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Abstract. Physiological ecologists often analyze the responses of physiological or bio-
chemical traits to environmental factors such as temperature, irradiance, water potential,
or the concentrations of CO,, O,, and inorganic nutrients. The data for such a response
curve typically are gathered by sequential sampling of the same plant or animal, and their
analysis should explicitly allow for this repeated-measures design. Unfortunately, the sta-
tistical analysis of response curves in ecology generally has either been ignored or incorrectly
done.

In an effort to encourage rigorous analysis of response data, we address statistical
treatment of response curves and illustrate the correct alternatives that are available. Four
different statistical methods for analyzing response curves are considered: analysis of vari-
ance with repeated measures (ANOVAR), multivariate analysis of variance with repeated
measures (MANOVAR), a nonparametric split-plot analysis (NP split-plot) and parametric
comparison of models fitted to the data by nonlinear regression. Analyses of the CO,
dependence of photosynthesis in the C, grass Echinochloa crus-galli following chilling are
used as examples of these different methods.

ANOVAR, potentially the most powerful analysis, makes stringent assumptions about
the variance—covariance structure of the data. Within limits these assumptions can be
relaxed and a corrected significance level used. When the variance—covariance structure
badly violates the ANOVAR assumptions, MANOVAR or NP split-plot are viable alter-
natives. In physiological ecology, however, the use of MANOVAR frequently is limited
by small sample sizes and the tendency for the number of levels of the treatment factor to
exceed the sample size. Greater attention to experimental design can avoid this problem.
The NP split-plot is based on simple assumptions and could be widely used. The comparison
of curves fitted by nonlinear regression is also distribution free and provides an interesting
alternative when the responses are amenable to fitting. For any of these analyses to be
viable the thoughtful choice of experimental protocols and design is essential.

Key words: analysis of variance; Huynh-Feldt correction; model fitting; nonlinear regression; non-

parametric tests; physiological ecology, repeated-measures multivariate analysis; response curves; split-
plot and repeated-measurement designs; statistical methods.

INTRODUCTION

Physiological and biochemical processes in living
systems respond to variations in environmental factors
such as temperature, irradiance, ambient concentra-
tions of gases, soil water potential, and the concentra-
tions of various mineral nutrients, salts, and toxic ions.
Physiological ecologists study responses as diverse as
changes in animal body mass, gaseous exchanges in
plants, and the kinetic properties of enzymes. For ex-
ample, the photosynthetic rate of an individual plant
might be assayed at photon flux rates of 100, 200, 300,
400, 600, and 800 umol-m~2-s! to determine its pho-
tosynthetic light response (Leverenz 1987). Thermo-

! Manuscript received 8 June 1989; accepted 17 August
1989; final version received 10 October 1989.

regulation might be assessed by measuring the body
temperature of individual animals in response to vari-
ation in ambient temperature (Lovegrove 1987). The
effect of exercising can be investigated by tracking blood
constituents of individual fishes over a time period
(Milligan and Wood 1987). Similarly, insight into the
temperature dependency of biochemical processes
might be sought by analyzing K,,, variation of enzymes
at 20° 30° and 40°C (Simon et al. 1984). The results
of such ecophysiological investigations are typically
summarized as response curves, graphs of the response
rate against an environmental factor that affects the
response. The importance of response curves in phys-
iological ecology reflects the discipline’s roots in com-
parative physiology, where a strong tradition of labo-
ratory stimulus—response investigations exists. Perhaps
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because these same laboratory traditions depend on
repeatability more than inferential statistics to decide
the generality and validity of experimental results,
physiological ecologists have not emphasized the sta-
tistical comparison of response curves.

In an effort to encourage more rigorous analysis of
response data, we address the statistical treatment of
response curves obtained by measuring the response
of each experimental unit (plant, animal, tissue prep-
aration) to a/l the investigated levels of the environ-
mental factor governing the response. Such an exper-
imental design, typical in ecophysiological research,
would be referred to as a repeated-measure design in
the statistical literature (Winer 1971, Timm 1980). Re-
peated-measure designs have the advantage of increas-
ing the precision of the treatment analysis by account-
ing for inter-individual variation (Cook and Ware 1983).
Recent reviews have dealt with the analysis of longi-
tudinal data (Cook and Ware 1983, Ware 1985) or of
growth curves (Koziol 1986, Kokoska and Johnson
1987), which also arise from repeated-measure designs.
Unfortunately, ecologists appear largely to ignore the
appropriate treatment of response curve data (but see
Kowal et al. 1976, Gurevitch and Chester 1986). Al-
most none of the recent papers in Ecology, Oecologia
(Berlin), Physiological Zoology, and Plant, Cell, and
Environment that compared response curves used ap-
propriate statistical techniques.

In this paper we compare different statistical meth-
ods that can be used to analyze response curves derived
by repeated measurements. We consider both multi-
variate and univariate parametric methods, as well as
nonparametric methods of statistical inference, togeth-
er with a complementary model-fitting approach. We
summarize the advantages and drawbacks of each
method, and offer guidance on the choice of the best
method for the analysis of particular response curves.
Objective criteria that can be used to select the most
appropriate analytical method are given as a dichot-
omous key to the choice of a technique based on dif-
ferences in experimental design and data structure. Our
aim is not to elaborate new statistical methods, but,
rather, to bring to the attention of ecologists infor-
mation that is at present largely confined to the statis-
tical literature. The use of each technique is illustrated
by a didactic biological example, and is explicitly re-
lated to procedures in widely available statistical pro-
grams. In the example, seven photosynthetic rates cor-
responding to seven CO, concentrations were measured
on each plant. Although we have used the comparison
of these CO, response curves as an illustration, our
approach pertains to any response curves obtained from
repeated measurements.

MATERIALS AND METHODS

The biological example to illustrate the different sta-
tistical methods is part of a larger study aimed at ana-
lyzing the cold tolerance of a C, grass species, Echi-
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nochloa crus-galli (Potvin et al. 1986). Northern and
southern plants of that species were subjected to day-
time chilling, and the consequences of chilling, as well
as the population difference, on the CO, dependence
of photosynthesis was determined by comparison of
the CO, response curves for photosynthesis.

