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Abstract.

We demonstrate that statistics textbooks differ in their prescription for the

analysis of experiments that involve blocking factors. The differences in analysis may lead
to differences in conclusions regarding the significance of experimental treatment effects.
We outline the two approaches, discuss why they are different, and suggest when each
approach may be applicable. We point out that simply following one’s textbook may not
be the best course of action for any particular situation.
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INTRODUCTION

The modern ecologist must have a good working
knowledge of statistics. But where do ecologists learn
statistics? Typically they take statistics classes in de-
partments such as psychology, mathematics, or even
agricultural science. We are, for the most part, prac-
titioners of statistics, not statisticians. We accept what
we are taught and try to apply what we have learned
correctly. But what if what we have learned is wrong?
If one statistics book told us to conduct a test in one
way, and another text told us to conduct it in a different
way, would we know which is correct?

In this paper, we point out that there are two accepted
approaches to the ‘“‘proper” analysis of experiments
incorporating blocking factors. Textbooks on statistics
generally include only one of these tests and, in fact,
rarely mention the existence of the other. But one can-
not substitute perfectly for the other. The two tests
make very different assumptions and allow very dif-
ferent inferences to be drawn. We run the risk of mis-
interpreting our data if we blindly follow the test out-
lined in our favorite statistics text. In this paper, we
attempt to explain and contrast the two methodologies
for the analysis of blocking factors in ecological ex-
periments. We wish to emphasize that our intent is not
to advocate either approach, but rather to provide the
background necessary for an informed decision re-
garding which test to use. Indeed, the point of this paper
is that there are two different, accepted approaches,
each of which is well supported by volumes of statis-
tical literature.

Manuscript received 2 November 1995; revised 4 Novem-
ber 1996; accepted 3 December 1996. For reprints of the
Special Feature, see footnote 1, p. 1299.

blocking factors; error terms; hypothesis tests; mixed-model ANOVA; random effects;

WHAT ARE BLOCKING FACTORS?

The experimental unit is the unit to which a treatment
is applied. It may be a plot of land, a population, or
an individual plant or animal. Most biologists would
expect these things to vary intrinsically in any variable
we cared to measure. For instance, some plots of land
will be more productive than others and some plants
will grow larger than others, even in the absence of
any differences in treatment. The aim of blocking is to
group experimental units so that they are more similar
within blocks than between blocks. By accounting for
these intrinsic differences among our experimental
units, we hope to obtain a smaller experimental error
and hence improve the precision with which we esti-
mate the treatment effect.

Blocking factors differ from treatments in that they
have not, or cannot, be applied randomly to the ex-
perimental units. Statistically, blocks are thought of as
a source of nuisance variation; biologically, this need
not be the case. Indeed, ecologists often have a great
deal of interest in the importance of the blocking factor.
In many cases authors do not even call these factors
‘“‘blocks.” Nevertheless, these factors are not randomly
assigned to the experimental units. Regardless of our
scientific interest in these factors, they are intrinsic
sources of variation, that when grouped as blocks serve
to remove this variation before we test our hypotheses
about those treatments that have been applied experi-
mentally.

Before delving into the important differences behind
the treatment of blocking factors in ecology, we first
review the rationale behind ANOVA and the differ-
ences between fixed and random effects. For herein lie
the roots of the problem.
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THE RATIONALE OF ANOVA

An F ratio is a ratio of two independent random
variables that each have a x2? distribution. We can use
the F ratio as a test statistic for testing the null hy-
pothesis that the variances from two populations are
equal. We do this by drawing two independent samples,
one from each population. For example, suppose we
have X = x;, x5, -, x,,and Y =y, y,, -, y,. We would,
for each sample, calculate the sum of the squared de-
viations from the sample mean, which we usually call
ss, and ss,. We could then form the ratio:

s _ SS/m—1) Ms,

ss,/(n — 1) w™s,’

ey

While this looks like the F ratios that we are used to
seeing in ANOVA, we still have not shown that F has
an F distribution. To do this we note that

_ss,/[(m — Da?]
ss,/l(n — 1)o7

*

@)

follows an F distribution. This is because the numerator
and the denominator can be shown to have x? distri-
butions (see for example, DeGroot 1986:386-387).
Now, note that £ = (0'5/032 F*.If 02 = o2 (i.e., the null
hypothesis is true), then # = F* and F has an F dis-
tribution. This simple logic is used in all ANOVA anal-
yses, where as in Eq. 1 the ratio is formed from two
mean squares.

