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SUMMARY 

We present results on the estimation of survival distributions for an important problem in animal 
ecology. The problem involves estimation of survival distributions using radio-tagged animals. It 
requires allowance for censored observations due to radio failure, emigration from the study area, 
and animals surviving past the end of the study period. We show that survival analysis techniques 
already used in medical and engineering studies may be applied to this problem. Emphasis is placed 
on the model assumptions and the need for further research. An example to illustrate the strengths 
and weaknesses of this approach is presented. 

1. Introduction 

Radiotelemetry is becoming an increasingly popular methodology for studying wild animal 
populations. An animal, captured by trap, dart gun, or some other method, is fitted with a 
small radio transmitter and released. From release, the animal's unique radio signal can be 
monitored until the animal dies or is censored (see below). 

The most common application of radiotelemetry technology has been to the study of 
animal movements in relation to daily activity patterns, seasonal changes, habitat types, 
and interaction with other animals. Time series approaches will become very important to 
the thorough analyses of these data (see Dunn and Gipson, 1977; Pantula and Pollock, 
1985). 

Biologists have also begun to use radio-tagged animals to study survival. Present tech- 
niques for analyzing the data from these studies assume that each survival event (typically 
an animal surviving a day) is independent and has a constant probability over all animals 
and all periods (see Trent and Rongstad, 1974; Bart and Robsoni, 1982). These assumptions 
are often believed to be unrealistic and restrictive. White (1983) has generalized their 
discrete approaches in the framework of band-return models (Brownie et al., 1985). 

Typically an animal's exact survival time (at least to within 1 or 2 days) is known unless 
that survival time is right-censored. We suggest an approach based on the continuous 
survival models allowing right censoring that are widely used in medical and engineering 
applications (Kalbfleisch and Prentice, 1980; Cox and Oakes, 1984). We emphasize 

Key words: Cox regression model; Exponential distribution; Kaplan-Meier estimates; Left trunca- 
tion; Radiotelemetry; Right censoring; Survival analysis. 
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important assumptions of these models in the radiotelemetry framework and also present 
a numerical example. A shorter version of our approach appeared in Pollock (1984). 

2. The Model 

2.1 Model Structure 

We assume that a random sample of n animals has been radio-tagged. Further, all animals 
are monitored regularly (usually daily) so that for practical purposes exact times of death 
are known. We also assume that there is a fixed study area to cover and if an animal with 
a functional radio is present it is found (with probability 1). 

In terms of modelling we consider two sets of conceptual random variables: 

(i) TI, 12, ..., T1, form a set of survival times from tagging to death that would 
be observable if there were no censoring. We assume these constitute a random sample 
from some probability distribution with density f(t; 0) and survivor function F(t; 0) = 
Pr(T> t). 

(ii) Cl, C2, . . ., C,, form a set of censoring times that would be observable if there were 
no deaths. We assume these constitute a random sample from some probability distribution 
with density g(c; Sy) and survivor function G(c; Sy) = Pr(C > c). 

The censoring could be due to any one of three possible causes: 

(i) An animal has a transmitter that fails before the animal dies; 
(ii) An animal emigrates out of the study area; and 

(iii) An animal survives past the end of the study period. 

In some studies it may be possible to ignore emigration for biological reasons. 

2.2 Likelihood Inference 

Assuming that one has a random censoring mechanism, which implies that TI, ...,Tn 
and Cl, ..., Cn are independent, the likelihood for 0 (Kalbfleisch and Prentice, 1980, 
p. 40) is 

n 

L(@) = f7 [f(ti; 0)]'[F(cj; 0)]1-6i, (1) 
i=l 

where bi is the censoring indicator. If bi = 1, the observation is uncensored (0 < ti < ci), 
while if bi = 0 the observation is right-censored (ti > ci). Note that it is also possible to write 
down a similar likelihood function for the censoring times [L(Qy)]. If one assumes a 
parametric form for f(t; 0) (e.g., exponential distribution, Weibull distribution, gamma 
distribution), standard maximum likelihood inference could be carried out. 