Seeds of Echinochloa crus-galli var. crus-galli (L.)
Beauv. from Québec and Mississippi were grown under
acycle of 14 h at 26°C, 10 h at 20°, in growth chambers
at the Duke University Phytotron (Durham, North
Carolina, USA). Photosynthetic photon flux density
(PPFD) was 1000 umol-m~2-s™!, air humidity was 70%,
and CO, concentration 350 uL/L. Four-week-old plants
were divided in two groups: control plants that re-
mained at 26° and chilled plants that were subjected
to a full day (14 h) of chilling at 7°. Each control plant
was paired at random to a plant to be chilled, since
plant growth prior to chilling was very uniform. Pairing
was recommended by Koch (1970) to enable analysis
of interaction effects in nonparametric tests. All other
conditions were unchanged. Following one night (10
h) of recovery at 20°, CO, curves of carbon uptake were
generated for chilled and control plants. Net photo-
synthesis was measured at seven concentrations of CO,
(100, 175, 250, 350, 500, 675, 1000 wL/L) using the
absolute IRGA system (Horiba, PIR-2000) described
in Potvin et al. (1986). Measurement temperature in
the single-leaf cuvette was 26°, PPFD was 1000
pmol-m2-s~!, and water-vapor pressure deficit was held
constant at 1 kPa. A CO, response curve was generated
for three plants from each population and chilling treat-
ment combination. Each plant was subjected to the
seven CO, levels in increasing, consecutive order, which
is the normal protocol in these types of experiments.
The photosynthetic response to a CO, level was re-
corded after photosynthesis had remained unchanged
for 5 min. Raw data are presented in Table 1.

Statistical analyses

Data were analyzed using four different statistical
procedures and three statistical packages: SPSS (ver-
sion 9.0, Norusis 1986), BMDP (Dixon 1983), and SAS
(SAS Institute 1985). In our summary of the procedures
we assume a sufficient knowledge of the SAS, BMDP,
and SPSS programs to implement the procedures. In-
formation on the specific commands used to program
a typical ANOVAR can be found in the Appendix.

Repeated-measures analysis of variance.—ANO-
VAR was run from SAS procedure GLM (profile anal-
ysis in SPSS or BMDP 2V). Mauchly’s criterion test
for the compound symmetry of the variance—covari-
ance matrix was obtained automatically, together with
corrected significance levels in case of the rejection of
the symmetry assumption. A mixed model was as-
sumed; the repeated subject [plant, S,,] was random
while the remaining effects were fixed. The model used
is similar to the split-plot design:
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TABLE 1. Photosynthetic rates, measured as CO, uptake, obtained from (A) Québec and (B) Mississippi plants of the C,
grass Echinochloa crus-galli. Control and chilled plants were paired a priori as follows: Québec: 1 with 6, 2 with 4, 3 with

5; Mississippi: 1 with 6, 2 with 5, 3 with 4.

CO, concentrations (uL/L)

Plant Treatment 95 175 250 350 500 675 1000
CO, uptake rate (umol-m-2-s° ")
A) Québec plants
1 Control 16.0 30.4 34.8 37.2 35.3 39.2 39.7
2 Control 13.6 27.3 37.1 41.8 40.6 41.4 44.3
3 Control 16.2 32.4 40.3 42.1 42.9 43.9 45.5
4 Chilled 14.2 24.1 30.3 34.6 32.5 35.4 38.7
5 Chilled 9.3 27.3 35.0 38.8 38.6 37.5 42.4
6 Chilled 15.1 21.0 38.1 34.0 38.9 39.6 41.4
B) Mississippi plants
] Control 10.6 19.2 26.2 30.0 30.9 32.4 35.5
2 Control 12.0 22.0 30.6 31.8 32.4 31.1 31.5
3 Control 11.3 19.4 25.8 27.9 28.5 28.1 27.8
4 Chilled 10.5 14.9 18.1 18.9 19.5 22.2 21.9
5 Chilled 7.7 11.4 12.3 13.0 12.5 13.7 14.4
6 Chilled 10.6 18.0 17.9 17.9 17.9 18.9 19.9
rane test and by the multivariate Box M test (SPSS
= + + S + o
Ko =+ P T, + PT, + S + C MANOVA). Much as ANOVAR, MANOVAR distin-
+ PC, + TC, + PTC,, . . o .
FSC e guishes between-subject effects and within-subject ef-
Kupt T Skt fects, but unlike ANOVAR always assumes fixed-effect
where X,,,, is the response of the kth plant from the models. In MANOVAR the within-subject effects in

ith population and subjected to the jth treatment, u is
the population mean for the response, P, is the effect
of population, 7} is the effect of the jth treatment, S,
is the subject effect (due to individual plants), C, is the
CO,-level main effect, ¢, is the random deviation.
In the presentcase: i =1,2;j=1,2;k=1,3and /=
1,..., 7. In this model, S,, is nested under the pop-
ulation and treatment main effects, and is the appro-
priate error term for P, T, and PT,, which will be
referred to as between-subject effects (Hand and Taylor
1987). The effects involving the C, term will be called
within-subject effects, and the appropriate error term
for these is SC,,,, (Winer 1971:561).

Multiple comparisons also were made a posteriori
using Helmert contrasts (SAS procedure GLM), which
allow a closer analysis of the CO, influence on the main
effects. This contrast compares each level of a factor
to the mean of the subsequent levels. Canonical coef-
ficients are then computed for the contrasts generated.
A small coefficient indicates that the carbon uptake at
that level has reached the saturated rate. Because CO,
curves are asymptotic, this contrast is especially useful
in interpreting differences in the shapes of the response
curves. For example, a large negative value for the sixth
CO, contrast under the treatment effect would indicate
that the difference between control and chilled plants
is larger when measured at 1000 umol of CO,.

Repeated-measures multivariate analysis of vari-
ance. —MANOVAR (Timm 1980, Hand and Taylor
1987) was performed on the data (SAS procedure GLM;
profile analysis in SPSS MANOVA and BMDP 2V).
Prior to the analysis, the homogeneity of the variance—
covariance matrices was tested by the univariate Coch-

the preceding model are tested by transforming the data
in p — 1 contrasts (where p = the number of param-
eters), a transformation that is automatic in SAS pro-
cedure GLM.