ANOVA statistical designs specifically isolate the
variance due to a treatment from the variance due to
everything else in the experiment. Roughly speaking,
we get something like:

E[wms, ]

= (variance due to the treatment
E[ms, ] (

+ variance due to other things) 3)
+ (variance due to other things),

where E[Ms] is the expected mean square. As long as
the “other things™ that make up part of the expected
mean square in the numerator are the same as those
that make up the denominator, this ratio tests the null
hypothesis that the variance due to the treatment is
zero. If the “‘other things” are not the same, then any
statistical difference inferred from the ratio of these
two mean squares may not necessarily be due to the
treatment effect. In order to test the null hypothesis
that the variance due to any particular treatment is zero,
the correct denominator must be chosen, namely the
one that contains the same ‘“‘other things.”” So, under
the null hypothesis, these two mean squares will be
approximately equal and F will be ~1.

FixeDp vs. RANDOM EFFECTS

In order to choose the ‘‘correct” denominator for a
test, we must calculate the expected mean squares; to
do this it is necessary to determine whether our factors
are fixed or random effects. The distinction between

the two types of effects probably began with Eisenhart
(1947) but has been fully developed by many statis-
ticians (see Yates 1965, 1970 for further critical dis-
cussion of this development). Here we briefly define
what is usually meant by these terms.

A fixed effect is something that is repeatable (i.e.,
if another scientist wished to repeat our experiment,
the same levels of the factor could be used) and the
levels used in the experiment must represent all of the
levels in the universe about which we are attempting
to draw statistical inferences. For example, if we
choose a factor D with five levels for an experiment,
and we treat this factor as a fixed effect, then any in-
ferences that we draw regarding the effect of factor D
are applicale only to these five levels. As an example
of treatment D, consider a species of pseudoscorpion
that has five instars in its life history. If we conducted
an experiment in which we used all five levels of ““in-
star,” then “‘instar’” should be considered a fixed effect
because all possible instars are represented and another
experimenter could use these same levels. If, instead,
we conducted an experiment on only three levels of
‘““instar,” and if we treated ‘“‘instar” as a fixed effect,
then our inferences would be restricted to this subset
of its life history.

A random effect is an effect where the levels of the
factor, call it G, are thought to be a random sample
from an essentially infinite set of possible levels. When
the levels of a treatment cannot be exactly replicated
by another experimenter, then that treatment should
almost always be thought of as a random effect. How-
ever, even treatments that are repeatable may be con-
sidered random effects if they can be regarded as a
random sample from some larger population. The pop-
ulation from which the levels form a random sample
is the universe about which inferences can be drawn.
In other words, our inference extends beyond the data
to the population of treatment levels as a whole. As an
example, imagine that we use several offspring from
each set of parents in an experiment and that we regard
these parents as a random sample from some larger
population. Since it would be impossible for someone
to replicate the families used in the experiment, and
since we wish to draw an inference regarding the entire
population of families (rather than these particular fam-
ilies), then ““family” would be treated as a random
effect.

Unfortunately, a typical situation in ecology often
fits neither scheme with respect to the blocks. On the
one hand, the blocks cannot be replicated. On the other
hand, they are usually not a random sample from any
population. This kind of ambiguity is rarely dealt with
in statistics textbooks.

One further note regarding random effects, which is
often overlooked in statistics textbooks, is that infer-
ences about the random effect are not inferences about
the mean of the response (as they are with fixed effects),
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TaBLE 1. Effects of tethering on blue crab predation rates.
This table illustrates two different approaches to the anal-
ysis of a single experiment that has two experimental treat-
ments (tethering and habitat type), each with two levels.
The treatments are applied to experimental units that have
been grouped together by size class to form blocks. There
were five size classes (instars 1, 3, 5, 7, and 9). These size
classes form five blocks with each of the four treatment
combinations replicated 11 times per block. Model 1 shows
that there is a weak effect of habitat type, no effect of
tethering, and no interaction. Model 2 concludes that there
are very strong effects of habitat type and tethering but not
their interaction. (It should be noted that Pile et al. [1996]
used neither of these two models. They considered all
sources to be fixed effects and calculated the sources seen
in Model 1, but used the residual Ms for all hypothesis
tests.)

