
e c o l o g i c a l m o d e l l i n g 1 9 9 ( 2 0 0 6 ) 153–163

avai lab le at www.sc iencedi rec t .com

journa l homepage: www.e lsev ier .com/ locate /eco lmodel

Comparing species abundance models

Joanne M. Pottsa,∗, Jane Elithb

a Arthur Rylah Institute for Environmental Research, Department of Sustainability and Environment,
123 Brown St, Heidelberg, Victoria 3084, Australia
b School of Botany, The University of Melbourne, Parkville, Victoria 3010, Australia

a r t i c l e i n f o

Article history:

Published on line 13 July 2006

Keywords:

Zero-inflation

Over-dispersion

Poisson regression

Abundance data

Model evaluation

a b s t r a c t

Five regression models (Poisson, negative binomial, quasi-Poisson, the hurdle model and the

zero-inflated Poisson) were used to assess the relationship between the abundance of a vul-

nerable plant species, Leionema ralstonii, and the environment. The methods differed in their

capacity to deal with common properties of ecological data. They were assessed theoreti-

cally, and their predictive performance was evaluated with correlation, calibration and error

statistics calculated within a bootstrap evaluation procedure that simulated performance

for independent data.

The hurdle model performed best, with the highest correlations between the observed

and predicted abundances. This model was also well calibrated, giving the closest agree-

ment between observed and predicted abundances. The negative binomial was the worst

performing model. It had weaker correlations than the other models and resulted in a

strong, inconsistent bias in predictions. The standard Poisson model which accommodates

neither zero-inflation nor over-dispersion gave accurate estimates of regional population

abundance, but at the individual population level they were inconsistent and biased.

The strong performance of the hurdle model, coupled with theoretical properties that suit

it for these data and for the ecology of this species, suggest that it is a useful alternative
to other modelling methods. The gains in performance have practical advantages where

predictions are used by conservation planners to understand population dynamics or to

s of alternative management scenarios.
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. Introduction

nvironmental managers require estimates of species abun-
ance in a broad range of situations: classifying species
ccording to the IUCN Red List for threatened species (IUCN,
001); conducting population viability analyses (Possingham
t al., 2001); managing fire regimes (e.g. the endangered shrub
revillea caleyi, Regan et al., 2003); monitoring (e.g. population

hanges of pest species over time, Hone, 1999); and reintro-
ucing or translocating animals (Lubow, 1996). Obtaining such
stimates can be resource demanding because surveys are
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expensive and time-consuming, especially if the species is
rare or occurs in remote locations.

Mathematical models that quantify the relationship
between a species’ abundance and environmental charac-
teristics may be used to complement survey work. Predic-
tions of abundance can then be made at unsurveyed locations
and used to guide management decisions. The choice of a
species and characteristics of the available data. Accommo-
dating characteristics of the data in a model can increase
its complexity and thus decrease the ease with which it is
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developed, interpreted and understood. There is a trade-off
between complicated models that account appropriately for
characteristics of the data and simpler models that are easier
to develop but may be sub-optimal.

This study explores these trade-offs using data collected
on an Australian threatened plant species, Leionema ralstonii
(F. Muell.) Paul G. Wilson (Rutaceae). The species is protected
under both state and federal legislation due to its small geo-
graphical range (∼40,000 ha in the southeast corner of New
South Wales) and population size (∼18,100 individual plants
distributed across 71 discrete populations on rocky outcrops,
NSW National Parks and Wildlife Service, 2003). Predictions of
species abundance were required to guide management of the
species and as inputs for a population viability analysis (Potts
et al., submitted for publication).

2. Technical review

This paper focuses on regression methods within a gener-
alised linear model framework (McCullagh and Nelder, 1989).
These types of models are used frequently to quantify the
relationship between species abundances and environmen-
tal characteristics (e.g. Wintle et al., 2005; Leathwick et al.,
this issue). Regression models are typically described in
terms of their systematic component in which the response
is linked to the environmental data, and their stochastic
structure that describes the error distribution (Venables and
Ripley, 2002). In order to focus on the link function sepa-
rately to the rest of the systematic component, in this paper
we use the terms model structure and model specification.
Model structure includes both the choice of environmental
characteristics (the explanatory variables) assumed to affect
species abundance (the response variables) and the shape of
the modelled responses (linear, quadratic and so on). Model
specification defines how these variables are related using
a ‘link’ function. The choice of ‘link’ function allows the
response variable to be non-linearly related to the explanatory
variables.

When the response variable is count data (as is the case
when working with abundance observations), the response
variable can be linked to the explanatory variables using a log
transformation (McCullagh and Nelder, 1989):

log(p) = ln(p) = ˇ0 + ˇ1X1 + . . . + ˇNXN (1)

where p is the probability of an event occurring, XN the Nth
independent variable and ˇN is the regression coefficient. In
our example, an event is the mean rate at which individuals
occur on each outcrop (termed �). This model is referred to as
a standard Poisson regression and is the simplest and most
commonly specified model for count data.