Nonparametric, split-plot analysis. —Data were
compared using a split-plot nonparametric analogue.
The analysis was based on recommendations by Koch
et al. (1980) regarding the nonparametric treatment of
analysis for repeated measurements. The among-plants
effects, P, T, and PT,, were tested using the Kruskal-
Wallis rank analysis as presented in BMDP 3S. Since
in this case both P, and T, have only two levels each,
the Kruskal-Wallis test reduces to the Wilcoxon rank
test. The within-subject effects, C, PC,, and T C, were
tested by means of the Friedman test (BMDP 3S).

Prior to the analysis, however, data had to be summed
in a variety of ways to allow the test of the various
effects. Summation proceeded as indicated by Koch
(1970), and is summarized in Tables 2 and 3. As in
ANOVAR and MANOVAR, the P, and T, between-
subject effects are analyzed as the photosynthetic mean
over all CO, concentrations (Table 2A). To obtain a
test for a P, x T, interaction, differences in mean pho-
tosynthesis between chilled and control plants paired
at random were computed (Table 2B). For example, using
data from Table 1, the computed difference in CO, uptake
rate is between 33.2 and 33.4 umol-m~2's!, the mean
rates corresponding to Québec plants 1 and 6, which
had been previously paired. These random pairwise
differences were then grouped as populations, and the
Kruskal-Wallis test performed in BMDP 3S. The CO,
within-subject main effect was analyzed across the sev-
en levels for each of the treatment-by-population com-
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TaBLE 2. CO, uptake rate values (in micromoles per square
metre per second) and associated ranks to test for the effects
of (A) population (P,) and treatment (7)) and (B) the pop-
ulation x treatment interaction (PT,) in the nonparametric
split-plot analysis. Pairing was done according to Table 1.

Populations
Québec Mississippi
Treatment Uptake (Rank) Uptake (Rank)
A) Mean photosynthesis and associated ranks
33.2 ©9) 26.4 %)
Control 35.2 1) 27.3 6)
37.6 (12) 24.1 ©)]
33.4 (10) 18.0 3)
Chilled 32.7 8) 12.1 1)
30.0 (@) 17.3 ?2)

B) Differences in photosynthesis between a priori paired
control and chilled plants and associated ranks

0.2 1) 9.1 &)
5.2 (3) 15.2 (6)
4.9 ®)) 6.1 4)

binations. The PC, interaction was tested for each CO,
concentration as the mean photosynthetic difference
between control and chilled plants for each population
(Table 3A). For example, at 100 uL/L CO, for Québec:
(16.0 + 13.6 + 16.2) — (15.1 + 9.3 + 14.2) = 7.2,
and this value was then used in the test. The 7C, effect
was similarly computed for each CO, level as the pop-
ulation mean difference for chilled and control plants.
This is illustrated by the chilled plants at 100 uL/L
CO,: (15.1 + 9.3 + 14.2) — (7.7 + 10.5 + 10.6) =
9.8. Consequently, to run the analysis in the statistical
program, six different data files had to be created by
summing or subtracting appropriate rows and columns
in the full data matrix.

Comparison of fitted curves.—Curves were fitted by
nonlinear regression to the four combinations of pop-
ulation and treatment, each of which will hereafter be
referred to as a group. The four groups compared are
Québec control, Québec chilled, Mississippi control,
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and Mississippi chilled. The model fitted by the iter-
ative least-square method available in BMDP AR was:

y=A[l — e 0] ey

This model is well-suited to our CO,-response data,
but other responses may require a different model. Ini-
tial parameters for the regression were found after solv-
ing an equation that linearized the data:

In(1 — y/a) = —kx + kx,. 2

The four fitted regressions were then compared follow-
ing Mead and Curnow (1983). The total sum of squares
(ss), which is the residual ss prior to grouping, was
obtained by fitting the regression equation to the com-
plete data set. The F ratios were computed as follows:

F=ss/(p,+g—p— 1)
F=ss/(N — g — p),

where p, is the number of parameters in the ith group,
p is the number of parameters, g is the number of
groups, N is the number of cases of all groups combined
(N = Zn), ss,, is residual ss of the groups, and ss, is
total ss — ss,. In this example, the test for an overall
group effect was obtained as follows: ss,, = 82.2 + 116.0
+ 173.4 + 172.5 = 544, withdf = 84 — 4 — 12 =68,
and therefore Ms,, = 7.99. On the other hand, ss, = ss
—ss, =5717 — 544 = 5173.1, withdf = 12 + 4 — 3
— 1 = 12, and the mMs, = 431.1. The F ratio is thus
431.1/7.99 = 53.88, which, compared to F,, ¢z = 2.46,
is highly significant. Following the suggestion of Ko-
koska and Johnson (1987), we eliminated pairwise
comparisons for groups that appeared to have a similar
response curve. This was the case for the two Québec
groups (F, ;4 = 3.01). Consequently, only two differ-
ences were computed, namely Mississippi control vs.
Québec combined and Mississippi chilled vs. Québec
combined. This method has the advantage of decreas-
ing the number of simultaneous tests and consequently
the probability of Type 1 error.

and

TasLE 3. CO, uptake rate values (in micromoles per square metre per second) and associated ranks to test for the effects of
(A) the population x CO, level interaction (PC,) and (B) the treatment X CO, level interaction (TC;).

A) Differences in mean photosynthesis between control and chilled values, and associated ranks.
Ambient CO, levels (uL/L)

100 175 250 350
Population Uptake (Rank) Uptake (Rank) Uptake (Rank) Uptake (Rank)
Québec 7.2 2) 17.7 2) 8.8 1) 7.1 (1)
Mississippi 5.1 (€)) 16.3 1) 34.3 2) 393 ?2)
B) Differences in photosynthesis between the two populations, and associated ranks.
Ambient CO, levels (vL/L)
100 175 250 350
Treatments Uptake (Rank) Uptake (Rank) Uptake (Rank) Uptake (Rank)
Control 11.9 2) 29.5 2) 29.6 1) 31.4 (1)
Chilled 9.8 1) 28.1 (1) 55.1 2) 64.2 2)
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FiG. 1.