Source df ss Ms F
Model 1
Blocks (B) 4 11.473 2.868
Habitat (H) 1 0751 0.751 10.01 P = 0.034
Tether (T) 1 0360 0360 353 P=0.134
H X B 4 0.301 0.075
T X B 4 0.409 0.102
HXT 1 0.004 0.004 0.12 P =0.739
HXTXB 4  0.137 0.034
Residual 180  8.458 0.047
Total 199 46.53
Model 2
Blocks (B) 4 11473 2868 234
Habitat (H) 1 0751 0.751 5.63 P = 0.000
Tether (T) 1 0360 0.360 5.22 P =0.007
HXT 4 0.004 0.004 069 P =0.765
Residual 192  9.306 0.048
Total 199 46.53

they are inferences about the variance-covariance
structure. For readers interested in pursuing this issue,
Searle et al. (1992:9-12) have a nice discussion of this
point.

WHAT ARE THE TWO APPROACHES?

The following example from Pile et al. (1996) will
serve to illustrate some of these points. Among other
things, Pile et al. were interested in testing experi-
mentally whether the use of tethers on blue crabs pro-
vides an unbiased estimate of predation in newly settled
crabs. These authors were also interested in whether
predation rates differed between vegetated and unve-
getated habitats. Because predation rates will vary
among crabs of different sizes, even in the absence of
treatment effects, Pile et al. grouped the crabs used in
the experiment into five size classes. Depending on the
assumptions that the authors make, two possible anal-
yses are shown in Table 1. Both models consider blocks
to be random effects and tethering and habitat to be
fixed effects. The first model is prescribed, for example,
by Edwards (1985:262) and the second is prescribed,
for example by Mead (1988:37). We want to stress that
we could easily cite dozens of textbooks that support
either model; Table 2 provides a sample of how some
commonly used textbooks treat the problem. These two

SPECIAL FEATURE

Ecology
Vol. 78, No. 5

models differ in their handling of the block by treat-
ment interactions, for reasons that we will elaborate
below. For the moment, it is sufficient to note that we
would come to fundamentally different conclusions re-
garding the importance of tethering and the strength of
the habitat effect.

As a means of motivating discussion, let us consider
some more general examples of blocking in ecological
experiments. These examples are useful in demonstrat-
ing the enormous variation in the types of blocking
factors used by ecologists. Suppose that we are inter-
ested in the effects of water stress and nutrient stress
on the growth of the plant ragwort and that we perform
an experiment incorporating three levels of water stress
and three levels of nutrient stress (i.e., nine treatment
combinations). The following are four experiments that
we might conduct to estimate the effects of the treat-
ments.

Experiment A.—We seed a 18-ha piece of land with
ragwort seeds. We divide the 18-ha piece into four
equal-sized (4.5 ha) sections of land, which we further
divide into nine 0.5-ha subsections. In each section,
one of the nine 0.5-ha subsections are randomly as-
signed to each of nine water—nutrient combinations.
After one year, we harvest all of the ragwort from each
subsection and use the total dry mass from each plot
(subsection) as our dependent variable. Thus, we have
four sections of land (blocks), three levels of water
stress, three levels of nutrient stress and one plot (sub-
section) of land per section—water—nutrient combina-
tion.

Experiment B.—We collect one seed from each of
36 ragwort mothers, and plant them in each of 36 plant-
ing pots. The seeds are divided into four groups based
on the mass of the mother plant (high, medium-high,
medium-low, and low). In each group, the nine seeds
are randomly assigned to one of the nine water by
nutrient combinations. After one year, each plant is
harvested and the dry mass measured. Thus, we have
four groups of plants (blocks), three levels of water
stress, three levels of nutrient stress with one plant per
group—water—nutrient combination.

Experiment C.—We obtain nine seeds from each of

TABLE 2. Initial belief about the block by treatment inter-
action. If your analysis is guided by any of these textbooks,
then you would follow these approaches.

Interaction No interaction

Bennett and Franklin 1954 Bowerman and O’Connell 1990
Blackwell et al. 1992 Lentner and Bishop 1993
Edwards 1985 Mead 1988

Kirk 1982 Mendenhall and Beaver 1991
Lentner 1993 Mendenhall and Sinich 1988
Potvin 1993 Neter et al. 1990

Villars 1951 Seber 1997

Winer 1970 Snedecor and Cochran 1989
Zar 1984 Sokol and Rohlf 1982

Zolman 1993 Steel and Torrie 1980
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TaBLE 3. Analyses of a hypothetical example. This table illustrates two different approaches
to the analysis of a single experiment that has two experimental treatments (water stress and
nutrient stress), each with three levels. The treatments are applied to experimental units that
have been grouped together to form blocks. There are four blocks with each of the nine
treatment combinations replicated once per block. Model 1 shows that neither of the main
effects, nor their interaction is significant. Model 2 concludes that there are significant effects
of water stress and nutrient stress but not their interaction. The last column shows the expected
mean square for each term in each analysis. These are discussed in the Existence of the

interaction term section.