The Trent and Rongstad (1974) technique for analyzing data from radiotelemetry studies 
assumes that each survival event is independent and has constant probability. In the 
continuous framework we are adopting this is equivalent to using maximum likelihood 
inference assuming the exponential distribution. 

2.3 The Kaplan-Meier Procedure 

A nonparametric estimator was developed by Kaplan and Meier (1958) and is discussed in 
many books on survival analysis [see, for example, Cox and Oakes (1984, p. 48) or 
Kalbfleisch and Prentice (1980, p. 13) for details]. This estimator is also called the product 
limit estimator. 
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The survivor function F(t) is the probability of an arbitrary animal in the population 
surviving t units of time from the beginning of the study. A nonparametric estimator of 
the survivor function can be obtained by restricting attention to the discrete time points 
when deaths occur, a,, a2, . . ., ag. We define r, .. ., r5 to be the numbers of animals at 
risk at these points, and d, d2, ... , d, to be the numbers of deaths at the same points. The 
probability of surviving from 0 to a, is estimated by 

F(ai) 1 - dilri 

because dl/ri is the estimated proportion dying in that interval. The probability of surviving 
from a, to a2 is similarly given by 

and F(a2) is then given by the product 

F(a2) = (1 - dl/r1)(l - d2/r2). 

Therefore, the estimated survivor function for any arbitrary time t is given by 

F(t) = 11 (1 - dj/rj), (2) 

which is the mathematical way of stating that we are considering the product of all j terms 
for which aj is less than the time t. 

Cox and Oakes (1984, p. 51) also discuss how to estimate the variance of the estimate at 
an arbitrary time point using Greenwood's formula 

var[F(t)] = [F(tyj2 E dj 

where the summation is for all death times aj less than t. They also present an alternative, 
simpler estimate that is better in the tails of the distribution: 

var[F(t )] - [F(t)]2[l -F(t)] var[F01 = 
r(t) (4) 

Approximate confidence intervals can be obtained using either of these equations. For 
example, a 95% confidence interval at t = to would be 

F(to) ? 1.96[var F(to)]"2 (5) 

because of the asymptotic (large-sample) normality of the estimates F(t). 

2.4 Hazard Function 

Another way of specifying the distribution of a continuous norinegative random variable 
[besides the probability density f(t) and the survivor function F(t)] is the hazard function 
(Cox and Oakes, 1984, p. 14; Kalbfleisch and Prentice, 1980, p. 6). The hazard function is 
the instantaneous rate of failure at T = t conditional upon survival time t, and is defined 
mathematically as 

h(t)= lim Pr(t 
- 

T 
- 

t+ At I T3t) (6) 
At--,.o+ At 

The hazard function is h(t) = f(t)/F(t) from the definitions of f(t) and F(t). The 
distribution is exponential if and only if the hazard rate h(t) is constant for all t. 
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2.5 Proportional Hazards Model 

Sometimes the biologist may be interested in the influence of important covariates (such 
as weight at tagging) on the survival process. An important class of models here is the 
proportional hazards model (Cox, 1972; Cox and Oakes, 1984, p. 91). For this model the 
hazard function takes the form 

h(t; z) = ho(t)I(z), 

where z is a vector of covariates, ho(t) is the baseline hazard when z = 0, and '(z) is a 
function where we require I(0) = 1 and typically 

I(z) = exp(#Tz), 

with , a vector of parameters analogous to regression parameters in a multiple regression 
problem. 

As outlined by Cox and Oakes (1984), the reasons for considering this model are that 
(1) The effect of a "treatment" is to multiply the hazard by a constant factor and there is 
empirical evidence to support this approach; and (2) Censoring is easily accommodated 
and the technical problems of estimation are soluble when ho(t), the baseline hazard, is 
arbitrary. 

3. Model Assumptions 

Here we briefly discuss the assumptions of the model with the structure described in 
Section 2.1 as they apply to radiotelemetry data. As this is a new approach, further research 
on the validity of these assumptions in practice and on model robustness is required. 