CO, uptake photosynthetic response curves for Québec plants of the C, grass Echinochloa crus-galli, control and

chilled, and Mississippi plants, control and chilled. The data were fitted with Eq. 1: y = A[l1 — e “~~ )], and the estimated

values of the equation parameters are given in Table 9A.

RESULTS

Visual comparison of the CO, curves for each com-
bination of population and chilling (Fig. 1) suggests
that the CO,-saturated photosynthetic CO, uptake is
higher for plants from Québec than from Mississippi.
CO, uptake values on the order of 40 umol-m 2-s™! are
seen for northern plants, compared to 30 umol-m 2-s™!
for southern ones. The curves have the typical shape of
the CO, response of C, plants. In all cases CO, uptake
saturates at low external CO, concentrations. Chilling
has a drastic effect on the CO, curves of the Mississippi
plants but a lesser one on Québec plants. Photosynthesis
saturated some 10 umol-m~2-s! lower for chilled Missis-
sippi plants compared to control values.

ANOVAR

The ANOVAR and MANOVAR both assume that
the data are normally distributed. However, because

TABLE 3. Continued.
Ambient CO, levels (uL/L)

500 675 1000
Uptake (Rank) Uptake (Rank) Uptake (Rank)
8.8 (1) 12.0 (1) 7.0 (1)
41.9 2) 36.8 2) 39.1 2)
Ambient CO, levels (uL/L)

500 675 1000
Uptake (Rank) Uptake (Rank) Uptake (Rank)
27.0 (1) 32.9 1) 34.7 (1)
60.1 ) 57.7 ) 66.8 2)

of' small sample sizes (» = 3 in each cell of our example),
none of the distribution techniques available (Mardia
1980) is powerful enough to test normality. As there
i1s no a priori reason to suspect departure from nor-
mality, we will assume it. Prior to the examination of
the ANOVAR results, the hypothesis of the compound
symmetry of the covariance matrix should be tested.
Mauchly’s criterion for our data (0.00085, P > .004)
indicates that compound symmetry must be rejected.
Nonetheless, ANOVAR may still be used under re-
laxed assumptions if the Huynh-Feldt conditions
(Huynh and Feldt 1970) are met. The Huynh-Feldt
epsilon is a measure of the strength of the violation of
compound symmetry; if the Huynh-Feldt conditions
are met, ¢ = 1, and small values of ¢ indicate strong
violations. In the present case, ¢ = 0.9679, indicating
that the violation is very mild. Consequently, our anal-
ysis can be based on corrected significance levels.

In the Huynh-Feldt-corrected ANOVAR, the be-
tween-subject effects of the model (population, treat-
ment, and population X treatment) are all statistically
significant (Table 4). Similarly the CO, effect and the
interaction of this effect with all other effects are also
significant. The altenative Greenhouse-Geisser correc-
tion (Greenhouse and Geisser 1959) gives comparable
results for our data (Table 3), but this will not always
be the case.

The canonical coefficients from Helmert contrasts
(Table 5) indicate that, for both populations and treat-
ments, photosynthesis reached a plateau between the
second and the third CO, concentrations (i.e., 175-250
uL/L). The CO, concentration at which photosynthesis
saturates was thus independent of the treatment and
the population factors. Observed significant differences
in the curves were mainly caused by difference in the
saturated rates of carbon uptake (Table 5).
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TABLE 4. Analysis of variance of CO, uptake rate with repeated measurements on plants. The analysis assumed a mixed
model in which ambient CO, level is the only fixed effect.

Corrected P,
Sources of Greenhouse- Corrected P,
variation MS F df P Geisser Huynh-Feldt
Between subjects
P, 3441.9 92.9 1 .0001
T, 947.4 25.6 1 .001
PT, 245.8 6.64 1 .03
Within subjects
C, 685.5 185.3 6 .0001 .0001 .0001
PC, 65.0 17.6 6 .0001 .0001 .0001
TC, 15.2 4.10 6 .002 .02 .002
PTCy, 20.2 5.5 6 .0002 .007 .0003
MANOVAR Nonparametric (NP) split-plot

A multivariate test for the assumed homogeneity of
the variance—covariance matrices is provided by the
Box M test (Norusis 1986). In our case the test could
not be performed because the cell matrices are singular.
We therefore used the univariate Cochrane test, which
indicated that the variance was homogeneous for each
of the seven dependent variables. This univariate test
is not fully satisfactory for multivariate data because
it looks only at the variance of the data. Because of the
untestability of the homogeneity of the variance—co-
variance matrices, and since the variances are homo-
geneous, we proceeded with the analysis.

The values of Pillai’s trace (Olson 1976) are reported
in Table 6. This statistic is to be preferred in MAN-
OVA(R) when the univariate degrees of freedom (df)
for the error (df)) are <10 p, p being the number of
dependent variables (Olson 1976). In the present case,
df, = 8, and 10 p = 60. Pillai’s trace has also been
shown to be most robust in the face of departure from
the MANOVA(R) assumptions, which could not be
tested here (Olson 1976). The MANOVAR results (Ta-
ble 6) indicate that the effect of CO, is highly signifi-
cant—not surprisingly, since CO, levels affect carbon
uptake. In contrast to ANOVAR, MANOVAR indi-
cates that the only other significant within-subject ef-
fect is the population x CO, interaction (P < .05).

TABLES. Canonical coefficients for a posteriori Helmert con-
trasts* of CO, uptake rates in ANOVAR.

Popu-
CO,-level Popu- Treat- lation X
contrasts CO, level lation ment treatment
1vs. 2-7 5.70 5.52 5.02 3.20
2 vs. 3-7 -0.13 -0.02 —-0.47 0.71
3 vs. 4-7 -0.19 -0.51 1.07 0.37
4 vs. 5-7 -1.29 —1.41 —-1.12 -1.19
5 vs. 6-7 2.37 2.59 1.21 1.09
6 vs. 7 —-1.31 —0.94 -2.13 -0.47

* In which each level of a factor is compared to the mean
of subsequent levels.

The NP split-plot indicates that both the population
and CO, main effects are highly significant, respectively
P < .01 and P < .001 (Table 7). The only interaction
found significant by this test is the population X treat-
ment interaction (P < .01).