Source df Ss MS F E[ms]
Model 1
Blocks (B) 3 59 1.97 o2 + wnoj
Water stress (W) 2 9.45 4.73 4.43 NS 0% + nof,y + bnby
Nutrient stress (N) 2 8.75 4.38 4.77 NS 02 + wody + bwb}
W X B 6 6.4 1.07 02 + nof,
N X B 6 5.5 0.92 02 + wodyg
W X N 4 2.3 0.58 0.84 NS 02 + Onxs T DOYsn
WX NXB 12 8.23 0.69 02 + o¥nxs
Residual 0 0 0
Total 35 46.53
Model 2
Blocks (B) 3 59 1.97 2.34 NS o? + wno}
Water stress (W) 2 9.45 4.73 5.63 P < 0.01 o?%+ bnb}
Nutrient stress (N) 2 8.75 4.38 5.22 P < 0.05 o2+ bwb}
W X N 4 2.3 0.58 0.69 NS 02 + bO%y
Residual 24 20.13 0.84 o?
Total 35 46.53 '

Note: Lowercase letters denote the number of levels in treatments denoted by the corre-
sponding uppercase letter (e.g., there are w levels in treatment W). The ¢? symbols with
subscripts denote the variance due to the treatments listed in the subscript, when at least one
of those treatments is a random effect; o2 with no subscript denotes the error variance. The 6?2
symbols denote the variance due to the treatments listed in the subscript, when those treatments

are all fixed effects.

four genetically different ragwort mothers. The seeds
were mailed to us from a colleague, who cannot re-
member where he originally collected them. One seed
from each mother is randomly assigned to each of the
nine water-nutrient combinations. After one year, each
plant is harvested and the dry mass measured. Thus,
we have four mothers (blocks), three levels of water
stress, and three levels of nutrient stress, with one plant
per mother—water—nutrient combination.

Experiment D.—This experiment is identical to ex-
periment C, except that the seeds were collected from
arandom sample of mothers growing in Albany county
in upstate New York. Again, we have four mothers
(blocks), three levels of water stress, and three levels
of nutrient stress, with one plant per mother—water—
nutrient combination.

The analyses of these experiments might follow ei-
ther of the models shown in Table 3. The mechanics
of each of these analyses are the same as those shown
in Table 1. The analyses shown in Table 3 clearly come
to different conclusions regarding the experimental
treatments. Why are they different and which is cor-
rect?

THREE TYPES OF BLOCKS

Each experiment in our example uses a blocking fac-
tor. In experiment A, the 4.5-ha sections of land are

the four blocks. In experiment B, the groups of seeds
based on the mother’s dry mass are the four blocks. In
experiments C and D, the groups of seeds from each
mother comprise the four blocks. We propose that these
experiments exemplify three different types of blocks.
In experiment A, the block size and the experimental
unit are an arbitrary division of the experimental ma-
terial; they could just as readily have been 9 ha and 1
ha instead of 4.5 ha and 0.5 ha. In experiment B, the
block size was an arbitrary division, but there is a nat-
ural experimental unit size. We could have chosen to
use only two groups of mother dry masses but indi-
vidual plant is the most sensible experimental unit. In
experiments C and D, there is a natural size to both
the blocks and the experimental units (they are mother
and offspring) and we have no choice in defining the
sizes of either of these divisions.

WHAT IS THE DIFFERENCE BETWEEN THE MODELS?

The most apparent difference between the two anal-
yses is the inclusion of the block by treatment inter-
actions in the first model (see Tables 1 and 3). Including
the interactions leads to two additional, important dif-
ferences. The first difference is in the selection of the
error term (denominator of the F ratio) for testing the
experimental treatments. The second difference is in
the amount of replication that is implied in the selection
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of the error term. Specifically, in the ragwort growth
experiment (Table 3), under Model 1, the main effect
of water stress is tested by F,4 = MSy/MSy,p, and the
main effect of nutrient stress is tested by F,s = Ms,/
MSyxp. This differs from Model 2 where the main ef-
fects of water stress and nutrient stress are both tested
with the MS, 4., @s the error term on 24 df. Note that
the MS 4, used in Model 2 is really just

SSwxe T SSnxz T SSwxnxs

6+6+ 12

That is, the MS,.q. 1 really just a ““pooling” of all of
the block by treatment interaction terms. This differ-
ence is even more extreme in the blue crab experiment
(Table 1) where the effect of tethering is tested with 4
df in the denominator under Model 1 and 192 df under
Model 2.

