intensities between 0	each beginning with '#' and giving
		and 1. Can use as argument with	R,G,B intensities between 00 and FF.
		colormap. E.g. for 2 colors: mycmap	E.g. c('#80CC33','#3333B3'); can
		= [0.5 0.8 0.2 ; 0.2 0.2 0.7]	use as argument to $col =$ parameter
			to image. You can build such a
			vector of strings from vectors of Red,
			Green, and Blue intensities (each
			between 0 and 1) as follows (for a $ $
			2-color example): r=c(0.5,0.2);
			g=c(0.8,0.2); b=c(0.2,0.7);
			<pre>mycolors=rgb(r,g,b).</pre>

MATLAB plotting specifications, for use with plot, fplot, semilogx, semilogy, loglog, etc:

Symbol	Color	Symbol	Marker	Symbol	Linestyle
b	blue	•	point (.)	-	solid line
g	green	0	circle (\circ)	:	dotted line
r	red	x	$cross(\times)$		dash-dot line
С	cyan	+	plus sign $(+)$		dashed line
m	magenta	*	asterisk (*)		
У	yellow	S	square (\Box)		
k	black	d	diamond (\Diamond)		
W	white	v	triangle (down) (∇)		
		^	triangle (up) (\triangle)		
		<	triangle (left) (\triangleleft)		
		>	triangle (right) (\triangleright)		
		р	pentragram star		
		h	hexagram star		

R plotting specifications for **col** (color), **pch** (plotting character), and **type** arguments, for use with **plot**, **matplot**, **points**, and **lines**:

col	Description	pch	Description	type	Description
'blue'	Blue	'a'	a (similarly for other	р	points
			characters, but see '.'		
			below for an exception		
'green'	Green	19	solid circle	1	lines
'red'	Red	20	bullet (smaller circle)	b	both
'cyan'	Cyan	21	open circle	с	lines part only of "b"
'magenta'	Magenta	22	square	0	lines, points overplotted
'yellow'	Yellow	23	diamond	h	histogram-like lines
'black'	Black	24	triangle point-up	s	steps
'#RRGGBB'	hexadecimal specifica-	25	triangle point-down	S	another kind of steps
	tion of Red, Green,				
	Blue				
(Other names)	See colors() for list of	'.'	rectangle of size 0.01	n	no plotting
	available color names.		inch, 1 pixel, or 1 point		
			(1/72 inch) depending		
			on device		
			(See table on next page		
			for more)		

R plotting specifications for lty (line-type) argument, for use with plot, matplot, points, and lines:

lty	Description
0	blank
1	solid
2	dashed
3	dotted
4	dotdash
5	longdash
6	twodash

R plotting characters, i.e. values for **pch** argument (from the book *R Graphics*, by Paul Murrell, Chapman & Hall / CRC, 2006)

No.	Description	Matlab	R
243	Divide up a figure window	<pre>subplot(m,n,k) divides the current</pre>	There are several ways to do this, e.g.
	into smaller sub-figures	figure window into an $m \times n$ ar-	using layout or split.screen, al-
		ray of subplots, and draws in sub-	though they aren't quite as friendly
		plot number k as numbered in "read-	as MATLAB 's. E.g. if you let $A =$
		ing order," i.e. left-to-right, top-to-	
		bottom. E.g. subplot(2,3,4) se-	$\begin{bmatrix} 1 & 1 & 3 \\ 4 & 5 & c \end{bmatrix}$, then layout(A) will
		lects the first sub-figure in the second	$\begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$ divide the figure into 6 sub-figures:
		row of a 2×3 array of sub-figures.	you can imagine the figure divide into
		You can do more complex things, e.g. subplot(5,5,[1 2 6 7]) se-	a 3×3 matrix of smaller blocks; sub-
		lects the first two subplots in the first	figure 1 will take up the upper-left
		row, and first two subplots in the	2×2 portion, and sub-figures 2–6 will
		second row, i.e. gives you a bigger	take up smaller portions, according to
		subplot within a 5×5 array of sub-	the positions of those numbers in the
		plots. (If you that command followed	matrix A. Consecutive plotting com-
		by e.g. subplot(5,5,3) you'll see	mands will draw into successive sub-
		what's meant by that.)	figures; there doesn't seem to be a way
		- /	to explicitly specify which sub-figure
			to draw into next.
			To use split.screen, you can
			do e.g. split.screen(c(2,1)) to
			split into a 2×1 matrix of sub-
			figures (numbered 1 and 2). Then
			split.screen(c(1,3),2) splits sub-
			figure 2 into a 1×3 matrix of smaller
			sub-figures (numbered 3, 4, and 5). screen(4) will then select sub-figure
			number 4, and subsequent plotting
			commands will draw into it.
			A third way to accomplish this is
			via the commands par(mfrow=) or
			par(mfcol=) to split the figure win-
			dow, and par(mfg=) to select which
			sub-figure to draw into.
			Note that the above methods are all
			incompatible with each other.
244	Force graphics windows to	drawnow (MATLAB normally only	R automatically updates graphics
	update	updates figure windows when a	windows even before functions/scripts
		script/function finishes and returns	finish executing, so it's not neces-
		control to the MATLAB prompt, or	sary to explicitly request it. But note
		under a couple of other circum-	that some graphics functions (partic-
		stances. This forces it to update	ularly those in the lattice package)
		figure windows to reflect any recent	don't display their results when called
		plotting commands.)	from scripts or functions; e.g. rather
			than levelplot() you need to do
			<pre>print(levelplot()). Such func- tions will automatically display their</pre>
			plots when called interactively from
			the command prompt.
			ine command prompt.