We have assumed that a random sample of animals of a particular age and sex class has 
been obtained. Consider, for example, a study on winter survival of mallards. If lighter 
adult males tend to be captured and they have lower survival rates, a negative bias to the 
survival estimates will result. Of course, this assumption is also crucial to survival estimates 
obtained from capture-recapture and band-return studies (Jolly, 1965; Seber, 1965; 
Pollock, 1981; Brownie'et al., 1985). 

This model requires the assumption that survival times are independent for the different 
animals. Again, this assumption is also required of capture-recapture and band-return 
models. Geese, which form tight family groups, would be an example where this assumption 
could fail. As another example, the death of a female animal, such as a black bear, still 
nursing her young would not be independent of the fate of those young. 

In most studies time of death will be known to the nearest day. Therefore, the use of 
continuous-time survival distributions seems justified. 

The assumption that the censoring mechanism is random is extremely important and 
requires more attention than can be given here. Possible violations could result from a 
predator killing an animal and also destroying the radio or an animal emigrating because 
it is more (or less) healthy than its companions. We wish to point out that medical studies 
often suffer a similar "emigration" problem; patients doing poorly (or well) may decide to 
leave the study. 

One of the most important considerations in application of survival analysis to radio- 
telemetry data is the definition of a time origin. In some medical studies the natural time 
origin is time of treatment. In radiotelemetry there is no such natural time origin. In studies 
where all the animals are captured at or near the same time, the obvious time origin might 
be the date when the last animal was captured. It should be kept in mind that survival from 
the time origin could be vastly affected by seasonal effects so that, for example, survival for 
1 month from a summer time origin could be quite different from survival for 1 month 
from a winter time origin. Seasonal effects are usually less important in medical studies. 
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In some studies, animals may be introduced into the study gradually over a long period 
of time. This could be due to practical problems of capturing animals all at one time or 
because the biologist deliberately wants to introduce more animals into the study to increase 
precision after a lot of animals have died. This is a situation where some animals will be 
subject to left truncation; they contribute to the likelihood only for times following their 
time of entry to the study. Cox and Oakes (1984, p. 178) discuss how the likelihood needs 
to be modified and they show how the Kaplan-Meier product limit estimator can be 
generalized to allow for left truncation. 

4. Example 

We examined data from the first year of a multiyear study on movements and overwintering 
survival of black ducks (Anas rubripes) conducted by the U.S. Fish and Wildlife Service 
under Conroy's direction. A detailed survival analysis of this study is presented in Conroy, 
Costanzo, and Stotts (1989); here we just present some analyses for illustration. 

Fifty female black ducks from two locations in New Jersey were captured and fitted with 
radios. The ducks were captured over a period of about 4 weeks from 8 November 1983 to 
14 December 1983 (Figure 1) and included 31 hatch-year birds (birds born during the 
previous breeding season) and 19 after-hatch-year birds (all birds at least 1 year of age). A 
condition index, body weight (g) divided by the wing length (mm), was calculated for each 
duck. The location and status (alive, missing, or dead) of each bird were recorded daily 
from the date of release until 15 February 1984, when the study was terminated. Diligent 
effort was made to locate each bird using roof-mounted antennas on trucks, strut-mounted 
antennas on fixed-wing aircraft, and hand-held antennas on foot and by boat. The pertinent 
data on each of the 50 radio-tagged ducks are presented in Figure 1 and Table 1. 

Present techniques for analyzing data from radiotelemetry studies assume that each 
survival event is independent and has constant probability (Trent and Rongstad, 1974). 
Under this assumption in the continuous framework, the exponential survival distribution 
is obtained. Lee (1980) suggests testing for an underlying exponential by plotting the natural 
logarithm of the survival function [ln F(t)] against the survival time; a linear trend is 
indicative of the exponential. We used the LIFETEST program (SAS, 1985) to calculate the 
Kaplan-Meier estimates listed in Table 1. We plotted ln[F(t)] by time and the plot did not 
support use of the exponential distribution. Subsequent discussion will therefore be based 
primarily on the nonparametric Kaplan-Meier estimates. 