Note that some statisticians prefer a third model, that
is very similar to Model 1, but differs in some of the
technical assumptions. This model is not usually found
in applied statistics textbooks, however it is imple-
mented in some statistical software packages (for ex-
ample SAS’s PROC GLM). The differences between
Model 1 and this third model are fairly technical and
beyond the scope of this paper. The interested reader
may wish to consult an advanced statistics text like
Hocking (1985) for details of this test.

EXISTENCE OF THE INTERACTION TERM

Choosing the appropriate denominator depends on
the designation of factors as both fixed or random ef-
fects and the researcher’s assumption regarding the ad-
ditivity of the treatments. We must be clear on this
subject; we cannot ever know, with certainty, whether
the interaction exists. As unsatisfying as it might be,
all that we can do is adopt one of two a priori attitudes
toward the existence of the interaction: it is likely to
exist, or it is unlikely to exist.

We return to our ragwort growth examples to con-
sider the consequences of both of these a priori attitudes
toward the interaction. For the discussion that follows,
consider water stress and nutrient stress to be fixed
effects. That is, we will draw inferences only about the
levels of water stress and nutrient stress used in the
experiment, and those levels may be repeated by other
experimenters. Throughout the discussion that follows,
we will be concerned with the existence of the treat-
ment by block interactions.

Suppose that we consider it possible or likely that
there is an interaction.—Then, we would include the
interaction in the model (e.g., Model 1, Table 3). Fol-
lowing Edwards (1985), the expected mean squares are
given in Table 3. The notation used in Table 3 is fairly
standard and can be found in most advanced statistics
textbooks. Briefly, o2 represents the variance in the
random error associated with each experimental unit
or observation. The lowercase italic letters represent
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the number of levels in the treatment denoted by the
same capital italic letter (e.g., there are w levels in
treatment W). 0% is given by

2 (b~ 0y
03 = ——o!
v w—1
where p, — p is the deviation from the mean caused
by level i of treatment W. We note that when an effect
is considered to be fixed, then

(; o — u«) = 0. )

by definition. The same is true for nutrient stress, N,
which is also considered to be fixed. Since the blocks
are considered to be random, the restriction noted in
Eq. 4 does not apply. We denote the variance attributed
to blocks by o} rather than 6% to show this difference.

It is easy to see that the proper F ratios for testing
the main effects of water stress and nutrient stress are
now formed using the corresponding block by treat-
ment mean square as the error term. Similarly, Table
3 shows that if block by treatment interactions are as-
sumed to be possible, then there are no appropriate
error terms for testing the effects of the blocks or any
of the block by treatment interactions themselves. This
stems from the fact that the residual term is confounded
with the three-way interaction (i.e., we have run out of
degrees of freedom) in this particular example (but not,
for example, in Table 1).

Suppose that we consider an interaction unlikely.—
If we believe that the interaction is unlikely, then it is
not included in the analysis (i.e., it is assumed to be
zero). We then get the expected mean squares shown
in the last column of Table 3. We see, as in Eq. 3, that
the proper error term for forming an F ratio to test any
effect in the model is the residual mean square.

JUSTIFYING THE DIFFERENCE

As we have demonstrated, either approach leads to
a ‘‘valid” F test in the sense that the denominator iso-
lates the component of variance that is of interest. Are
they both correct? In the sections that follow, we further
examine the concept of blocks and outline the rationale
underlying their treatment by each of the two models.
Both arguments are convincing, but very different.

INTERPRETATION OF MODEL 1

The rationale underlying Model 1 begins with the
distinction between fixed and random effects in ANO-
VA and with the assumption that an interaction between
treatment and block is possible or even likely. The basic
beliefs are well illustrated by Edwards (1985):

If conclusions based on the outcome of the experi-
ment are restricted to exactly the same blocks as
those used in the experiment, the use of MSyc, [re-
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sidual mean square] as the error mean-square for all
tests of significance is justified. All too often, how-
ever, in summarizing the results of the research, the
experimenter discusses the blocks as if they were
random. The experimenter cannot have it both ways,
the blocks are either fixed or they are random. If they
are random, then MSgy; [block by treatment inter-
action mean square], not MSy,c, is the appropriate
error mean-square for testing the treatment effects
for significance. —Edwards 1985:278

That is, Edwards assumes that an interaction is likely,
includes it in the analysis, and advocates using the
mean square for the block by treatment interaction as
the error term for testing the effect of the treatment.
This follows exactly from our treatment of random ef-
fects with the interaction, where the unit of replication
for analyzing treatment effects was found to be the
treatment by block interaction.