No.	Description	Matlab	R
245	To print/save to a PDF file	print -dpdf fname saves the con-	First do pdf('fname.pdf'). Then,
	named fname.pdf	tents of currently active figure win- dow	do various plotting commands to make your image, as if you were plotting in a window. Fi- nally, do dev.off() to close/save the PDF file. To print the con- tents of the active figure win- dow, do dev.copy(device=pdf, file='fname.pdf'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist= 'inhibit').)
246	To print/save to a PostScript file fname.ps or fname.eps	print -dps fname for black & white PostScript; print -dpsc fname for color PostScript; print -deps fname for black & white Encapsulated PostScript; print -depsc fname for color Encapsu- lated PostScript. The first two save to fname.ps, while the latter two save to fname.eps.	<pre>postscript('fname.eps'), followed by your plotting commands, fol- lowed by dev.off() to close/save the file. Note: you may want to use postscript('fname.eps', horizontal=FALSE) to save your fig- ure in portrait mode rather than the default landscape mode. To print the contents of the active figure window, do dev.copy(device=postscript, file='fname.eps'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist= 'inhibit').) You can also include the horizontal=FALSE argument with dev.copy().</pre>
247	To print/save to a JPEG file fname.jpg with jpeg qual- ity = 90 (higher quality looks better but makes the file larger)	print -djpeg90 fname	<pre>jpeg('fname.jpg',quality=90), followed by your plotting commands, followed by dev.off() to close/save the file.</pre>

7.2 Printing/saving graphics

No.	Description	Matlab	R
248	To display images of cellu-	Repeatedly use either pcolor or	If you simply call image repeatedly,
	lar automata or other lattice	image to display the data. Don't	there is a great deal of flicker-
	simulations while running in	forget to call drawnow as well, oth-	ing/flashing. To avoid this, after
	real time	erwise the figure window will not be	drawing the image for the first time
		updated with each image.	using e.g. image(A), from then
			on only use image(A,add=TRUE),
			which avoids redrawing the entire
			image (and the associated flicker).
			However, this will soon consume a
			great deal of memory, as all drawn
			images are saved in the image buffer.
			There are two solutions to that
			problem: (1) every k time steps,
			leave off the "add=TRUE" argument
			to flush the image buffer (and get
			occasional flickering), where you choose k to balance the flickering
			v_{s} memory-usage tradeoff; or
			(2) after drawing the first image,
			do dev.control(displaylist=
			'inhibit') to prohibit retaining the
			data. However, the latter solution
			means that after the simulation is
			done, the figure window will not be
			redrawn if it is resized, or temporarily
			obscured by another window. (A
			call to dev.control(displaylist=
			'enable') and then one final
			<pre>image(A) at the end of the sim-</pre>
			ulation will re-enable re-drawing
			after resizing or obscuring, without
			consuming extra memory.)

7.3 Animating cellular automata / lattice simulations

8 Working with files

No.	Description	Matlab	R
249	Create a folder (also known	mkdir dirname	dir.create('dirname')
	as a "directory")		
250	Set/change working directory	cd dirname	<pre>setwd('dirname')</pre>
251	See list of files in current	dir	dir()
	working directory		
252	Run commands in file 'foo.m'	foo	<pre>source('foo.R')</pre>
	or 'foo.R' respectively		
253	Read data from text file	A=load('data.txt') or	A=as.matrix(read.table(
	"data.txt" into matrix A	A=importdata('data.txt') Note	'data.txt')) This will ignore
		that both routines will ignore com-	comments (anything on a line
		ments (anything on a line following	following a "#" character). To ig-
		a "%" character)	nore comments indicated by "%",
			do A=as.matrix(read.table(
			'data.txt', comment.char='%'))
254	Write data from matrix A	save data.txt A -ascii	<pre>write(A, file='data.txt',</pre>
	into text file "data.txt"		<pre>ncolumn=dim(A)[2])</pre>