Figure 2 is a plot of the Kaplan-Meier estimates listed in Table 1 and, for comparison, 
the curve obtained by fitting an exponential model. In obtaining these estimates, we limited 
the interval of interest to the 63-day period from 15 December 1983 to 15 February 1984. 
This is in accordance with our suggestion of possibly measuring survival time from the 
release of the last animal (Fig. 1). In this particular case, all birds were known to be alive 
on 15 December, radio transmitter battery life was projected to be approximately 90 days, 
and the period of interest (winter) was defined to be from mid-December until mid- 
February. Notice that after day 42 there is no recorded mortality and this is likely due to 
cessation of the hunting season on day 36 and also to the weather improving markedly 
after day 40. There was a total of 18 deaths, with 10 attributable to hunting and 8 due to 
natural causes. These results were consistent with the overall study (Conroy et al., 1988), 
where the probability of death due to hunting was approximately equal to the probability 
of death due to other causes. Causes of non-hunting mortality included predation (raccoons, 
red fox) and emaciation (winter stress). 

As an example of a comparison of two survival distributions, we examined the null 
hypothesis that the survival distributions of hatch-year and after-hatch-year birds were 
identical. Plots of the estimated survival curves are given in Figure 3. Notice that the final 
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Figure 1. Observation histories for 50 female black ducks captured near New Jersey. Left endpoint 
of each line indicates the date the radio-tagged bird was released. 

C: Censored; N: Death attributed to natural causes; H: Killed by hunter. 

survival estimates are almost identical but that the survivor curves have quite different 
shapes, whereas in the overall study (Conroy et al., 1988) the hatch-year birds had a much 
lower overall survival rate of .60 versus .73 for the after-hatch-year birds, which is what the 
biologist would expect. Typically, young migratory birds do not fare well in their first 
winter and their first exposure to hunting. 

First we fit the proportional hazards model using PHGLM (Harrell, 1983), which assumes 
that the hazard rates for the two age classes are proportional. Plots of the survival curves 
(Fig. 3) do not support this assumption, but for illustration, we fit the model 

hi(t) = ho(t)eA(ageclass) 
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Table 1 
Survival data and Kaplan-Meier estimates for female black ducks 

Wing 
Animal Survival' Indicatorb Weight length Condition' Standard 

(i) (ti) (bi) Age' (g) (mm) index F(tiy) error 

1 2 1 1 1,160 277 4.19 .9800 .0198 
2 6 0 0 1,140 266 4.29 .9800 .0198 
3 6 0 1 1,260 280 4.50 .9800 .0198 
4 7 1 0 1,160 264 4.39 .9591 .0283 
5 13 1 1 1,080 267 4.04 .9383 .0345 
6 14 0 0 1,120 262 4.27 .9383 .0345 
7 16 0 1 1,140 277 4.11 .9170 .0398 
8 16 1 1 1,200 283 4.24 .9170 .0398 
9 17 0 1 1,100 264 4.17 .8951 .0444 