Comparison of nonlinear regressions

The four regressions fitted to the photosynthetic re-
sponses of, respectively, Québec control, Québec chilled,
Mississippi control, and Mississippi chilled, are:

y = 41.47[1 — e-00115:=58.27], 3)
y = 39.10[1 — £-00093x—-53.089)] 4
y = 31.28[1 — ¢=0-0093x—48.39)] and )
y = 17.78[1 — e-0011==20.59], (6)

Normal probability plots suggested that the residuals
were normally distributed; Fig. 1 illustrates the fit of
the curves to the data. Significance testing indicates the
existence of a significant group effect (Table 8). Sub-
sequent pairwise comparisons showed that the com-
bined Québec populations were significantly different
from either of the Mississippi subpopulations.

SUMMARY AND DISCUSSION

Not all apparent response curves are correctly ana-
lyzed as repeated-measures designs, and widely used
statistical techniques like the analysis of variance can
only be used to analyze a few particular types of re-
sponse curves that are not based on repeated measures.
The statistical problems inherent in comparing re-
sponse curves in ecology are related to the use of the
same experimental unit over a range of treatment levels.
Data gathered following such a design are most often
called repeated-measures data (Winer 1971) or, if the
response to a treatment is followed over time, longi-
tudinal data (Ware 1985). From a statistical viewpoint,
the analysis of mass gain in an animal that was suc-
cessively weighed during its life is totally different from
the analysis of plant growth as obtained by dry biomass
increment between successive harvests. The experi-
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TABLE 6. Multivariate analysis of variance of CO, uptake
rate with repeated measurement on CO, concentrations. As
in a split-plot analysis, the effects are computed either (A)
between subjects or (B) within subjects.

A) Between subjects

Sources MS F df P

P, 3441.9 92.9 1 .001
T 947.4 25.6 1 .001
PT, 245.8 6.64 1 .03

B) Within subjects

Pillai’s

Sources trace F df P

C, 0.996 137.0 6,3 .001
PC, 0.972 17.3 6,3 .02

C, 0.872 3.4 6,3 17

PTC,, 0.699 1.2 6,3 .49

mental designs typically used to determine plant growth
curves (Hunt 1982) are based on repeated harvests, not
repeated measures; each point defining the response
curve is derived from a single individual, and the ap-
propriate statistical analyses (Causton and Venus 1981)
differ from those used to analyze an animal growth
curve derived from repeated measures. In the type of
true repeated-measures designs considered in this pa-
per, the dependent variables under consideration (here
photosynthetic rates at each CO, level) are correlated.
This peculiar characteristic of the data explains why
the two most widespread statistical methods in the
ecological literature, namely ANOVA and MANOVA,
were not included in the analysis. These techniques fail
to take into account not only the correlation existing
among the data but also the predictable shapes of many
types of response curves. The use of ANOVA or MAN-
OVA to analyze response curves based on repeated
measures would thus be incorrect. In the following
discussion we consider various aspects of only the cor-
rect analyses that are available for the analysis of eco-
physiological response curves.

To allow for the repeated-measures design, the mod-
el used in ANOVAR and MANOVAR makes a crucial
distinction separating the between- and the within-sub-

TABLE 7. Nonparametric split-plot analysis, equivalent to
the parametric ANOVAR, using Kruskal-Wallis rank anal-
ysis to test the among-experimental-units sources of vari-
ation and the Friedman statistic for the within-experimen-
tal-unit variation.

Sources Statistics P
Between subjects

P, H = 8.36 <.01

T, H=1.68 NS

PT, 3.97 <.05
Within subjects

G x> =61.2 <.001

PC, x*= 1.29 NS

TC, x*= 1.29 NS

PTC,, Not computed
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TaBLE 8. F values for the nonlinear regression fitting Eq. 1
to the CO, uptake rate data.

Sources F df P
Among groups 53.88 12, 68 <.001
Between Québec 3.01 4,34 >.05
Pairwise comparisons
Québec combined vs.
Miss. chilled 70.70 8,51 <.001
Québec combined vs.
Miss. control 17.07 8,51 <.001

ject effects. In both analyses, the between-subject ef-
fects are tested on the sum of the p variables (Morrison
1976), and in our example, as shown in Tables 4 and
6, the results from both procedures are identical. AN-
OVAR and MANOVAR do not attempt to account
for any correlation among the dependent variables, but
rather absorb any correlational structure by using the
S, mean square (Ms) as the proper error term for the
between-subject effects. This allows a simple deri-
vation of the mean squares (Winer 1971). To allow an
exact test of the within-subject effects, however, AN-
OVAR does assume that all covariances in the pooled
matrix are equivalent, and that the correlations among
levels of the within-subject variables are constant over
all combinations of levels. This very stringent assump-
tion is referred to by Winer (1971:561) as “‘compound
symmetry.” A paper by Huynh and Feldt (1970) re-
laxed the symmetry assumption. These authors have
shown that the sufficient condition for ANOVAR is
the equality of variances of differences of all pairs of
treatment measures that are assumed to be correlated.
This assumption may be met more readily than that
of compound symmetry. Greenhouse and Geisser
(1959) have proposed an alternative test, G-G, which
can be applied when the covariance matrices differ
from group to group. Both the Huynh-Feldt (H-F) and
the G-G tests allow a more general use of ANOVAR.
Greenhouse and Geisser (1959) argued that ANOVAR
with corrected significance level was the only solution
when the ratio of p to n precluded a multivariate anal-
ysis. It has been suggested (Langlet 1985) that when
an approximate test needs to be used, H-F and G-G
should be compared and the hypotheses of interest
accepted or rejected only if the two tests are in agree-
ment.