This model specification assumes equi-dispersion, mean-
ing if Y is Poisson distributed, then the expectation of Y is
equal to the variance of Y. Since the variance is not constant,
the regression is intrinsically heteroskedastic (i.e. the vari-

ance increases with increasing mean). Violating the assump-
tion of equi-dispersion has similar consequences to violat-
ing the assumption of homoskedasticity in linear regression
(Cameron and Trivedi, 1998). The standard errors of the pre-
1 9 9 ( 2 0 0 6 ) 153–163

dictions are biased because the different populations have
different variances.

If the variance exceeds (or is less than) the mean, then the
data are said to be over- (or under-) dispersed (Cox, 1983). An
indication of the magnitude of over- or under-dispersion can
be obtained by comparing the sample mean and variance of
the dependent count variable. Over-dispersion can be reduced
using explanatory variables. When working with ecological
data the equi-dispersion assumption is commonly violated,
especially if the data are zero-inflated (Cameron and Trivedi,
1998).

Zero-inflated data contain substantially more zeros that
the specified distribution suggests (Tu, 2002). They occur
because the data generating process adds an additional mass
at zero, inflating the probability of observing a zero above
that which is consistent with the specified distribution. It may
therefore be a mis-specification to assume that the zero and
non-zero observations come from the same source. Visual
inspection of a histogram of the observed data might suggest
a spike of zero observations if zero-inflation is present.

Count data for rare species commonly are zero-inflated.
The species may be observed absent at many sites because
of true negative or false negative observations (Martin et al.,
2005b). We can think about these in terms of the source of
the error (i.e. the uncertainty). True negative observations
are attributable to structural zeros (i.e. unsuitable habitat) or
environmental process (i.e. suitable but unoccupied habitat
because the species does not saturate its environment). The
latter are also known as stochastic zeros. False negatives are
attributable to experimental design (i.e. survey site is utilised
by the species, but not during the survey period) or observer
error (i.e. species is present but not detected). If not mod-
elled properly, the presence of excess zeros can violate the
distributional assumptions of the analysis, lead to invalid sci-
entific inferences and create computational difficulties (Tu,
2002). Zero-inflation may cause over-dispersion, but it is pos-
sible for either of these two features to occur independently in
any data set. Formal statistical tests are available for both equi-
dispersion and zero-inflation (see Cox, 1983; Böhning, 1994;
van den Broek, 1995; Ridout et al., 2001; Hall and Berenhaut,
2002).

If a data set is zero-inflated and/or violates the equi-
dispersion assumption, the standard Poisson regression is still
commonly used (Cameron and Trivedi, 1998). We believe this is
because the Poisson model is easy to implement and available
in a number of statistical packages. Incorrectly specifying a
Poisson distribution in the presence of zero-inflation and/or
over-dispersion has two important consequences. Firstly, it
will result in incorrect predictions at each site, although the
average prediction across all sites will be consistent with
that observed (Cameron and Trivedi, 1998; Barry and Welsh,
2002). Secondly, it will cause overly optimistic conclusions
about the statistical significance of the explanatory vari-
ables (i.e. reduced standard errors of the coefficients). This
means that under common model-building procedures such
as stepwise selection, incorrect variables are more likely to

be retained (Fitzmaurice, 1997). Both of these consequences
are important for environmental managers, as either the pre-
dictions and/or the model structure may influence decision
making.
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Fig. 1 – Typical histogram of zero-inflated data, shaded bar
represents zero observations, non-shaded bars represent
positive observations. Overlayed is the probability
distribution function of a standard Poisson distribution.
Notice the number of observed zeros is much greater than
the proportion expected (pi). The proportion of zero
observations below pi are those expected to be absent, as
predicted by the Poisson model (i.e. false negatives). The
proportion of zero observations above pi are those expected
to be absent, as predicted by the distribution degenerate at
zero (i.e. true negatives).
e c o l o g i c a l m o d e l l i n

Appropriate alternatives to standard Poisson regression are
pplied in medicine, econometrics and statistics. For exam-
le, quasi-likelihood GLMs allow for non-standard response
istributions, relying on correct specification of mean and
ariance relationship (i.e. var = ˚�, Wedderburn, 1974). Here,
he quasi-Poisson model specifies the dispersion parameter,

(=variance/mean), such that ˚ will be greater than one if
ver-dispersion is present (Wedderburn, 1974; McCullagh and
elder, 1989; Nelder, 2000). Other models, collectively called
ixture models, separately account for the features of the

ata by combining (or mixing) two distributions (Tu, 2002).
hese are discussed below.