10 17 1 1 1,420 270 5.26 .8951 .0444 
11 20 0 1 1,120 272 4.12 .8951 .0444 
12 21 1 1 1,110 271 4.10 .8722 .0489 
13 22 1 0 1,070 268 3.99 .8492 .0527 
14 26 1 0 940 252 3.73 .8033 .0590 
15 26 1 0 1,240 271 4.58 .8033 .0590 
16 27 1 0 1,120 265 4.23 .7804 .0616 
17 28 0 1 1,340 275 4.87 .7804 .0616 
18 29 1 0 1,010 272 3.71 .7567 .0641 
19 32 1 0 1,040 270 3.85 .7331 .0663 
20 32 0 1 1,250 276 4.53 .7331 .0663 
21 34 1 0 1,200 276 4.35 .6842 .0703 
22 34 1 0 1,280 270 4.74 .6842 .0703 
23 37 1 0 1,250 272 4.59 .6598 .0720 
24 40 1 0 1,090 275 3.96 .6353 .0733 
25 41 1 1 1,050 275 3.82 .6109 .0745 
26 44 1 0 1,040 255 4.08 .5865 .0754 
27 49 0 0 1,130 268 4.22 .5865 .0754 
28 54 0 1 1,320 285 4.63 .5865 .0754 
29 56 0 0 1,180 259 4.56 .5865 .0754 
30 56 0 0 1,070 267 4.01 .5865 .0754 
31 57 0 1 1,260 269 4.68 .5865 .0754 
32 57 0 0 1,270 276 4.60 .5865 .0754 
33 58 0 0 1,080 260 4.15 .5865 .0754 
34 63 0 1 1,110 270 4.11 .5865 .0754 
35 63 0 0 1,150 271 4.24 .5865 .0754 
36 63 0 0 1,030 265 3.89 .5865 .0754 
37 63 0 0 1,160 275 4.22 .5865 .0754 
38 63 0 0 1,180 263 4.49 .5865 .0754 
39 63 0 0 1,050 271 3.87 .5865 .0754 
40 63 0 1 1,280 281 4.55 .5865 .0754 
41 63 0 0 1,050 275 3.82 .5865 .0754 
42 63 0 0 1,160 266 4.36 .5865 .0754 
43 63 0 0 1,150 263 4.37 .5865 .0754 
44 63 0 1 1,270 270 4.70 .5865 .0754 
45 63 0 1 1,370 275 4.98 .5865 .0754 
46 63 0 1 1,220 265 4.60 .5865 .0754 
47 63 0 0 1,220 268 4.55 .5865 .0754 
48 63 0 0 1,140 262 4.35 .5865 .0754 
49 63 0 0 1,140 270 4.22 .5865 .0754 
50 63 0 .0 1,120 274 4.09 .5865 .0754 

a Days observed. 
0: Censored observation; 1: Observed death. 
0: Hatch-year bird; 1: After-hatch-year bird. 

'Weight (g)/Wing length (mm). 
e Kaplan-Meier estimates. 
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Figure 2. Survival distributions for female black ducks. x's are Kaplan-Meier estimates and are the 
values listed in Table 1. The solid curve represents the fit of the exponential equation: 

Survival probability = e- -0087 (SLirvivil tliiie) 

where hi(t) is the hazard for the ith individual at time t, and ho(t) is the baseline hazard. 
The log-likelihood for a model containing no variables was -64.06. The log-likelihood for 
the age-class model [f = .14, SE(A) = .50] was -64.02. The value of twice the difference 
in the log-likelihoods approximates a x I (see Cox and Oakes, 1984). Here, xI = .08 and 
there is no indication of a difference due to age. 

Similar results were obtained when we tested for an age effect using generalized Wilcoxon 
and log-rank tests (see Kalbfleisch and Prentice, 1980) using program LIFETEST (SAS, 1985). 
The log-rank test is similar to the likelihood test discussed above in that it is optimal 
if the proportional hazards assumption is met. Neither the log-rank (test statistic = .5633, 
variance = 3.7668, x2 = .08, P = .98) nor the generalized Wilcoxon (test statistic = 

-.8503, variance = 2.3706, x2 = .30, P = .78) allowed us to reject the null hypothesis. 
Breslow, Edler, and Berger (1984) present a new scores test for the null hypothesis of 

proportional hazards that is sensitive to the alternative of acceleration (hazard rates 
crossing). We obtained a significant asymptotic normal test result (z = 3.12, P = .002). 
This validates our suspicion from looking at Figure 3 that the two survival curves are not 
equal despite the lack of rejection of the likelihood ratio, log-rank, and generalized Wilcoxon 
tests, which do not work well when the hazards are not proportional. 