Since >1 dependent variable is used to characterize
a group, repeated measurement also can be analyzed
by a multivariate technique. Such methods have been
advised when a correlation occurs among the depen-
dent variables. The literature can be confusing when
it comes to the multivariate analysis of repeated mea-
surements. One method is reported under two different
names: MANOVAR (Cole and Grizzle 1966) and pro-
file analysis (Morrison 1976, Johnson and Wichern
1982). The computations involved in both analyses
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are identical, however, the naming of the techniques
differs among disciplines and with the nature of the
dependent variables. “Profile analysis™ is a term gen-
erally applied in the social sciences, where no relation-
ship is assumed between the dependent variables, nor
is any necessary correspondence between treatment in-
terventions and the dependent variables considered. In
MANOVAR, by tradition, the dependent variables are
taken as measures of the same individuals or items
across occasions. Analysis of photosynthetic curves is
an example of a typical MANOVAR problem, while
profile analysis would be used to analyze answers to a
questionnaire. When testing the within-subject effects,
MANOVAR/profile analysis has the considerable ad-
vantage over ANOVAR of making no assumption about
the form of the covariance matrix. Instead, in our ex-
ample, six dependent, transformed variables, rather
than the seven original photosynthetic rates, were con-
sidered; these transformed variables are the difference
in carbon uptake between two adjacent CO, concen-
trations.

MANOVAR also has some inherent disadvantages.
As Cole and Grizzle (1966) and later Koziol (1986)
pointed out, MANOVAR is less powerful than its uni-
variate counterpart. This is readily seen when com-
paring the denominator df = [ab(n — 1) — p + 1]
(Johnson and Wichern 1982), in MANOVAR with the
df, for the within-subject effects, df = ab(n — 1)(r —
1) (Winer 1971), in ANOVAR,; a and b are levels for
factors A and B, n is the sample size, and p is the
number of dependent variables. In our example, the
df=2[2(3 — 1)] — 6 + 1 =3 for MANOVAR compared
to 2[2(3 — 1)(7 — 1)] = 48 for the within-subject effects
of ANOVAR. The comparison of Tables 4 and 6 il-
lustrates the biological implications of the lesser power
of MANOVAR. While significant differences are found
by ANOVAR at all levels of the within-subject effects,
MANOVAR shows only a significant CO, effect. The
inappropriate use of MANOVAR in the present case
would result in a failure to detect biologically impor-
tant differences among the treatment effects (Type 11
error). Here the failure to detect the significant TC),
interaction, which indicates that the photosynthetic re-
sponse to varying CO, levels is affected by chilling,
would have weakened our interpretation of these data.
This finding, which amplifies the previous results
showing modification of chilling tolerance for high-
CO,-grown plants (Sionitet al. 1981, Potvin et al. 1986),
warrants further investigation. It is worth noting that
the incorrect use of ANOVA or MANOVA certainly
would also have missed this biologically interesting
interaction, since these analyses do not even provide
a test for within-subject effects. When the data structure
precludes ANOVAR, it should be noted that even very
modest increases in replication at low levels will dra-
matically increase the power of MANOVAR to detect
differences (Vonesh and Schork 1986).

MANOVAR also is sensitive to the ratio of p to n,
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which again is a problem when analyzing certain types
of response curves in which the sample size is small.
Comparison of the df clearly illustrates the problem:
if the number of dependent variables is large compared
to other terms, the df decreases significantly and, con-
sequently reduces the power of the test. Consequently,
an unfavorably low ratio of sample size to p again may
lead to frequent type II error. An unfavorable balance
between 7 and p can also lead to the untestability of
the homogeneity of the variance—covariance matrices
(Tabachnick and Fidell 1983), as in the present case.
In a multifactor MANOVAR, when p > N — K, N
being the total sample size and K the number of groups
being compared, the error matrix E becomes singular
(Greenhouse and Geisser 1959, Winer 1971, Kowal et
al. 1976). By definition a singular matrix cannot be
inverted. The consequences of the singularity of E are
fatal to the analysis, because all the criteria in MAN-
OVA are based on the characteristic root of HE™! where
E is the error matrix and H the hypothesis matrix (Mor-
rison 1976). Therefore the criterion cannot be com-
puted if E is singular and MANOVAR cannot be per-
formed.

The CO, curves in our example thus represent a
frequent problem associated with the analysis of re-
sponse curves. In the present case the total number of
observations, N = 12, is sufficient to allow the analysis
(12 — 4 = 8 > p = 6), but the modest sample size
exerts a prohibitive effect on the power of the analysis.
A warning against the use of multivariate technique
when the number of dependent variables is large com-
pared to the sample size has often been issued (Koch
et al. 1980, Langlet 1985, Ware 1985), and should be
heeded more often in the design of ecophysiological
experiments. In cases when the shape of the response
curve is complex or poorly known there may be no
alternative to investing more heavily in measurements
defining the response of an individual (high p) than in
characterizing variation in response among individuals
(low n). More often, as in the present example, the
investigator knows the general shape of the response a
priori. An experimental design emphasizing measure-
ments at a few thoughtfully selected cardinal points
(low p) and sampling more individuals (high n) opens
the way to the effective use of the MANOVAR analysis.
In our example, the 21 measurements feasible for each
of the four treatments were allocated to seven CO,
levels on each of three plants. Although it would have
required a break with tradition in physiological ecol-
ogy, we could have achieved a more powerful analysis
of treatment effects had we instead sampled seven plants
at 95, 350, and 1000 xL/L CO,. When interest lies
more on the comparison of responses across treatments
than on the definition of the shape of responses, avail-
able resources are better invested in replication () than
in too many levels (p) of the independent variable stim-
ulating the response. This type of design, which
strengthens the MANOVAR analysis, may prove crit-
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ical to the variance—covariance structure if the data
preclude use of the preferred ANOVAR analysis.

In the case of experiments where sample size is nec-
essarily very small, nonparametric methods may prove
excellent alternatives to the traditional parametric
methods such as ANOVAR and MANOVAR. Non-
parametric (NP) techniques make few assumptions
about the populations of origin of the data and do not
require that the data be normally distributed (Hol-
lander and Wolfe 1973). In the case of the analysis of
repeated measurements, the NP split-plot also involves
no assumption about the structure of the covariance
matrix, and consequently it is applicable under far more
general assumptions than those associated with AN-
OVAR or MANOVAR. The design of an experiment
for which data are to be compared by NP split-plot,
however, should include a random pairing of the sub-
jects a priori. This random pairing is necessary to allow
a test of the between-subject interaction effect, and any
a posteriori pairing could lead to an invalid analysis.
For example, if high rates are paired with high rates,
the observed difference is minimized. Conversely, if
high rates are paired with low rates, any treatment effect
is maximized. Random pairing a priori avoids this
pitfall. Since this requirement for random pairing of
the observations does not affect sample sizes in the
design, it is readily accommodated, and should not be
ignored. The notable price for the greater flexibility of
the nonparametric model compared to ANOVAR and
MANOVAR is a loss in sensitivity of the analysis (Koch
et al. 1980). Nevertheless NP split-plot analysis some-
times may be the only adequate inferential technique
available to analyze response curves because of logis-
tical limitations on sample sizes.