.1. Negative binomial

he negative binomial (NB) distribution was derived from
Poisson-gamma mixture (Greenwood and Yule, 1920;

cCullagh and Nelder, 1989) but is now considered a distribu-
ion in its own right. This model is the standard parametric

odel used to account for over-dispersion, as the variance
unction (ωi) is a multiple of the mean:

i = �i + ˛�
p
i

(2)

Restricted cases occur when p = 1 and p = 2 (called the NB1
nd NB2 models, respectively) and where p = 0 (the Poisson
odel). The NB model does not explicitly account for zero-

nflation.

.2. Zero-inflated models

he foundation for the entire class of zero-inflated models is
he mixing of a common parametric distribution (e.g. a Poisson
istribution) with one degenerate at zero (i.e. all observations
re zero) (Tu, 2002). If the parametric distribution is specified as
Poisson, a zero-inflated Poisson (ZIP) model results (Umbach,
981; Dietz and Böhning, 2000). This was developed by Lambert
1992) to model the number of defects produced during a man-
facturing process, and is defined as:

i ∼
{

0, with probability pi

Poisson (�i), with probability 1 − pi

(3)

here Yi is the number of defects on the ith product, i = 1,
. ., n. This model structure implies the zero observations may
rise with probability pi from the distribution degenerate at
ero (thus implying the zero is a true negative observation).
lternatively, the zero observation may arise from the Pois-
on distribution predicting a zero observation with probabil-
ty 1 − pi. This implies the zero observation is a false nega-
ive observation, that is, the habitat is suitable but unoccu-
ied (Fig. 1, Lewsey and Thomson, 2004). The ZIP model will
nly account for zero-inflation, it will not explicitly account
or over-dispersion. However, if over-dispersion is caused by
he numerous zero observations, the level of over-dispersion

ay be reduced once zero-inflation is correctly accounted

or.

Zero-inflation can affect other parametric distributions. For
xample, Cheung (2002) analysed fine motor development in
hildren using a zero-inflated negative binomial distribution
for count data, and Hall (2000) demonstrated the zero-inflated
binomial distribution to model the maximum number (upper
bound) of adult insects on a plant.

Zero-inflated Poisson models can be difficult to imple-
ment in standard statistics packages and may require addi-
tional programming. Some of the few published examples of
zero-inflated models include assessing the impacts of graz-
ing on bird densities (Kuhnert et al., 2005; Martin et al.,
2005b), prevention in dental epidemiology (Böhning et al.,
1999), evaluation of an occupational injury prevention pro-
gram (Yau and Lee, 2001) and investigation of manual han-
dling injuries and their relationship to exposure (Lee et al.,
2001).

2.3. Hurdle model

The hurdle model, developed by Cragg (1971), consists of two
parts. The first part is a binary (presence/absence) outcome
model (e.g. a logistic regression):

logit(p) = ln
(

p

1 − p

)
= ˇ0 + ˇ1X1 + · · · + ˇNXN (4)

where p is the probability of an event occurring, XN the
Nth independent variable and ˇN is the regression coefficient

(McCullagh and Nelder, 1989). The second part is a count
model that can either accommodate zero observations (e.g.
a Poisson model, Eq. (1), Zorn, 1996) permitting the stochas-
tic process resulting in unoccupied sites, even when habi-
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tat is suitable (Tyre et al., 2001) or not (e.g. a truncated-at-
zero Poisson distribution, Barry and Welsh, 2002). The positive
observations arise from crossing the zero-hurdle or probabil-
ity threshold. It is important to note the probability threshold
does not need to be zero (Cameron and Trivedi, 1998). This
approach recognises the possibility that the mechanisms that
determine presence can be different to those that determine
abundance (Ridout et al., 1998).

In contrast to the zero-inflated models, the hurdle model
assumes that the zero observations are all true negatives. That
is, a zero observation is observed because the species can
never occur there (i.e. unsuitable habitat). Ecological exam-
ples in the literature of this type of model are more com-
mon. They include modelling the abundance of the Lead-
beater’s Possum in montane ash forests of south-east Aus-
tralia (Welsh et al., 1996; Faddy, 1998; Podlich et al., 2002),
estimating the number of seabird nests on north-east Her-
ald Cay (Welsh et al., 2000), modelling the number of Euca-
lyptus mannifera stems across temperature and rainfall gra-
dients (Barry and Welsh, 2002) and assessing the impacts of
grazing on bird densities (Kuhnert et al., 2005; Martin et al.,
2005a,b).

The choice of which model specification to use should
be governed by characteristics of the data. In situations of
both zero-inflation and over-dispersion there are theoretical
grounds for preferring models that deal with both these char-
acteristics. However, the question is whether the more com-
plex models improve predictive performance. We will explore

the empirical properties of these models and in doing so, look
for generalisations about their suitability for rare plant habitat
modelling.