9 Miscellaneous

9.1 Variables

No.	Description	Matlab	R
255	Assigning to variables	x = 5	x < -5 or x = 5
256	From within a function, as- sign a value to variable y in the base environment (i.e. the command prompt envi- ronment)	assignin('base', 'y', 7)	y <<- 7
257	From within a function, access the value of variable \mathbf{y} in the base environment (i.e. the command prompt environment)	evalin('base', 'y')	y (In R, if there isn't a local variable y within the function, it will look for one in the base environment.)
258	Short list of defined variables	who	ls()
259	Long list of defined variables	whos	ls.str()
260	See detailed info about the variable ab	whos ab	str(ab)
261	See detailed info about all variables with "ab" in their name	whos *ab*	<pre>ls.str(pattern='ab')</pre>
262	Open graphical data editor, to edit the value of variable A (useful for editing values in a matrix, though it works for non-matrix variables as well)	openvar(A), or double-click on the variable in the Workspace pane (if it's being displayed) of your MAT- LABdesktop	fix(A)
263	Clear one variable	clear x	rm(x)
264	Clear two variables	clear x y	rm(x,y)
265	Clear all variables	clear all	<pre>rm(list=ls())</pre>
266	See what type of object \mathbf{x} is	class(x)	class(x)
267	(Variable names)	Variable names must begin with a letter, but after that they may con- tain any combination of letters, dig- its, and the underscore character. Names are case-sensitive.	Variable names may contain letters, digits, the period, and the underscore character. They cannot begin with a digit or underscore, or with a period followed by a digit. Names are case- sensitive.
268	Result of last command	<pre>ans contains the result of the last command which did not assign its value to a variable. E.g. after 2+5; x=3, then ans will contain 7.</pre>	.Last.value contains the result of the last command, whether or not its value was assigned to a variable. E.g. after 2+5; x=3, then .Last.value will contain 3.

9.2 Strings and Misc.

No.	Description	Matlab	R
269	Line continuation	If you want to break up a MATLAB	In R, you can spread commands out
200		command over more than one line,	over multiple lines, and nothing extra
		end all but the last line with three	is necessary. R will continue reading
		periods: "". E.g.:	input until the command is complete.
		x = 3 +	E.g.:
		4	x = 3 +
			4
270	Controlling formatting of	format short g and	options(digits=6) tells R you'd like
	output	format long g are handy; see	to use 6 digits of precision in values it
		help format	displays (it is only a suggestion, not
			strictly followed)
271	Exit the program	quit or exit	q() or quit()
272	Comments	% this is a comment	# this is a comment
273	Print a string	disp('hi there') or to	<pre>print('hi there')</pre>
		omit trailing newline use	
		<pre>fprintf('hi there')</pre>	
274	Print a string containing sin-	disp('It''s nice') or	print('It\'s nice') or
	gle quotes	to omit trailing newline	<pre>print("It's nice")</pre>
		<pre>fprintf('It''s nice')</pre>	
275	Give prompt and read input	<pre>x = input('Enter data:')</pre>	<pre>print('Enter data:')</pre>
	from user		x = scan()
276	Concatenate strings	['two hal' 'ves']	<pre>paste('two hal', 'ves', sep='')</pre>
277	Concatenate strings stored in	<pre>v={'two ', 'halves'};</pre>	<pre>v=c('two ', 'halves');</pre>
	a vector	<pre>strcat(v{:}) But note that</pre>	<pre>paste(v, collapse='')</pre>
		this drops trailing spaces on	
		strings. To avoid that, instead do	
070		strcat([v{:}])	
278	Extract substring of a string	<pre>text1='hi there';</pre>	text1='hi there';
070		text2=text(2:6)	text2=substr(text1,2,6)
279	Determine whether elements	x = 'a', 'aa', 'bc', 'c'; y	x = c('a', 'aa', 'bc', 'c'); y
	of a vector are in a set, and	= 'da', 'a', 'bc', 'a', 'bc',	= c('da', 'a', 'bc', 'a', 'bc',
	give positions of correspond-	'aa'; [tf, loc]=ismember(x,y)	'aa'); loc=match(x,y) Then loc
	ing elements in the set.	Then loc contains the locations of	contains the locations of <i>first</i> oc-
		<i>last</i> occurrences of elements of \mathbf{x}	curences of elements of \mathbf{x} in the set
		in the set \mathbf{y} , and 0 for unmatched elements.	y , and NA for unmatched elements.
280	Convert number to string	num2str(x)	as.character(x)
200	Convert number to string		as.cliaracter(X)