The logic of this approach is obvious when there is
significant variation due to the interaction. However,

when the interaction is zero, the interaction mean

square (if it is included in the analysis) and the residual
mean square estimate the same quantity. For this rea-
son, many authors suggest that we test the interaction
first and if there is no evidence of a significant inter-
action, then we should use the residual mean square to
test the main effect. The residual estimate would be
preferred because it is made with more degrees of free-
dom (i.e., it is based on a larger sample size). These
same books further suggest that it is appropriate to pool
the interaction with the residual sums of squares; after
all, they represent estimates of the same thing. Thus,
when there is no interaction because we have presented
evidence that there is no interaction, then the appro-
priate error term is not necessarily the interaction mean
square. Notice that this is exactly the logic of Model
2, except that there has been no test of the null hy-
pothesis regarding the interaction.

How do we ‘“know” that the interaction is zero?
Followers of Model 1 adopt a cautious attitude by re-
quiring only weak evidence (i.e., large o values) before
accepting that there is an interaction. By requiring only
weak evidence, the chance of a Type II error (failing
to reject a false null hypothesis) is reduced. This re-
quirement may appear to be rigorous, but actually pro-
vides us with a false sense of security. There are two
reasons for this. First, the conditional nature of the test
of the null hypothesis (i.e., the data determines which
denominator will be used in the test) is not reflected
in the P value associated with that test. Second, this
procedure is tantamount to accepting the null hypoth-
esis rather than failing to reject it. For these reasons,
most textbooks point out that ‘“‘some statisticians’ feel
that it is never appropriate to pool, or switch, denom-
inators. Nevertheless, these same books invariably go
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on to describe methods for pooling. Hines (1995) has
recently demonstrated that pooling interaction terms
very rarely results in any appreciable increase in sta-
tistical power without undercutting the statistical va-
lidity of the analysis. We agree with Hines and feel
that if the experimenter imagines that an interaction is
possible then the interaction should be retained
throughout the analysis (i.e., we feel it is inappropriate
to pool).

INTERPRETATION OF MODEL 2

In this model, the block by treatment interaction is
assumed to be nonexistent, and hence excluded from
the analysis. As a consequence, the appropriate error
term for the treatment effect is the residual mean
square, regardless of whether we view blocks as fixed
or random effects. This belief is advocated forcefully
by Steel and Torrie (1980), who write:

Very often it is desirable to have blocks random when
generalizations concerning treatment effects are to
be made. . . . Residual mean-square is the appropri-
ate error mean-square for testing block and treat-
ment effects. . . . —Steel and Torrie 1980

This approach is based on the attitude that the pres-
ence of a block by treatment interaction means that we
can conclude that the treatment influences the response,
but we can say little about how it does so. Some factors
we have not controlled influence the effect of the treat-
ment and until we discover what they are, we have
little more to say. The presence of an interaction there-
fore threatens the whole rationale of the experiment,
because advocates of Model 2 do not view their blocks
as a random sample from any particular population.

The disappointing conclusion implied by the pres-
ence of the interaction may be moderated by two con-
siderations:

1) Interaction means ‘‘nonadditive interaction.’”’ If
we can characterize a way in which blocks and treat-
ments do combine simply, then we may rescue our
experiment. For example, a log transformation would
remove the interaction if the factors combined multi-
plicatively. However, until we can find some way of
representing the effects of the treatment in a way that
is independent of blocks, we do not understand the
effect of the treatment.

2) Our prime interest may be in the direction of the
treatment effects, and not in their magnitude. For ex-
ample, even if the magnitude of the effect of water
stress on seedling growth varies, it may well be of
interest that it is always negative. In this case, we might
test for a treatment effect in the analysis of variance
that omits the interaction. This is reasonable when the
absence of main effect would make an interaction high-
ly implausible. For example, if water stress does not
affect survival at all, then it cannot affect survival dif-
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ferentially in different blocks. Essentially, we have
added absence of an interaction to the null hypothesis
of no treatment effect.

THE DEVIL 1S IN THE DETAILS

We saw in Tables 1 and 3 that these two models for
the analysis of a single experiment might come to dif-
ferent conclusions, regarding the treatment effects.
These two approaches differ on several levels.