Fig. 2 – Distribution map of Leionema ralstonii. Solid black and gr
respectively. Black outline outcrops have not been surveyed.
1 9 9 ( 2 0 0 6 ) 153–163

3. Methods

3.1. Target species and distribution

L. ralstonii (F. Muell.) Paul G. Wilson (Rutaceae) is an open woody
shrub that grows to approximately 2 m high. It is endemic to
a 40,000 ha area of south-east New South Wales (Fig. 2), and is
confined to dry rocky habitats. Even though this species was
first recorded in the 1860s (Albrecht, 1986), knowledge about
its distribution and ecology is still limited. It is categorised as
threatened because it occurs over a limited geographic extent
(NSW National Parks and Wildlife Service, 2003). It inhabits
rocky outcrops and can extend a short distance into the eco-
tonal forest around them. It is thought to be restricted to out-
crops because they offer a refuge from competition, predation,
fire, human activities or climatic change in the surrounding
landscape.

There are approximately 200 outcrops varying in size from
2500 to 250,000 m2 in the study region. Until recently only
about 20% of these had been surveyed, because many are not
easily accessible and there are limited resources to conduct
surveys. Government agencies require information on the dis-
tribution of the species over the whole area to help them man-
age the species in the context of a multiple-landuse region.
The outcrops are currently not threatened by direct habitat
destruction because they are unsuitable for agriculture and
of fire (from burning of logged sites), may alter patterns of soil
and water movement and may increase the risk of disease
spread.

ey outcrops indicate species presence and absence,
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.2. Data set

his species is known to be restricted to rocky outcrops (NSW
ational Parks and Wildlife Service, 2003), so we first cre-
ted and validated a map of outcrops through Aerial Photo
nterpretation and ground truthing (Elith, 2002). Two hun-
red and ten outcrops were mapped in the region. Over the
ourse of a 3-year period, we visited 85 previously unsur-
eyed outcrops and recorded species abundance (Elith, 2002;
otts and Elith, unpubl. data). A further 29 outcrops had pre-
iously been surveyed by other researchers (Albrecht, 1986;
inns and Kavanagh, 1990; NSW National Parks and Wildlife
ervice, 2003), and we revisited five of these (covering a range
f survey year, surveyor and geographic position) to com-
are our abundance estimates with the existing ones. At
he end of this work, a total of 114 outcrops had been sur-
eyed for species abundance, and L. ralstonii occurred on 76 of
hem.

We used a pilot study to identify a counting method that
ave a reasonable compromise between accuracy and time.
earching can be difficult because the outcrops can be large
nd steep, with the plants scattered around them and at
heir base (sometimes in dense patches). Two people spent
t least 20 min 10,000 m−2 of outcrop. Searching was directed
rst towards the more exposed areas and to those patches
ith plants commonly found in association with the target

pecies. Once the shrub was found, individuals were counted
f scattered over the area, or, if in a patch, the number in a typ-
cal quarter of the patch was counted and extrapolated to the

hole patch. After a maximum of 5 h, if the whole outcrop had
ot been surveyed, an estimate was made of the unvisited pro-
ortion, and the count estimate was adjusted for unsurveyed
reas. In an effort to reduce error, we first worked together on
everal outcrops and recorded counts in the same areas and
ompared estimates. If there were large discrepancies we did
ore counting and less estimation until we were confident of

easonable estimates. At the end of this procedure we were
atisfied that the estimates of numbers were consistent and
easonably accurate.

The environmental data used in the modelling comprised
ariables that were previously found to be important pre-
ictors of the distribution and abundance of rocky outcrop
pecies (Elith, 2002; Potts and Elith, unpubl. data, Table 1).
he rainfall variable was constructed using long-term average
nnual rainfall data available in the program ANUCLIM (CRES,
002), interpolated to the region via a DEM with 25 m grid cells.
ainfall varies across the study area and is correlated with ele-

ation and denser vegetation. This appears to affect whether
he outcrops form the dry, open habitat that the species seems
o prefer. Outcrop area is important because larger outcrops
an maintain larger populations of L. ralstonii. The number of

Table 1 – The definitions, and form, of the variables included in

Variable Definiti

Logarea Natural log of the area of outcrop
Rainfall Mean annual rainfall at outcrop
Lroutcrop Number of outcrops with L. ralston
9 ( 2 0 0 6 ) 153–163 157

neighbouring outcrops is a useful predictor, probably because
locally frequent outcrops increase the likelihood that seed will
reach the site.

Once all data were collected, exploratory data analysis
identified characteristics that needed to be accounted for
in the model specification process. The presence of over-
dispersion in the L. ralstonii data set was assessed by comput-
ing the ratio between the mean and variance of the data. If the
data were over-dispersed, the variance would be much greater
than the mean. Zero-inflation was investigated by visually
inspecting a histogram of the data.

