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ECOLOGICAL USE OF FAILURE TIME ANALYSIS1 

Gayle Muenchow2 
EPO Biology Department, University of Colorado, Boulder, Colorado 80309 USA 

Abstract. Failure time analysis (FTA), or survival analysis, addresses data ofthe form "time until 
an event occurs." The survival times of medical patients or industrial products have been the usual 
subjects of FTA, but data from a wide variety of ecological studies may be east in these terms, including 
survival times of organisms or parts of organisms and times until certain behaviors are exhibited. 
FTA can accommodate censored data: cases in which the actual time of occurrence is not known but 
a minimum time during which the event did not occur is known. As an example, I used FTA probability 
distributions and the Cox Model, a nonparametric multiple regression analog, to analyze data in which 
the event of interest was the arrival of any flying insect onto a male versus a female flower ofClematis 
ligusticifolia. It was determined that males were visited significantly faster than females. 

Key words: Clematis ligusticifolia; Cox Model; failure time analysis; proportional hazards; sur? 
vival analysis; survivorship function. 

Introduction 

This paper discusses the analysis of ecological data 
of the form "time until an event occurs." In industry, 
this has been termed "failure time analysis," since the 
event of interest is commonly the failure of an indus- 
trial product. In the biomedical context, it has been 
called "survival analysis," since the event is commonly 
the death of a patient, so the time until the event is 
the survival time. I present an analysis of ecological 
data in which the event is the arrival of an insect onto 
a flower. 

Failure time analysis accommodates "censored" data. 
Censored data points are those in which the event was 
not observed, perhaps because the study ended before 
the event (failure, death, insect visit) happened to some 
of the individuals under observation or because some 
of the individuals were lost track of before the event 
occurred during the study. For these censored data 

points, the actual time of occurrence is not known. 
Instead we know a minimum length of time during 
which the event did not occur. Failure time analysis 
allows use of such censored data for their partial in? 
formation. This feature is apt to be useful in field bi? 

ology, where identification markers may be lost, ex? 
ternal conditions may cause the premature end of 

observations, or the observation period may be too 
brief for all possible events to occur. 

In the first section of this paper, I describe failure 
time distributions and the probability functions that 
are used in statistical tests. In the second section, I 
discuss and illustrate tests for comparing the failure 
time distributions of two groups, and, in the third sec? 

tion, I describe the Cox Model, a proportional hazards 
statistical model that is analogous to multiple regres? 
sion analysis. The tests I discuss are nonparametric. If 
one knows a priori that the failure times fit a particular 
distribution, then the proportional hazards model can 

be modified to use that information, i.e., it can be made 

parametric. Also, one can choose the procedure for 

comparing two groups that is the most powerful given 
a known underlying distribution. These techniques are 
discussed in several recent texts (Kalbfleisch and Pren- 
tice 1980, Lee 1980, Nelson 1982). 

A number of ecological questions can be phrased in 
terms of "time until an event occurs." Events of in? 
terest might include the arrival of a migrant or parasite, 
the display of a particular behavior, the dispersal of a 
fruit or offspring, the germination of a seed, the ab- 
scission of a flower, or the death of an organism or a 

particular part of an organism. One pertinent way to 
use failure time analysis (FTA) is in determining 
whether male or female flowers of a species are visited 
more frequently by insects. The classical approach to 

answering this question does not use FTA: count the 
number of visits to a fixed number of flowers during 
a fixed interval and compare the average numbers for 
each gender. The FTA approach is slightly different: 
measure the length of time from an arbitrary starting 
point until the first observed visit and compare the 
distributions of the lengths of time for each gender. 

The FTA approach has the advantage of using the 
entire probability distributions of visits for compari? 
sons between the two genders. The classical approach 
uses the average number of visits per specified unit 
time and makes comparisons at this scale only. Also, 
with the classical approach, if more than one visit oc? 
curs during the fixed interval the question of whether 
the probability of a second visit within a certain time 
is independent of the first visit becomes a problem. 
Since the FTA approach scores only the first visit, it 
does not have this potential problem. Finally, of course, 
the FTA approach permits the analysis of censored 
data. 

A Field Example 

Male plants of dioecious species are often more flo- 
riferous than female plants (Lloyd and Webb 1977). 
This is true ofClematis ligusticifolia Nutt., the species 

1 Manuscript received 21 September 1984; revised and ac? 
cepted 27 February 1985. 
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Table 1. Distribution of waiting times for insect visits to 
Clematis ligusticifolia flowers. 