As a final example, we examined the model 

hi(t) = ho(t )e'3(conditionindex) 

for all 50 ducks and for each age class. Black duck (n = 50) survival was apparently related 
to condition index [log-likelihood for condition-index model = -61.685, log-likelihood for 
model with no covariates = -64.06, x I = 4.75, P < .05, A = 1.68, SE(A) = .80]. Given that 
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Figure 3. Survival distributions (Kaplan-Meier estimates) for hatch-year (+) and after-hatch-year 
(A) birds. 

age apparently affects survival, we examined the effect of condition index within each age 
class. Survival of after-hatch-year birds (n = 19) was significantly related to condition index 
[log-likelihood for condition-index model = -13.21, log-likelihood for model with no 
covariates =-15.665, X2 = 4.91, P < .05, A = 2.63, SE(A) = 1.37]. Survival of hatch-year 
birds (n = 31) was, however, apparently not related to condition index (log-likelihood 
for condition-index model = -37.34, log-likelihood for model with no covariates = 

-37.87, xi = 1.06, P > .25, 5 = 1.14, SE(A) = 1.11]. These results were consistent 
with those reported for the overall study by Conroy et al. (1988). We cannot explain 
biologically why the survival of hatch-year birds does not appear to be related to condition 
index. We would have expected condition index to be related to survival for both age 
classes of birds. 

5. General Discussion 

The radio-tagged survival analysis procedure presented above provides a general framework 
for analyses of these studies. Radiotelemetry is likely to become an even more common 
technique as the technology improves and costs are reduced. The large body of statistical 
research into survival analysis in medicine and engineering should prove valuable and the 
necessary computer packages already exist. 

We believe that the techniques we have outlined, within the constraints of the listed 
assumptions, provide the researcher with a more realistic and sophisticated analysis 
than has heretofore been possible. While many biologists will be most interested in the 
distribution-free survival estimates themselves, most want the hypothesis testing and model 
fitting capabilities available. In particular, we believe the testing of ecological hypotheses 
regarding the influence of individual animal covariates (such as condition index) on survival 
using the proportional hazards model is extremely important. 

In the analysis discussed in this paper we have put most emphasis on the Kaplan-Meier 
product limit estimator because of its simplicity and generality. An important question is: 
When should one use parametric modelling as opposed to nonparametric? Previous 
approaches to analysis of radiotelemetry data (Trent and Rongstad, 1974; Bart and Robson, 
1982) could be viewed as very special cases of parametric modelling. Although discrete, 
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their approaches are very similar to fitting an exponential distribution. Miller (1983) has 
compared maximum likelihood estimation and the Kaplan-Meier procedure when the 
underlying distribution is exponential and there is right censoring. As Miller points out, 
this comparison is biased against the Kaplan-Meier estimator and its efficiency can be low. 
This is especially troublesome when t is large and Miller states, "Parametric modelling 
should be considered as a means of increasing the precision in the estimation of small tail 
probabilities." He further states that it is surprising that so little work has been done on 
this question considering the importance of survival analysis in many disciplines (medicine, 
engineering). 

In a review paper on right censoring and survival analysis, Lagakos (1979) discusses 
informative censoring (i.e., the censoring times are not independent of the survival times). 
Again, little work has been done on this problem. One practical approach is to calculate 
extreme bounds for the estimated survival curve by considering each censored observation 
to be either a death or a survivor until the end of the study. Of course, if there is a lot of 
censoring early in the study, these bounds can be very wide. 

Finally, we emphasize the importance of definition of the time origin in this application 
of survival analysis. In our example the survival functions apply only to the black duck 
population between early winter (December 15) and early spring (February 15). Further- 
more, the extension to left truncation with right censoring, which could be used if animals 
gradually enter the study, is very important, and will be studied further in another article 
(Pollock et al., 1989). 
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RESUMt 

Nous presentons des resultats sur 1'estimation des distributions de survie pour un probleme important 
en ecologie animale. Le probleme necessite 1'estimation de distributions de survie utilisant des 
animaux radio-marques. On doit tolerer des observations censurees dues a un defaut de radio, a 
1'emigration a partir de la zone d'etude et a la survie d'animaux apres la fin de la periode d'etude. 
Nous montrons pour ce probleme que l'on peut utiliser les techniques d'analyse de survie deja 
utilisees dans les etudes medicales et industrielles. On insiste sur les suppositions du modele et la 
necessite de recherche ulterieure. On presente un exemple pour illustrer les points forts et les faiblesses 
de cette approche. 
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