3.3. Model fitting

Model fitting involves determining both model structure and
specification. Here, model structure (choice of explanatory
variables) was fixed for each model (Table 1) so that differences
between the models and their predictions could be attributed
to differences in model specification. The number of variables
is small because the species is rare, and there are not enough
data to support many variables (Harrell, 2001). The particu-
lar variables used in this study have been found previously to
be related to the distribution of plant species in these rocky
outcrops (Elith, 2002).

To investigate the consequences of incorrect model speci-
fication, five models were chosen: Poisson, negative binomial,
quasi-Poisson, hurdle and the zero-inflated Poisson (Table 2).
The alternative models represent different degrees of acces-
sibility for environmental modellers and accommodate dif-
ferent features (i.e. over-dispersion and zero-inflation). All
models were implemented in R (R Development Core Team,
2004), see Appendix A for relevant packages and for specific
settings.

3.4. Model evaluation

There were insufficient data for this species to have an eval-
uation data set that was independent of the training (mod-
elling) data, so a bootstrap evaluation procedure proposed
by Efron and Tibshirani (1997) was used to assess predic-
tive accuracy. Bootstrapping provides a realistic estimate of
the predictive performance of a model, without incurring
the expenses of collecting a completely new model-testing
data set. It involves resampling the modelling data and con-
ducting a series of model building and testing simulations
that provide an estimate of the optimism arising from in-
sample validation. The estimate of optimism is used to pro-

vide an adjusted estimate of the model evaluation statistics
(see below). The bootstrapping version implemented here is
believed to provide the least biased estimate of predictive per-
formance of any of the model evaluation methods that are

the models

on Form

(m2) Linear
Quadratic

ii present in a 400 m radius Quadratic
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Table 2 – Five model specifications were used to investigate the consequences on predictions when working with
zero-inflated and over-dispersed data

Number Model specification Explanation

1 Standard Poisson Estimates mean and variance from the data, therefore does not account for zero-inflation or
over-dispersion.

2 Negative binomial Estimates the mean from the data, and sets the variance to be a multiple of the mean,
accommodating for over-dispersion.

3 Quasi-likelihood Accommodates for over-dispersion by specifying a relationship between the mean and variance,
using a dispersion parameter, as determined from the data.

4 Hurdle model Removes effect of zero-inflation in the presence/absence model and over-dispersion in the non-zero
observations using a quasi-likelihood. The second stage of this model accommodates zero
observations, permitting the stochastic process resulting in unoccupied sites, even when habitat is
suitable (Tyre et al., 2001).

tion b
ean

crepancy). This provided an indication of how accurate each
method was in their predictive ability. If a method was con-
sistently accurate, its average rank score over all outcrops was
low.

Fig. 3 – A graph of observed values against predicted values
5 Zero-inflated Poisson Removes effect of zero-infla
over-dispersion. Estimates m

based on re-sampling, including cross-validation (Hastie et
al., 2001). Cross-validation (Efron and Tibshirani, 1997) pro-
vides an alternative approach to model evaluation, and might
be more feasible with methods or data sets that create large
computational loads, and more appropriate with larger data
sets. However, its estimates of error rates with independent
data can be less precise than those derived from bootstrap-
ping (Steyerberg et al., 2001), which can be thought of as a
smoothed version of cross-validation (Efron and Tibshirani,
1997). The bootstrapping method (the 0.632+ bootstrap) is
detailed in Appendix B. Here we have used a range of eval-
uation statistics, to clarify different aspects of the predictive
performance:

Pearson’s correlation coefficient, r, provides an indication of
how closely the observed and predicted values agree in rel-
ative terms, though a perfect correlation (=1) does not imply
exact predictions—all predictions may be biased in a consis-
tent direction.

Spearman’s rank correlation, �, provides an indication of simi-
larity between the ranks of the observed and predicted values.
It also varies from −1 to +1. The use of ranks means that, as
long as the order of the predictions is correct, the statistic will
be high.

Model calibration was assessed by fitting a simple linear
regression between the observed and predicted values (e.g.
observed = m(predicted) + b), providing information on the bias
and consistency of the predictions. This is comparable to cal-
ibration analyses for binomial data described by Pearce and
Ferrier (2000). The intercept term in this model (b) provides an
indication of the bias, and the gradient of the fitted line (m)
provides an indication of the distribution (spread) of predic-
tions over their numerical range compared with the spread
of the observations. That is, for a perfectly calibrated model,
b should equal zero and m should equal one (line A, Fig. 3).
In a model with consistent bias, m equals one, and b will be
a non-zero number (line B, Fig. 3). In a model with both bias
and predictions that are spread over a larger range than the
observations, b will not equal zero and m will be less than (or
greater than) one (line C, Fig. 3). This will result in larger errors

between the observed and predicted values at the extremes of
the observations.