* The single datum for each of the 96 pairs of flowers is the 
time from the start of observations of the selected pair to the 
first visit of a flying insect to one flower of the pair. 

t Censored datum. 

in which I tested whether males and females are equally 
attractive to insects against the alternative hypothesis 
that males are more attractive. The data were collected 
in Matthews-Winters Park, Jefferson County, Colo? 
rado. In 1983 the plants bloomed from about 15 July 
to 15 August. Between 0700 and 1500 on 15 days 
throughout the blooming period, I recorded waiting 
times until insects arrived, as follows. I chose two target 
flowers on the same plant, at least 30 cm apart but 
close enough to allow careful simultaneous observa? 
tion. The choice of two target flowers rather than one 
was necessitated by the overall slow arrival rate of 
insects. When watching a single flower, I was in danger 
of observing so few visits that any analysis would be 

compromised by small sample size. The event was 
defined as the arrival of any flying insect at one of the 
flowers. The flowers are shallow and capable of being 
pollinated by a wide variety of insects, as is typical of 
dioecious flowers (Bawa 1980, G. Muenchow, personal 
observation), so I did not restrict my attention to any 
one insect group. The waiting times were recorded to 
the nearest minute. I used ?20 plants of each gender 
and usually collected 6-8 data points in a day. Alto- 

gether, 96 cases (pairs of target flowers) were observed 

during a total of 3180 min (53 h). In 10 of these cases 
I observed no insects; these data were censored after 
75 or more minutes of observation (see Table 1). Other 
variables recorded were the time of day, the temper? 
ature, and an estimate of the flower density within ? 1 
m of the targets (categorized as <50, 50-100, 100-200, 
or >200 flowers in a circle of-1 m radius). 

Failure Time Distributions 

Let Tbe a random variable that represents the failure 
time of an individual. The probability distribution of 

T can be represented in many ways, but two are par? 
ticularly useful in failure time analysis. They are the 

survivorship function and the hazard function. Given 
one of these, the other can be derived. 

The survivorship function, S{t), is the probability 
that the event occurs at some time T at least as great 
as time t, i.e., 

S{t) = P{T > t). 

The hazard function, h{t), is the conditional proba? 
bility that the event occurs exactly at time t, given that 
it has not occurred before then, i.e., 

The continuous case can be treated just like the discrete 

case, letting the time intervals be infinitesimal. 
The survivorship function, S{t), is the probability 

that the event does not occur before some time t. One 
can estimate it from a data set by calculating the fre? 

quency of cases in which the event had not occurred 

by time t, but censoring causes problems with such a 

Table 2. The "product-limit" estimate ofthe survivorship 
function, S{t)* at each ofthe first five occurrence times for 
each gender. 

sored datum (i.e., the observation interval was terminated 
because the event of interest occurred, rather than being ter? 
minated for some other reason). S{t) corresponds to "the 
probability that the event did not occur in the first interval" 
times "the probability that it did not occur in the second 
interval given that it did not occur in the first," etc. 

t N = 49 flowers. 
j N = 47 flowers. 
? Within a group of tied occurrence times, the order of ranks 

is arbitrary; S{t) was estimated for each r, but in practice the 
S{t) value used for each of the tied observations in the group 
is the lowest ofthe group's S{t) values (depicted here in bold- 
face type), because this value is the most conservative. 
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TIME UNTIL INSECT ARRIVED AT FLOWER (min) 

Fig. 1. "Product-limit" estimates of the survivorship functions, S(t), for the male and female flower pairs of Clematis 
ligusticifolia. S(t) is the probability that a flower has not yet been visited by an insect; "time until insect arrived" refers to 
the time elapsed since the start of an observation period. 

calculation. Cases censored before time t cannot be 
counted as failures, because we do not know whether 
the actual failures occurred before, at, or after time t. 
To accommodate this, the total time span is broken 
into intervals. Each censored case is counted among 
those at risk during each interval that took place before 
the censoring. When the censored cases are lost from 
the study, the succeeding intervals simply have a small? 
er number of individuals at risk. The probability, S(t), 
that an event does not occur before the interval begin? 
ning at time t is considered to be the product of con- 
ditional survival times 5(0)-5(1 |0)-S(2| 1)-. . .S(t - 

111 - 2), that is, "the probability that failure does not 
occur in the first interval" times "the probability that 
failure does not occur in the second interval given that 
it did not occur in the first" . . . and so on up to interval 
t - 1. For each interval, the conditional probability is 
estimated by the proportion of individuals entering the 
interval who do not fail during that interval. The initial 
value is taken to be 1.0. Censoring may cause the sur? 

vivorship function to remain greater than zero at the 
end of the observation period. 