1. They test different null hypotheses.—We are often
sloppy about how we state our null hypothesis. We
usually use phrases like “‘there will be no effect of the
treatment.”” Unfortunately, one source of confusion in
the interpretation of these two approaches is that they
actually test different null hypotheses. Model 1, by
using the interaction mean square, tests the null hy-
pothesis that the treatment may have an effect in each
block, but averaged across the population from which
this sample of blocks has been randomly selected, the
effect is zero. On the other hand, Model 2, by using
the residual mean square, tests the null hypothesis that
there is no effect of the treatment in any block. The
appropriateness of these different hypotheses should
dictate which approach is used (see Yates 1965, 1970
for more on these differences).

We should note that although we have concentrated
on hypothesis testing (as this is most relevant to ecol-
ogists), the same distinction can be made regarding
estimation. That is, in constructing an estimate of a
treatment effect, the standard error used depends upon
which mean square is used as an estimate of the error.

2. The type of block has implications for the as-
sumption of additivity.—Previously, we defined three
types of blocks. Model 2 usually applies to situations
where blocks and plots are arbitrarily defined. As in
experiment A (above), the attitude that blocks are really
just big plots and the logical criteria that plots are ran-
dom and additive with treatments seem to justify this
belief. That is, all statistical approaches assume that
experimental units (plots) and treatments are additive.
Otherwise, it would not be possible to define a treat-
ment effect! (Note that we are taking about experi-
mental units, not blocks.) Therefore, viewing blocks as
““large experimental units”’ or ““large plots’’ would lead
one to the logical conclusion that blocks and treatments
must be additive.

However, in experiments C and D it is perfectly rea-
sonable to assume that there is experimental unit by
treatment additivity but not block by treatment addi-
tivity. In these cases, a block by treatment interaction
simply means that there is a gene by environment in-
teraction. This difference strongly influences the initial
assumptions that each model makes regarding the pres-
ence of the interaction. Followers of Model 2 initially
assume additivity and require strong evidence (e.g.,
small a values) to the contrary before they are willing
to give up this assumption. Followers of Model 1 con-
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cede beforehand that there is a strong possibility that
there will be block by treatment interactions and hence
require that evidence for an interaction be extremely
weak (e.g., large o values) before they are willing to
assume additivity. Parallel to these differences, advo-
cates of Model 2 would regard the existence of a block
interaction as a reason not to draw conclusions about
the main effects. Advocates of Model 1 aim to draw
conclusions about main effects in the presence of block
by treatment interactions.

3. The type of block has implications in defining the
population.—The third difference regarding blocks
deals with the intended inference. The logic of applying
a model that considers blocks to be random implies
that we believe that there is a population of blocks over
which we can make some generalization. Recall that
the hypothesis being tested is that the average effect,
in the population from which the sample of blocks was
taken, is zero. In order for this ‘“average’ to be mean-
ingful, there must be a population of blocks from which
the blocks are a random sample.

Whenever the choice of blocks is arbitrary, it is fairly
meaningless to draw inferences about the population
from which blocks are a sample. For example, what
would it mean to speak about the population of 0.5-ha
plots at your field station, or a population of adult mass
categories? For this reason, we are unlikely to wish to
extrapolate beyond our designated blocks when inter-
preting the results of experiments A and B. Experi-
ments C and D, on the other hand, both have blocks
that form a sample from some natural population (i.e.,
ragwort mothers). In these examples, there is a popu-
lation that defines parameters of interest. In experiment
D, we know exactly what population was sampled and
hence we may wish to make statistical inferences about
its population parameters. In experiment C, however,
the population defined by our sample is unknown. It is
likely that they were not randomly sampled from any
real population.

We must ask ourselves two questions: is there a pop-
ulation of interest? and, can we draw statistical infer-
ences about that population? This is relatively easy to
do in the case of experiments A and D, but experiments
B and C are more problematic. Most textbooks do not
distinguish types of blocks and therefore tend to give
one of two answers: Model 1 or Model 2. Unfortu-
nately, the choice is frequently unclear in practical ap-
plications.

4. Biological vs. statistical inference.—Much of the
confusion regarding this problem revolves around how
the results of an experiment are interpreted. That is,
what has been shown statistically as opposed to bio-
logically. This attitude is epitomized by Edwards’
quote ‘“All too often, however, in summarizing the re-
sults of the research, the experimenter discusses the
blocks as if they were random [after treating them as
fixed]. The experimenter cannot have it both ways; the
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blocks are either fixed or they are random.” In order
to draw any inferences beyond the blocks used in the
experiment, Edwards (1985) maintains that we must
draw a statistical inference that results from treating
blocks as random effects, including the interaction in
the analysis and using the interaction mean square as
the error term for testing the treatment effect.