Root mean square error (RMSE) and the average error (AVE)
depend on the sample size (n), and the discrepancy between
y having a zero distribution, possibly reducing effect of
and variance of non-zero observations from data.

the observed (yi) and predicted (ŷi) values.

RMSE =

√√√√1
n

n∑
i=1

(ŷi − yi)
2 (5)

AVEerror = 1
n

n∑
i=1

(ŷi − yi) (6)

All the statistics outlined above were calculated across all
outcrops. To better understand what was happening at the
individual population level, ranks were used to compare the
relative performance of the different methods at each outcrop.
That is, for each outcrop the predictions from the five methods
were ranked from best (score = 1, lowest discrepancy between
observed and predicted values) to worst (score = 5, highest dis-
(A) model with perfect calibration (i.e. observed = predicted);
(B) model with consistent bias (i.e.
observed = predicted + constant, line is parallel to line A);
and (C) model with inconsistent bias.
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Fig. 4 – A histogram of the observed population abundance
estimates. The spike at an abundance of zero indicates that
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Table 4 – The evaluation statistics for the five model
specifications

Model r � Model
calibration

RMSE AVEerror

b m

Poisson 0.52 0.65 24.49 0.82 184.83 0.00
NB 0.38 0.66 72.08 0.28 348.71 64.12
Quasi 0.52 0.66 24.21 0.84 184.65 0.00
Hurdle model 0.58 0.66 7.32 0.86 173.59 12.78
ZIP 0.40 0.28 1.01 1.04 192.18 −15.63

r is the Pearson’s correlation coefficient. � is the Spearman’s rank

error
here are many zero observations, suggesting the standard
oisson distribution may not be appropriate.

. Results

.1. Survey data

he 114 outcrops had from zero to 1100 individuals (Fig. 4). The
pike at zero indicated zero-inflation. The data were overdis-
ersed, because the variance was much greater than the mean
f the data (var(Y) = 38,666 � E(Y) = 125).

.2. Model fitting

he between-model effects of model specification may be
ssessed by examining the coefficients and their standard
rrors (Table 3). Coefficients are most similar for the Pois-
on, quasi-Poisson and NB models; however, their standard
rrors increase progressively as they more realistically model
he over-dispersion present in the data. These standard errors
re derived parametrically, and so will underestimate the true
rror around the estimate if the model is misspecified for the
mount of overdispersion. Small standard errors do not indi-

ate a more accurate coefficient, but a false view of the uncer-
ainty of the estimate. We have confirmed this with bootstrap
stimates of the standard errors. Interestingly, the parametric
tandard errors for the ZIP model are approximately equal to

Table 3 – Parameter coefficients for each of the five different mo

Model Param

Intercept Logarea Rainfall, 1

Poisson −1.57(0.08)* 0.64(0.01)* −0.75(0.12)*
Quasi −1.57(0.98) 0.64(0.10)* −0.75(1.50)
NB −1.60(1.57) 0.61(0.17)* 0.89(2.32)

Two-step
Pres/abs −3.23(2.15) 0.47(0.24)* 3.79(3.21)
Abund 0.26(0.87) 0.51(0.09)* −1.33(1.08)

ZIP 0.29(0.08) 0.51(0.01)* −2.12(0.12)*

Asterisk (*) denotes statistically significant parameters at the p = 0.05 level
correlation coefficient. b is the intercept and m is the gradient of
the fitted line: observed = m(predicted) + b. RMSE is the root mean
square error and AVEerror is the average error. See text for equations.

those of the Poisson model. This suggests that accommodat-
ing the extra zeros is not dealing with the over-dispersion.

The models contain some variables that are not statisti-
cally significant, but these significance tests are affected by
the standard error estimates. For example, the statistically sig-
nificant parameters in the quasi-Poisson model were logarea,
and lroutcrop as a quadratic. In contrast, the ZIP model also
included rainfall as a quadratic among the statistically signifi-
cant parameters. If models had been developed with stepwise
procedures some of the final models would have included
fewer terms.

4.3. Model evaluation

The evaluation statistics, derived from the bootstrap analy-
sis (Appendix B), indicated that the hurdle model performed
best (Table 4). It had the highest or equal highest correlation
between observed and predicted values for both the Pear-
son’s and Spearman’s rank correlations (0.58 and 0.66, respec-
tively). This indicates that predictions and observations were
relatively similar in magnitude and similarly ordered. This
is reflected in the model calibration, that indicates a rel-
atively small but consistent bias (b = 7.32, m = 0.86). Despite
having the smallest RMSE (=173.59), the AVE was median

(=12.78).