No.	Description	Matlab	R
281	Use sprintf to create a		
	formatted string. Use $\% d$ for	x=2; y=3.5;	x=2; y=3.5
	integers ("d" stands for "dec-	s=sprintf('x is %d, y=%g',	s=sprintf('x is %d, y is %g',
	imal", i.e. base 10), $\% \mathbf{f}$ for	x, y)	x, y)
	floating-point numbers, %e	x, y)	x, y)
	for scientific-notation floating		
	point, $\% g$ to automatically		
	choose $\%e$ or $\%f$ based on		
	the value. You can spec-		
	ify field-widths/precisions,		
	e.g. %5d for integers with		
	padding to 5 spaces, or %.7f		
	for floating-point with 7		
	digits of precision. There are		
	many other options too; see		
000	the docs.		March in a dalarah Tarana
282	Machine epsilon ϵ_{mach} , i.e. difference between 1 and the	eps (See help eps for various other things eps can give.)	.Machine\$double.eps
	next largest double-precision	tinings eps can give.)	
	floating-point number		
283	Pause for x seconds	pause(x)	Sys.sleep(x)
284	Wait for user to press any key	pause	Don't know of a way to do this in R,
			but scan(quiet=TRUE) will wait until
			the user presses the Enter key
285	Measure CPU time used to	<pre>t1=cputime;commands ;</pre>	<pre>t1=proc.time();commands</pre>
	do some commands	cputime-t1	; (proc.time()-t1)[1]
286	Measure elapsed ("wall-	tic;commands ; toc or	<pre>t1=proc.time();commands</pre>
	clock") time used to do some	<pre>t1=clock;commands ;</pre>	; (proc.time()-t1)[3]
207	commands	etime(clock,t1)	
287	Print an error message an in- terrupt execution	<pre>error('Problem!')</pre>	<pre>stop('Problem!')</pre>
288	Print a warning message	<pre>warning('Smaller problem!')</pre>	<pre>warning('Smaller problem!')</pre>
289	Putting multiple statements	Separate statements by commas or	Separate statements by semicolons.
	on one line	semicolons. A semicolon at the end	
		of a statement suppresses display of	
		the results (also useful even with just	
		a single statement on a line), while a	
		comma does not.	
290	Evaluate contents of a string \mathbf{z} as commond(a)	eval(s)	<pre>eval(parse(text=s))</pre>
291	s as command(s). Show where a command is	which sqrt shows you where the file	R doos not avaguto commanda directi-
291	Show where a command IS	defining the sqrt function is (but	R does not execute commands directly from files, so there is no equivalent
		note that many basic functions are	command.
		"built in," so the MATLAB func-	communu.
		tion file is really just a stub con-	
		taining documentation). This is use-	
		ful if a command is doing something	
		strange, e.g. sqrt isn't working. If	
		you've accidentally defined a <i>variable</i>	
		called sqrt, then which sqrt will	
		tell you, so you can clear sqrt to	
		erase it so that you can go back to	
		using the <i>function</i> sqrt .	

No.	Description	Matlab	R
292	Query/set the search path.	path displays the current search path (the list of places MATLAB searches for commands you enter). To add a directory ~/foo to the beginning of the search path, do	R does not use a search path to look for files.
		addpath ~/foo -begin	
		or to add it to the end of the path, do addpath ~/foo -end (Note: you should generally add the full path of a directory, i.e. in Linux or Mac OS-X something like ~/foo as above or of the form /usr/local/lib/foo, while under Windows it would be something like C:/foo)	
293	Startup sequence	If a file startup.m exists in the startup directory for MATLAB, its contents are executed. (See the MATLAB docs for how to change the startup directory.)	If a file .Rprofile exists in the current directory or the user's home directory (in that order), its contents are sourced; saved data from the file .RData (if it exists) are then loaded. If a function .First() has been defined, it is then called (so the obvious place to define this function is in your .Rprofile file).
294	Shutdown sequence	Upon typing quit or exit, MATLAB will run the script finish.m if present somewhere in the search path.	Upon typing q() or quit(), R will call the function .Last() if it has been de- fined (one obvious place to define it would be in the .Rprofile file)
295	Install and load a package.	MATLAB does not have packages. It has toolboxes, which you can pur- chase and install. "Contributed" code (written by end users) can sim- ply be downloaded and put in a di- rectory which you then add to MAT- LAB's path (see item 292 for how to add things to MATLAB's path).	To install e.g. the deSolve pack- age, you can use the command install.packages('deSolve') . You then need to load the package in order to use it, via the command library('deSolve') . When running R again later you'll need to load the package again to use it, but you should not need to re-install it. Note that the lattice package is typically included with binary distributions of R, so it only needs to be loaded, not installed.