The attitude that nonparametric methods are, at best,
a second choice is a remnant of opinions prevailing in
the 1960s (Noether, in Conover and Iman 1981) and
is changing. For physiological ecologists often forced
to deal with small sample sizes, nonparametric tech-
niques are advantageous. It is worth noting that an
analogue to the nonparametric method followed here,
known as a “‘rank transformation” (Kepner and Rob-
inson 1988), can be used. In the rank transformation
approach, which is clearly detailed in Conover and
Iman (1981), the data are analyzed by a parametric
technique such as ANOVAR after being transformed
to ranks. This procedure is useful when available sta-
tistical packages do not include the nonparametric
Friedman or the Kruskal-Wallis tests. However, we
would follow the advice given by Noether in the com-
mentaries to Conover and Iman (1981) that, when
available, these direct nonparametric tests are prefer-
able to the rank order transformation.

The last approach to the analysis of response curves
taken in this paper is qualitatively different from the
previous three methods. A model was fitted to the data
and subsequently used to compare the curves. This
approach was inspired by the widespread use of model
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fitting to analyze growth curves (Zeger and Harlow
1987, Diggle 1988). Curve fitting compares advanta-
geously to some of the methods cited above by being
distribution free. Another advantage of this approach
is that when an appropriate model is used the param-
eters of the fitted equations have a biological meaning.
In our example with CO, response curves, we chose to
use the Mitscherlich response function often used in
the agriculture literature to relate a plant’s response to
fertilization. The biological rationale for choosing Eq.
1, y=A[l — e *~0] is that atmospheric CO, con-
centration is indeed a “fertilizer” for photosynthesis.
In the present case:

A, the asymptotic level, represents the predicted sat-
urated rate of CO, uptake;

k, the slope of the linearized relationship (Eq. 2), is
the rate of increase in photosynthesis with enhanced
CO,;

Xy, the x intercept, is the CO, compensation point.
Consequently, the analysis of response curves using
model fitting adds a dimension of interpretability that
is missing in the strictly inferential methods. Further-
more, with available statistical packages, such as BMDP
AR or SAS procedure NLIN, nonlinear models are no
more difficult to fit than linear ones. Mead and Curnow
(1983) pointed out that the strictly linear models in-
volved in the analysis of variance are often inappro-
priate to describe biological relations. There are, how-
ever, also some difficulties inherent in this model-fitting
approach. Currie (1982) presented an analysis of the
effect of the design matrix, i.e., the values given to the
independent variable, and of fitting techniques on the
values of the estimated parameters from the Michaelis-
Menten equations. His simulations indicate that both
factors may alter the values of the coefficients. That
his data found the regression relatively insensitive,
within a certain range, to the initial values of the pa-
rameters is of only some comfort.

Once an adequate model is fitted to the data, the
responses can be analyzed in terms of the parameters
of the fitted function, or the regression equations can
be compared. These methods represent different ap-
proaches to model fitting. Analyzing the fitted param-
eters amounts to reducing the curves to ‘“cardinal”
points bearing an important biological meaning (Cook
and Ware 1983, Brown and Donnelly 1988). When the
equations are compared, these points, rather than the
coefficients, are regarded as representing the responses
(Kokoska and Johnson 1987). In this paper we have
chosen the second method, to reduce the potential dan-
ger associated with the absence of objective criteria for
selecting the most appropriate model. The problems
involved in choosing among competing models have
been illustrated in the case of the predator-prey rela-
tionship (Trexler et al. 1988). When several competing
models were fitted to the data, an unambiguous choice
ofa “best”” model could never be decided. The authors
suggest that the possibility of discriminating between
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TabLE 9. Estimated values for the parameters when (A) Eq. 1 and (B) Eq. 7 were fitted to the data.

Population Treatment A k X Residual ss
A) Eq. 1: y = A[l — e~ 0]

Québec Control 41.47 —.0115 58.27 115.97

Québec Chilled 39.10 —.0093 53.08 173.39

Mississippi Control 31.28 —.0093 48.35 82.17

Mississippi Chilled 17.78 -.0110 20.59 172.45
B) Eq. 7: 1/y = I/A[l + 1/—k(x — Xo)]

Québec Control 44.86 —.0234 33.35 127.04

Québec Chilled 43.35 —.0158 5.86 191.85

Mississippi Control 34.24 —-.0176 11.19 98.71

Mississippi Chilled 18.84 —.0304 29.21 166.81

different models increases when the variance in the
response is low. Brown and Donnelly (1988) also in-
dicate that when the variation among subjects is high,
analysis of fitted parameters may prove inadequate.
To illustrate better the problem of choosing the mod-
el to fit, we have fitted our data with a second model,

1/y = 1/4[1 + 1/—k(x — x)]. @

This relationship describes a rectangular hyperbola,
and the biological meaning of the three parameters can
be taken as the same as in Eq. 1. Eq. 7 has repeatedly
been used to model the light dependence of photosyn-
thesis (Prioul and Chartier 1977, Leverenz 1987) and
is but one of the six possible models used to describe
light-response curves (Thornley 1976). Since CO, de-
pendence curves have a shape similar to the modelled
light curves, the consideration of this alternative model
is highly relevant. On the basis of the residual ss, we
were unable to discriminate between the two models
(Table 9). However, estimated values of the parameters
were very different, and could easily lead to biologically
different interpretations (Table 9). In our case, the val-
ues of the parameters were highly dependent upon the
model chosen; this illustrates the potential danger in
restricting the analysis to the coefficients, and empha-
sizes the advantage of comparing the overall curves.
Mosteller and Tukey (1977) in their text on regres-
sion indicated that regression has several purposes,
amongst others: summarizing information and predic-
tions. In the analysis of response curves, we do not