The worst performing model was the NB (Table 4). Although
it had a weak correlation (r = 0.38) its Spearman’s rank was
equal highest (� = 0.66). The poor linear correlation is reflected

del specifications

eter coefficients

Rainfall, 2 Lroutcrop, 1 Lroutcrop, 2

−3.33(0.16)* 6.25(0.13)* −2.72(0.12)*
−3.33(2.08) 6.25(1.67)* −2.72(1.49)*
−5.17(2.48)* 15.96(2.30)* −11.34(2.28)*

−2.17(2.94) 22.31(4.85)* −6.78(4.58)
−2.13(1.37) 0.12(0.97) 0.61(0.93)

−3.18(0.17)* −0.84(0.18)* 1.12(0.15)*

.
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in the model calibration which indicates a strong and incon-
sistent bias (b = 72.08, m = 0.28). The RMSE and AVEerror values
were the highest of all models tested (348.71 and 64.12, respec-
tively).

The ZIP model had a low r (=0.40) and a low � (=0.28), despite
having the best model calibration of all models tested (b = 1.01,
m = 1.04). This is because the amount of error around the pre-
dictions was high, but on average were accurate (RMSE = 192.18
and AVEerror = −15.63).

The other two models (Poisson and quasi-Poisson) were
comparable in performance, largely because they had the
same parameter coefficients (Table 3). They both had median
correlations (r = 0.52) and high Spearman’s ranks (� = 0.65
and 0.66, respectively) indicating the predictions were rela-
tively dis-similar in value but similar in rank to the obser-
vations. This is reflected by medium biases (b = 24.49 and
24.21, respectively) that were relatively consistent (m = 0.82
and 0.84, respectively). Interestingly, these models (that is,
Poisson and quasi-Poisson) had small RMSE and AVEerror

because, when averaged across all locations, their mean
predictions were relatively accurate (Cameron and Trivedi,
1998).

Table 5 contains the rank predictions of the 114 outcrops.
A good model will have a high rank (score close to 1) at a
majority of the 114 outcrops. The hurdle model performed
best with 58 (=39 + 19) of the 114 outcrops ranked in within the
top two of the five closest predictions. This model also had
the lowest number of outcrops (49 = 23 + 26) with a low rank
(score = 4 or 5). This is consistent with the evaluation statis-
tics that suggested the hurdle model was the most accurate
and consistent. Note the NB model has 52 (=24 + 28) outcrops
with the top two predictions, very close to that achieved by the
hurdle model. However, the number of top ranking predictions
of the hurdle model compared to the NB model is greater (39
and 24, respectively). The NB also has 61 outcrops in the bot-
tom two predictions, indicating that any one prediction may
be very close to, or very far from, the observed population size.

This is consistent with the evaluation statistics that reported a
large and inconsistent bias (b = 72.08, m = 0.28). The worst per-
forming models were the Poisson and quasi-Poisson. That is,
they had the lowest proportion of outcrops with high ranks

Table 5 – The rank predictions for the five model
specifications

Score Poisson NB Quasi Hurdle model ZIP

1 19 24 19 39 31
2 1 28 1 19 9
3 39 1 39 7 16
4 50 11 50 26 22
5 5 50 5 23 36

Cell Ci,j represents the number of outcrops within row i (i.e. rank i,
i = 1, . . ., 5) that were specified according to model j (j = Poisson, NB,
quasi, hurdle, ZIP). Each column contains 114 outcrop predictions. A
score of 1 implies of the five predictions for that particular outcrop,
model j resulted in the smallest discrepancy. A score of 5 had the
largest discrepancy of the five predictions. For example, the Poisson
model has 19 outcrops where the prediction was the closest to that
observed, of all five predictions.
1 9 9 ( 2 0 0 6 ) 153–163

(20 = 19 + 1) and a high proportion of outcrops with low ranks
(55 = 50 + 5).

5. Discussion

Accurate predictions ensure decision-making by environmen-
tal managers is well informed. The aim of this study was to
investigate the consequences of model specification in the
presence of zero-inflation and over-dispersion, two commonly
encountered problems when working with rare species. This
study confirmed that model specification may have substan-
tial impacts on model prediction.

The standard Poisson model is the most commonly
available GLM and most straightforward to apply. How-
ever, this model does not accommodate either zero-inflation
or over-dispersion, and tended to produce biased esti-
mates of abundance on individual outcrops. This model
may be adequate in some limited situations, because the
errors cancelled one another out over all sites, providing
a reasonable estimate of total abundance over the whole
region.

In comparison to the standard Poisson, the quasi-Poisson,
the negative binomial, the hurdle and the zero-inflated Pois-
son were more complicated to implement, but they can
accommodate for either or both of the zero-inflation and over-
dispersion. These models also allow more accurate prediction
at the individual population level, estimates that are required
for example, to target fieldwork at areas most likely to contain
the species.