10 Spatial Modeling

No.	Description	Matlab	R
296	Take an $L \times L$ matrix A of 0s and 1s, and "seed" frac- tion p of the 0s (turn them	A = (A (rand(L) < p))*1;	<pre>A = (A (matrix(runif(L^2),L) < p))*1</pre>
	into 1s), not changing entries which are already 1.		
297	Take an $L \times L$ matrix A of 0s and 1s, and "kill" fraction p of the 1s (turn them into 0s), not changing the rest of the entries	A = (A & (rand(L) < 1-p))*1;	<pre>A = (A & (matrix(runif(L^2),L) < 1-p))*1</pre>
298	Do "wraparound" on a coor- dinate newx that you've al- ready calculated. You can replace newx with $\mathbf{x}+\mathbf{dx}$ if you want to do wraparound on an offset x coordinate.	<pre>mod(newx-1,L)+1 Note: for porta- bility with other languages such as C which handle MOD of negative values differently, you may want to get in the habit of instead doing mod(newx-1+L,L)+1</pre>	((newx-1) %% L) + 1 Note: for portability with other languages such as C which handle MOD of nega- tive values differently, you may want to get in the habit of instead doing ((newx-1+L)%%L) + 1
299	Randomly initialize a portion of an array: set fraction p of sites in rows iy1 through iy2 and columns ix1 through ix2 equal to 1 (and set the rest of the sites in that block equal to zero). Note: this assume iy1 < iy2 and ix1 < ix2 .	<pre>dx=ix2-ix1+1; dy=iy2-iy1+1; A(iy1:iy2,ix1:ix2) = (rand(dy,dx) < p0)*1;</pre>	<pre>dx=ix2-ix1+1; dy=iy2-iy1+1; A[iy1:iy2,ix1:ix2] = (matrix(runif(dy*dx),dy) < p0)*1</pre>

Index of MATLAB commands and concepts

', 72 ,, 289 .*, 71 ..., 269 ./, 77 .^, 81 /, 76 :, 12–14 ;, 289 =, 255 [, 6-8 %, 272 &, 165, 166 [^], 46, 79, 80 \, 73, 78 **{** 41 abs, 47, 65 acos, 52acosh, 54addpath, 292 all, 167 angle, 66 ans, 268 any, 168 asin, 52 asinh, 54 assignin, 256 atan, 52 atanh, 54 average, see mean axis, 229 bar, 218, 220, 221 binocdf, 204binopdf, 198 binornd, 191 boolean tests scalar, 165 vector, 166-168 cd, 250 ceil, 58 cell, 40 cell arrays, 40 extracting elements of, 41 cellular automata animation, 248 chol, 87 class, 266 clear, 263-265clf, 236

clock, 286 close, 213 colon, see : colorbar, 240 colormap building your own, 242 colormap, 241, 242 column vector, 7 comments, 272 complex numbers, 64-69 cond, 91-93 conj, 67 contour, 228 conv, 145 corr, 105-110 cos, 51 cosh, 53 cov, 103, 104 cputime, 285 csape, 157, 159, 160 cubic splines, 158, 159 natural, 157 not-a-knot, 161 periodic, 160 cumprod, 119 cumsum, 115-118 cumulative distribution functions binomial, 204 continuous uniform on interval (a, b), 208 discrete uniform from 1..n, 209 exponential, 206 normal, 207 Poisson, 205 diag, 21, 22 diff, 121 differential equations, see ode45 dir, 251 disp, 273, 274 doc, 4drawnow, 244, 248 echelon form, see matrix eig, 83 element-by-element matrix operations, see matrix else, 164 elseif, 164 eps, 282 erf, 60

erfc, 61 erfcinv, 63 erfinv, 62 error, 287 errorbar, 222, 223 etime, 286eval, 290 evalin, 257 exit, 271 exp, 48 expcdf, 206 expm, 114 exppdf, 200 exprnd, 193 eye, 20 figure, 210, 211 file reading data from, 254 running commands in, 252 text reading data from, 253 saving data to, 254 find, 140-142 finish.m, 294 floor, 57 fminbnd, 148, 149 fminsearch, 150, 151 font size in plots, 233 for, 162 format, 270 fplot, 238 fprintf, 273, 274 function multi-variable minimization, 150 minimization over first parameter only, 149 minimization over only some parameters, 151single-variable minimization, 148 user-written, 171 returning multiple values, 172 fzero, 147 gca, 233 get, 212 Greek letters in plot labels, 232 grid, 234 help, 1-3 helpbrowser, 4 helpdesk, 4