The distinction between biological and statistical in-
ference can be seen as follows. An experiment will
often be performed at one experimental station. If nu-
trient stress was liable to have arbitrary effects in dif-
ferent locations, such experiments would not be worth
publishing beyond the perimeter fence. However, such
experiments are published more widely, and usefully
so. The attitude adopted is that the experiment has dem-
onstrated nutrient stress to have an effect in the station.
Against a background of past success in generalizing
from one area to another, and in the absence of any
specific contrary information, it is reasonable to con-
clude tentatively that nutrient stress will have the same
effect elsewhere. In other words, the statistical infer-
ence is restricted to where it can be clearly defended
on logical grounds, and to admit that any further ex-
tension of the conclusions has no statistical justifica-
tion.

Model 1 avoids completely any nonstatistical infer-
ence. If the blocks are something that have a natural
unit and a natural population of those units, and we
are prepared to make the assumption that our sample
forms a random sample from that population, then on
the basis of that assumption we can generalize statis-
tically to the population from which the blocks were
drawn. This ensures that every inference is drawn sta-
tistically. Nevertheless, the same logical uncertainties
exist as before concerning the extension of experi-
mental results, but now they have been incorporated
into the assumptions of the statistical test. The degree
to which the blocks form a random sample of a natural
population of blocks is the degree to which our con-
clusions are justified statistically.

Every useful application of statistics makes unjus-
tified assumptions about the similarity of the experi-
mental material and the material about which conclu-
sions are drawn. In Model 2, these unjustified as-
sumptions are kept separate from the statistical con-
clusions so that the analysis itself provides safe but
limited conclusions. In Model 1, these assumptions are
drawn into the statistical argument, so that the analysis
may provide widely applying conclusions but that may
be applicable to an uncertain population.

PSEUDOREPLICATION IMPLICATIONS

In 1984, Stuart Hurlbert wrote an influential, and
much needed, monograph on ‘“‘Pseudoreplication and
the design of ecological field experiments” (Hurlbert
1984). As a result of this paper, many ecologists now
recognize that we should be cautious about defining
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our unit of replication, and that a failure to recognize
when samples lack independence can lead to erroneous
conclusions. Although not the focus of Hurlbert’s pa-
per, it is clear that pseudoreplication can be framed in
terms of analysis of variance designs. Hurlbert remarks,
almost in passing, that “In ANOVA terminology, it
[pseudoreplication] is the testing for treatment effects
with an error term inappropriate to the hypothesis being
considered.”

Pseudoreplication is relevant in the context of the
present paper in that there are two different hypotheses
of potential interest, and two potential error terms. If
we are attempting to test the hypothesis that ‘“‘averaged
over the population from which blocks are a random
sample, the effect is zero despite the fact that treatments
might have an effect in each block,” then the appro-
priate error term is the block by treatment interaction,
and the replication is the number of block by treatment
combinations! Conversely, if we are testing the hy-
pothesis that “‘there is no effect of the treatment in any
block,” then the error term is the residual mean square
and the replication comes from the number of exper-
imental units that are nested within the block by treat-
ment combinations. The effect of this difference can
be seen clearly by referring to Table 3. In the first case,
the test of the main effect of water stress is made with
6 df in the error term, while in the second case the test
of the main effect of water stress is made with 24 df
in the error term! The correct replication depends on
the hypothesis that we are testing and on whether we
have satisfied the assumptions of that test.

CONCLUSION

We have shown that choosing the correct denomi-
nator is particularly relevant when using blocking fac-
tors in the ANOVA and have presented two ‘‘main-
stream’ approaches to the treatment of blocking fac-
tors. Our presentation shows that the choice of models
is not a black and white issue. The differences rest
largely on the assumptions that we are willing to make,
which in turn are influenced by the type of blocking
factor that we are using. When blocks are arbitrarily
defined, it is reasonable to assume that there is no block
by treatment interaction. Thus, Model 2 would be
adopted and our null hypothesis would be that there is
no effect of the treatment in any block. However, when
blocks represent natural units then the presence of
block by treatement interactions is entirely plausible.
In the absence of additional information to the contrary,
we should retain the interaction in the analysis by
adopting Model 1. In this instance, we are testing the
null hypothesis that, when averaged across the popu-
lation from which these blocks have been randomly
selected, the treatment has no effect. Since many fac-
tors can influence our choice of statistical model, and
since there is no one correct method for most specific
experiments, the only reasonable action to adopt is to
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calculate all possible sources of variance and publish
the ANOVA tables so that readers can decide for them-
selves what the experiment means, or whether adopting
a different approach would lead to different conclu-
sions.
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