The hurdle model performed the best and was simple to
interpret and implement. The model has another useful fea-
ture that was not explored in our investigation: the model
for the binomial component can have different predictor vari-
ables. This can be useful because it may be ecologically sen-
sible for cases where a different process might be driving the
presence of a species to that which is affecting its abundance
(Ridout et al., 1998).

Mixture models recognise the extra zero observations
are from a different data generating process to the non-
zero observations. However, this then assumes that only
one data-generating process is causing the zero observa-
tions, which is often incorrect (Martin et al., 2005b). Even the
ZIP model, specifically developed to accommodate the extra
zero observations, does not explicitly inform you of which
type of zero you are dealing with (only that any one zero
observation is either a true negative (occurring if the habi-
tat is unsuitable) or a false negative (occurring if the habi-
tat is unsuitable but occupied), with probability pi or 1 − pi,
respectively).

The tests presented here are important but comprise a
small part of all those that might be attempted. Alterna-
tive model structures could be tested, such as the zero-
inflated negative binomial model (Cheung, 2002). The differ-
ences between the models could be explored in conjunction
with model selection (e.g. Fitzmaurice, 1997). The models were

implemented using parametric methods, but there is scope for
using non-parametric models. For example, the hurdle model
could comprise generalised additive models (GAMs) rather
than GLMs. The advantage of non-parametric methods is that
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they have additional flexibility for modelling biologically plau-
sible relationships (e.g. Yee and Mitchell, 1991; Bio et al., 1998;
Leathwick, 1998).

The evaluation of the models presented here included a
bootstrap assessment of model performance. This is a use-
ful tool in circumstances where an independent data set is
not available for evaluation (a common situation). Evaluation
on training data (i.e. on the data used to fit the model) is
flawed (Leathwick et al., this issue), and should not be used
if predictive performance is important. Bootstrap evaluations
approximate true predictive performance more reliably than
other resampling methods (Steyerberg et al., 2001). Here they
enabled us to make the most efficient use of a small data
set.

6. Conclusions and recommendations

When using mathematical models to quantify the relationship
between a response variable (here, abundance estimates) and
explanatory variables (here, environmental characteristics), it
is imperative that correct model structure and model specifi-
cation is used. The choices are plentiful, and should be gov-
erned by expert knowledge of the species and characteristics
of the data set. It is recognised that model mis-specification
influences the statistical significance of the explanatory vari-
ables, and consequently model selection methods (Cameron
and Trivedi, 1998). However, the consequences for model pre-
dictions have been given little attention, despite their impor-
tance in the decision-making process of environmental man-
agers.

This study focussed on a range of alternative models
for abundance data, and demonstrated important differ-
ences between them. Our data were characterised by zero-
inflation and over-dispersion, a common problem when
working with rare species. The best performing model
was the hurdle model, and the worst was the nega-
tive binomial. The statistical significance of the explana-
tory variables changed with changing model specification.
Under the conditions of zero-inflation and over-dispersion,
we recommend the hurdle model because it performed
well consistently, and is relatively easy to interpret and
implement.
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Appendix A

Model Computer packages
implemented in R (R
Development Core Team 2003)

Standard Poisson “stats”
Negative binomial “mass”
Quasi-likelihood “stats”
Hurdle model “stats”
Zero-inflated Poisson “vgam” (Yee, 2005)

Appendix B. Method for 0.632+ bootstrap
evaluation, after Steyerberg et al. (2001) and
Efron and Tibshirani (1997).

1. Develop model on all n observations.
2. Calculate the statistic(s) of choice for evaluation on the

same data (i.e. the training data)—call this Statapp because
it is the apparent value of the statistic.

3. Take a bootstrap sample: i.e. a sample of size n with replace-
ment, of rows of the data matrix. Keep track of which sites
are in the bootstrap sample, and which are excluded.

4. Fit the model on the bootstrap sample (using the same
methods as used on the full set). Compute the statistic on
the bootstrap data set (observations versus fitted values)
and call it Statboot.

5. Also compute the statistic on a version of the bootstrap
data where the observations are randomised (Statpermute).

6. Use the bootstrap model to predict to the excluded
data set, and calculate the statistic on these predictions:
Statexcl.

7. Use Statboot, Statpermute and Statexcl to calculate the amount
of overfitting, the relative overfitting rate and weights that
are then used to make a best estimate of predictive per-
formance, Statbest est. This statistic puts most emphasis
on predictions to the excluded data, particularly when the
model is overfitted (i.e. when Statboot − Statexcl is large). For
details of this step see Steyerberg et al. (2001).

8. Measure how optimistic the fit on the bootstrap sample
was: O = Statboot − Statbest est.

9. Repeat steps 3–8 100–200 times. Calculate an average
optimism, O. Use this to correct Statapp for its opti-
mism: Statapp − O. This is a near unbiased estimate of the
expected value of the external predictive performance of
the process which generated Statapp.
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