hilb, 38 hist, 143, 144, 219, 220 hold, 236 identity, see matrix if, 163-165 imag, 69 image, 239, 248 imagesc, 239 importdata, 253 ind2sub, 31 indexing matrix, 10 with a single index, 11 vector, 9 input, 275 inv, 75 inverse, see matrix ismember, 279 legend, 235 length, 134, 136 linspace, 15 load, 253, 254 log, 49 log10, 50 log2, 50 loglog, 217 lookfor, 5 lu, 84 matrix, 8 boolean operations on, 141, 142 changing shape of, 35 Cholesky factorization, 87 condition number, 91–93 containing all indentical entries, 19 containing all zeros, 18 converting row, column to single index, 32 converting single-index to row, column, 31 cumulative sums of all elements of, 118 cumulative sums of columns, 116 cumulative sums of rows, 117 diagonal, 21 echelon form, 74 eigenvalues and eigenvectors of, 83 equation solving, 73exponential of, 114 extracting a column of, 26 extracting a rectangular piece of, 29 extracting a row of, 27 extracting specified rows and columns of, 30 "gluing" together, 23, 24

identity, 20 inverse, 75 lower-triangular portion of, 36 LU factorization, 84 minimum of values of, 124 minimum value of each column of, 125 minimum value of each row of, 126 modifying elements given lists of rows and columns, 33 multiplication, 70 element-by-element, 71 N-dimensional, 39 norm, 90 powers of, 80 QR factorization, 88 rank, 82 re-shaping its elements into a vector, 28 Schur decomposition, 86 singular value decomposition, 85 size of, 131-133, 135, 136 sum of all elements, 111 of columns of, 112 of rows of, 113 transpose, 72 upper-triangular portion of, 37 max, see min mean, 94-96 mesh, 228 meshgrid, 105 min, 123-126, 128-130 mind, 127 mkdir. 249 mod, 55, 298 modulo arithmetic, 55, 298 multiple statements on one line, 289 norm, 89, 90 normcdf, 207 normpdf, 201 normrnd, 197 num2str, 280 numel, 135 ode45, 173-175 ones, 17, 19 openvar, 262 optimization, 148-151 path, 292 pause, 283, 284 pcolor, 228, 239, 248 perform some commands with probability p, 185 permutation of integers 1..n, 186

plot, 214-216, 237 Greek letters in axis labels, 232 plot3, 225 poisscdf, 205 poisspdf, 199 poissrnd, 192 polar, 224 polyfit, 153-155 polynomial least-squares fitted, 154–156 multiplication, 145 roots of, 146 ppval, 157, 159, 160 print, 245-247 probability density functions binomial, 198 continuous uniform on interval (a, b), 202 discrete uniform from 1..n, 203 exponential, 200 normal, 201 Poisson, 199 gr, 88 quad, 152 quit, 271 rand, 176-184, 190 random values Bernoulli, 182 binomial. 191 continuous uniform distribution on interval (a, b), 179, 196continuous uniform distribution on interval (0.1), 176-178discrete uniform distribution from a..b, 184 discrete uniform distribution from 1..k, 181, 194, 195 discrete uniform distribution, 180 exponential, 193 k unique values sampled from integers 1..n, 187 normal, 197 Poisson, 192 setting the seed, 190 randperm, 186, 187 randsample, 187-189 rank, 82 rcond. 91 real, 68 reshape, 35, 39 roots of general single-variable function, 147 polynomial, 146

INDEX OF MATLAB COMMANDS AND CONCEPTS

roots, 146 round, 56 row vector, 6 rref, 74sampling values from a vector, 188, 189 save, 254 schur, 86 semilogx, 217 semilogy, 217 set, 233 sign, 59 $\sin, 51$ sinh, 53 size, 131-133 slice, 228 sort, 137, 138, 187 spline, 161 splines, see cubic splines sprintf, 281 sqrt, 45 stairs, 224 standard deviation, see std startup.m, 293 std, 97-99 stem, 224stop, 287 strcat, 277 string concatenation, 276 converting number to, 280 substrings, 278 struct, 43 sub2ind, 32, 33 subplot, 243 sum, 111-113, 166 surf, 226, 227 surfc, 228 surf1, 228 svd, 85 switch, 170 tan, 51 tanh, 53 tic, 286 title, 230 toc, 286 transpose, see matrix tril, 36 triu, 37 unidcdf, 209unidpdf, 203 unidrnd, 194, 195