TaBLE 10. A dichotomous key for selecting the preferred
method for the analysis of response curves. Symbols and
tests are explained in the text (see Summary and Discussion
section). The qualitatively different alternative of compar-
ing models fitted to the response curves also exists and is
discussed in the text.

a. If Mauchly’s criterion is nonsignificant: use ANOVAR

b. If Mauchly’s criterion is significant, go to 2

2. g. If Huynh-Feldt ¢ = 1 and H-F- and G-G-corrected
significance levels agree: use ANOVAR, with H-F-cor-
rected significance levels

b. Ifnot, goto 3
If N — K > pand n > p: use MANOVAR
If not, use nonparametric (NP) split-plot analysis

SR

attempt to use regression as a predictive tool. We want
to use the equations as a good summary of the infor-
mation obtained on the individuals. Therefore, we want
a good fit of the data, “without regard to whether it is
the best possible fit” (Mosteller and Tukey 1977). In
this perspective, comparison of fitted equations be-
comes far more comfortable. If the fit is good, then
comparing the curves should be consistent regardless
of the model used. This is illustrated in the present
example where the observed group effect was respec-
tively F = 53.88 for Eq. 1 and F = 50.07 for Eq. 7.

Concluding remarks

From our experience with ecophysiological response
curves and our review of the related statistical litera-
ture, we prefer a progressive scheme of alternative anal-
yses to decide the best technique for a particular data
set (Table 10). The question of which analysis should
be adopted is mainly based on the form of the co-
variance matrix and on the number of replicates. When
Mauchly’s criterion supports the hypothesis of a sphe-
ricity pattern for the covariance matrices, ANOVAR
is without doubt the most appropriate analysis, and
should be used. If the assumptions of the ANOVAR
are mildly violated, the ANOVAR with significance
levels adjusted by the Greenhouse-Geisser (G-G) or
Huynh-Feldt (H-F) corrections should be considered.
If the conclusions based on these two corrections are
contradictory, then ANOVAR should be avoided al-
together. Timm (1980) argues that in many circum-
stances MANOVAR is preferable to a corrected AN-
OVAR, but when p is large compared to n, MANOVAR
is weakened and should be avoided (Ware 1985). The
alternative when small sample sizes are a necessity is
the NP split-plot analysis (Koch 1970). In general, when
going from a more structured model (such as ANO-
VAR) to a less structured one (MANOVAR, then NP
split-plot), the power of the tests is reduced while the
assumptions underlying the analyses are relaxed. Fi-
nally, as a qualitatively distinct approach to the anal-
ysis of response curves, the comparison of a model
fitted to the responses has a lot to offer: the model-
fitting approach is distribution free, takes into account
the shape of a response, and, if done well, relates the
results to biologically meaningful parameters.
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We end by emphasizing the relationship between
experimental design and the viable possibilities for the
statistical comparison of response curves. On the one
hand, it should be clear that a poorly planned or hap-
hazard experimental design can undercut the analysis
of the data. For example, the power of MANOVAR is
compromised by a poor p/n ratio, and NP split-plot
should only be used if random pairs have been assigned
a priori. On the other hand, serious problems can in-
advertently be introduced into the analysis of even a
well-designed experiment. First, in determining a re-
sponse curve, measurements usually are taken in rapid
succession on the same individual, allowing only time
to attain a quasi-equilibrium response to each level of
the controlling factor. It is widely assumed that the
order of measurements on an individual does not in-
fluence the shape of the resulting response curve; there
is some experimental evidence that this widespread
assumption holds provided assays do not extend over
more than a few hours (Leverenz 1988). If there is any
carry-over effect between assays, this will introduce a
misleading sequential effect into the correlation matrix.
When feasible, experimental protocols that assay the
response to the levels of the stimulus in random order
are to be preferred. Second, the analysis of response
curve data will be immensely more complicated if the
data are either unbalanced or incomplete (Crépeau et
al. 1985, Jennrich and Schluchter 1986, Davis and Wei
1988). In physiological ecology, imbalance is most like-
ly to occur as uneven numbers of replicates within the
experimental groups. This typically might occur when
some plants in an experiment die or become obviously
aberrant (e.g., diseased, damaged in handling). For ex-
ample, if the numbers of chilled and unchilled plants
from either Mississippi or Québec in our example had
not always been equal, the design would have been
unbalanced. Incomplete data are most likely to occur
in physiological ecology as missing points on measured
response curves, perhaps through instrument mal-
function or recording errors. In planning and executing
experiments every effort, including allowance for extra
plants and readings, should be made to avoid imbal-
anced or incomplete data. If either problem arises, it
is likely that the analysis in available program packages
will be possible (Berk 1987) but substantially more
difficult. Careful attention to these considerations in
designing and executing experiments will pay divi-
dends in the ease of correctly analyzing response curves
(Federer 1986).
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APPENDIX

Annotated example of commands for ANOVAR in two
different statistical packages.

A. SAS procedure GLM

1) proc GLM; calls for the general linear model procedure.
2) class pop tre; indicates that the two classificaton vari-
ables are, in the present example, population and treat-
ment.
3) model P,,-P_, = tre pop pop*tre/nouni; specifies the mod-
el describing the data. P,,-P,; indicates that there are
seven dependent variables. The between-subjects effects
(see Materials and Methods: Repeated-measures Anal-
ysis of Variance) are then listed. Nouni prevents the
computation of single ANOVAs corresponding to each
of the seven dependent variables.
repeated CO, 7/printe; generates hypothesis tests for the
dependent variables that are referred to as within-subject
effects. In our case, the main dependent factor, CO,, has
seven levels. The printe command provides a sphericity
test, known as Mauchly’s criterion (see Results: ANO-
VAR). This test determines whether the probabilities
associated with ordinary F tests are correct, or if ap-
proximate tests such as that of Huynh and Feldt (1970)
should be considered. These statements will generate
MANOVAR as well as ANOVAR.

B. BMDP 2V

1) / design groupings are pop tre. Indicates the main
between-subject effects.
2) dependent are 3 to 9. Specifies that the dependent
variables appear as the 3rd to the 9th variables.
3) level is 7. name is CO,. Generates an ANOVAR
with seven levels for the repeated within-subject factor
named CO,.
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