unifcdf, 208 unifpdf, 202 unifrnd, 196 unique, 143, 220 var, 100-102 variables assigning, 255 assigning in base environment from function, 256 evaluating from base environment within function, 257 names, 267 variance, see var vector boolean operations on, 139, 140 containing all indentical entries, 17 containing all zeros, 16 counts of binned values in, 144 counts of discrete values in, 143 cumulative sum of elements of, 115 differences between consecutive elements of, 121minimum of values of, 123 norm, 89 position of first occurance of minimum value in. 130 reversing order of elements in, 25 size of, 134sum of all elements, 111 truncating, 34 warning, 288 waterfall, 228 which, 291 while, 169 who, 258 whos, 259-261 xlabel, 231-233 ylabel, 231, 232 zeros, 16, 18

Index of R commands and concepts

*, 79 1,77 :, 12, 13 ;, 289 <-, 255 <<-, 256 =, 255 ?, 1, 2 [[, 41] #, 272 %%, 55, 298 &, 165, 166 [^], 46, 81 abs, 47, 65 acos, 52acosh, 54 all, 167 any, 168 apply, 99, 101, 102, 125, 126 Arg, 66 array, 39 as.character, 280 as.numeric, 143 asin, 52 asinh, 54 atan, 52atanh, 54 average, see mean barplot, 218 boolean tests scalar, 165 vector, 166-168 c, 6, 7 cbind, 23, 33 ceiling, 58 cellular automata animation, 248 chol, 87 class, 266 cloud, 225 coef, 153, 154, 156 colMeans, 95 colon, see:colormap building your own, 242 for image, 241 colSums, 112 column vector, 7 comments, 272

complex numbers, 64–69 Conj, 67 contour, 228 convolve, 145 cor, 106-110 cos, 51 cosh, 53 cov, 103-105 cubic splines, 158, 159, 161 natural, 157 periodic, 160 cummax, 120 cummin, 120 cumprod, 119 cumsum, 115-118 cumulative distribution functions binomial, 204 continuous uniform on interval (a, b), 208 discrete uniform from 1..n, 209 exponential, 206 normal, 207 Poisson, 205 curve, 238 data.frame, 43 dbinom, 198 dev.control, 245, 246, 248 dev.copy, 245, 246 dev.list, 212 dev.off, 213, 245-247 dev.set, 211 dexp, 200 diag, 20-22 diff, 121 differential equations, see lsoda dim, 35, 133, 136 dir, 251 dir.create, 249 dnorm, 201 dpois, 199 dunif, 202echelon form, see matrix eig, 83 element-by-element matrix operations, see matrix else, 164 errbar, 222, 223 eval, 290 exp, 48

expand, 84 expand.grid, 228 expm, 114

file

reading data from, 254 running commands in, 252 text reading data from, 253 saving data to, 254 filled.contour, 240 .First, 293 fix, 262 floor, 57 font size in plots, 233 for, 162 function multi-variable minimization, 150 minimization over first parameter only, 149 minimization over only some parameters, 151single-variable minimization, 148 user-written, 171 returning multiple values, 172 graphics not being displayed from scripts/functions, 244Greek letters in plot labels, 232 grid, 234 help, 1, 2 help.search, 5 help.start, 4 Hilbert, 38 hist, 144, 218-221 identity, see matrix if, 163-165 ifelse, 122 Im, 69 image, 239, 248 indexing matrix, 10 with a single index, 11 vector, 9

.Last.value, 268 lattice package, 228, 240, 244, 295 layout, 243 legend, 235length, 34, 134, 135 levelplot, 240, 244 library, 3, 295 lines, 236 lists, 40 extracting elements of, 41 lm, 153, 154, 156 log, 49 log10, 50 log2, 50 lower.tri, 37 ls, 258 ls.str, 259, 261 lsoda, 173-175 .Machine\$double.eps, 282 match, 279 matplot, 237 matrix, 8 boolean operations on, 141, 142 changing shape of, 35 Cholesky factorization, 87 condition number, 91–93 containing all indentical entries, 19 containing all zeros, 18 converting row, column to single index, 32 converting single-index to row, column, 31 cumulative sums of all elements of, 118 cumulative sums of columns, 116 cumulative sums of rows, 117 diagonal, 21 echelon form, 74 eigenvalues and eigenvectors of, 83 equation solving, 73 exponential of, 114 extracting a column of, 26 extracting a rectangular piece of, 29 extracting a row of, 27 extracting specified rows and columns of, 30 "gluing" together, 23, 24 identity, 20 inverse, 75 lower-triangular portion of, 36 LU factorization, 84 minimum of values of, 124

kappa, 92

.Last, 294

jpeg, 247

install.packages, 295

integrate, 152

inverse, see matrix

INDEX OF R COMMANDS AND CONCEPTS

minimum value of each column of, 125 minimum value of each row of, 126 modifying elements given lists of rows and columns, 33 multiplication, 70 element-by-element, 71 N-dimensional, 39 norm, 90 powers of, 80 QR factorization, 88 rank, 82 re-shaping its elements into a vector, 28 Schur decomposition, 86 singular value decomposition, 85 size of, 131-133, 135, 136 sum of all elements, 111 of columns of, 112 of rows of, 113 transpose, 72 upper-triangular portion of, 37 matrix, 8, 18, 19 max, see min mean, 94 min, 123-126, 129 Mod. 65 modulo arithmetic, 55, 298 multiple statements on one line, 289 names, 42, 143 ncol, 132 norm, 89, 90 nrow, 131 optim, 150, 151 optimization, 148-151 optimize, 148, 149 options digits=, 270 outer, 227 packages installing, 295 loading, 295 par, 233 par mfcol=, 243 mfrow=, 243parse, 290 paste, 276, 277 pbinom, 204 pdf, 233, 245 perform some commands with probability p, 185 permutation of integers 1..n, 186

persp, 226, 227 pexp, 206 pie, 224 plot, 214-217 Greek letters in axis labels, 232 main=, 230 sub=, 230 xlab=, 231, 232 xlim=, 229 ylab=, 231, 232 ylim=, 229 pmin, 127, 128 pnorm, 60, 61, 207 points, 236 polynomial least-squares fitted, 154–156 multiplication, 145 roots of, 146 polyreg, 155 polyroot, 146 postscript, 246 ppois, 205 print, 244, 273, 274 probability density functions binomial, 198 continuous uniform on interval (a, b), 202 discrete uniform from 1..n, 203 exponential, 200 normal, 201 Poisson, 199 proc.time, 285, 286 punif, 208 q, 271 qnorm, 62, 63 qr, 82, 88 quartz, 210quit, 271 rand, 183 random values Bernoulli, 182 binomial, 191 continuous uniform distribution on interval (a, b), 179, 196continuous uniform distribution on interval (0,1), 176, 178continuous uniform distribution on inteval (0,1), 177discrete uniform distribution from a..b, 184 discrete uniform distribution from 1..k, 181, 194, 195 discrete uniform distribution, 180

INDEX OF R COMMANDS AND CONCEPTS

exponential, 193 k unique values sampled from integers 1..n, 187 normal, 197 Poisson, 192 setting the seed, 190 rbind, 24 rbinom, 191 rcond, 91, 93 .RData, 293 Re, 68 read.table, 253, 254 rep, 16, 17 rev, 25 rexp, 193 rgb, 242 rm, 263-265 rnorm, 197 roots of general single-variable function, 147 polynomial, 146 round, 56 row vector, 6 rowMeans, 96 **rpois**, 192 .Rprofile, 293 runif, 176-182, 184, 196 sample, 186-189, 194, 195 sampling values from a vector, 188, 189 scan, 275, 284 Schur, 86 sd, 97-99 seq, 14, 15 set.seed, 190 setwd, 250 sign, 59 sin. 51 sinh, 53 solve, 73, 75, 76, 78 sort, 137, 138 source, 252spline, 157, 158, 160 splines, see cubic splines split.screen, 243 sprintf, 281 sqrt, 45 standard deviation, see sd str, 260 string concatenation, 276 converting number to, 280 substrings, 278

substr, 278 sum, 111, 113, 166 svd. 85 switch, 170symbols, 228 Sys.sleep, 283 t, 72 table, 143 tan, 51 tanh, 53 title, 230, 231 transpose, see matrix uniroot, 147 upper.tri, 36 var, 100-102, 104 variables assigning, 255 assigning in base environment from function, 256 evaluating from base environment within function, 257 names, 267 variance, see var vector boolean operations on, 139, 140 containing all indentical entries, 17 containing all zeros, 16 counts of binned values in, 144 counts of discrete values in, 143 cumulative sum of elements of, 115 differences between consecutive elements of, 121minimum of values of, 123 norm, 89 position of first occurance of minimum value in, 130 reversing order of elements in, 25 size of, 134sum of all elements, 111 truncating, 34 vector, 40 warning, 288 which, 140-142 which.max, see which.min which.min, 130 while, 169 windows, 210 wireframe, 228 write, 254x11, 210