The product-limit method of estimating the survi? 

vorship function (Kaplan and Meier 1958) calculates 
the estimate at each individual occurrence time, where? 
as the life-table method groups occurrence times into 
intervals. The latter may be more convenient for large 
sets of data. SPSS (Hull and Nie 1981:205-219) has a 

procedure called SURVIVAL that does the latter. Lee 

(1980) gives computer programs for both, as well as 
hand calculating methods for both. 

Table 2 shows the first several calculations of the 

product-limit estimates of the survivorship functions 
for the two genders in the example, and Fig. 1 illustrates 
these estimates for the male and female pairs of Cle- 
matis ligusticifolia flowers. In this case, "survivorship" 
is the probability that an insect has not yet visited either 
of the target flowers a given number of minutes after 
the start of observation. It is apparent from Fig. 1 that 
females are consistently more likely not to have been 

visited by a given time. One may also read percentiles 
directly off a graph of survivorship. The time that cor- 

responds to S{t) = 0.5 is the time at which 50% ofthe 

population is estimated to have been visited. In Fig. 
1, 50% ofthe male pairs have been visited by 14 min, 
and 50% ofthe female pairs by 29 min. 

The survivorship function is commonly used to 

compare groups. The distribution of times until first 
visit to males and females can be seen in Table 1. 
Permutation theory, which is nonparametric, allows 
one to ask: If the males and females are randomly 
drawn from the same occurrence time distribution, 
what is the probability of this or a more extreme ar? 

rangement? There are several nonparametric test sta? 

tistics, all rank statistics, that summarize the differ? 
ences between whole survivorship curves (rather than 
the difference at any prespecified time). Lee (1980) 
shows how these are calculated by hand, and she also 

provides a FORTRAN listing for a program that cal- 
culates five of the two-sample tests. The tests differ 

slightly in power (the ability to reject a false hypoth? 
esis), depending upon whether there is censoring, how 

large the sample size is, and what the true underlying 
distribution is. They also weight early and late points 
a little differently. Lee (1980) summarizes the differ? 
ences. In my example, the samples seem drawn from 

exponential distributions, because a plot of ln[^(0] vs. 
t gives a straight line with a negative slope. In such a 
case the Cox-Mantel test can be expected to be more 

powerful than some. The Cox-Mantel test rejected the 
null hypothesis of equal visitation probabilities at P = 

.0085. I conclude that male flowers were visited at a 

significantly faster rate than were female flowers. 
These statistics depend upon one's being able to rank 

the events in their true order. If some ofthe data points 
are tied in rank, i.e., the lengths of time until the event 
occurred are the same, those points cannot be ordered 
with respect to each other. They are, therefore, not fully 
informative, and this reduces the power of the tests. 
Ties can be accommodated in the tests, but much is 
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gained by minimizing them. My pollination data have, 
at worst, six failure events at the eighth minute; because 
such a high number of ties begins to compromise the 

power with which I can make inferences, I should have 
recorded times in seconds instead of minutes. 

The Cox Model, A Proportional 
Hazards Model 

Additive statistical models for failure time analysis, 
such as 

Time of occurrence = /^(covariate 1) 
+ (32 (covariate 2) + . . . , 

need modification to deal with censored observations. 

Satisfactory FTA models usually involve the assump? 
tion of "proportional hazards," explained below. The 
Cox Model (Cox 1972) is a general nonparametric 
model that can accommodate censoring. It can be writ- 
ten as 

hti, Z) = h0{t) exp (2 ft-zy/). 
j 

In the example, the covariates (the z's) are gender, 
flower density category, temperature, and time at which 
the observation period started. The Cox Model for this 
is hj(t) = h0{t) exp [(3X(gender) + /32 (flower density) + 

/?3 (temperature) + /?4 (start time)]. Recall that h{t) is 
the hazard function and is the probability that the event 

happens at time t given that it has not happened before 
time t. What this model says, then, is that the hazard 
function at time t for individual i, who has a particular 
set of values for the covariates, is equal to h0{t), which 
is some unknown base hazard function, multiplied by 
exP W\ (gender) + ($2 (flower density) + /?3 (tempera? 
ture) + j34 (start time)]. The last term multiplies the 
base hazard rate by some number that depends upon 
they coefficients (the /3's) and upon the values that the 
covariates take for individual i. If the coefficients are 
all zero, i.e., the covariates have no effect, the term 

exp(O) equals 1.0 and the hazard function for individ? 
ual / just equals the base hazard function h0{t). If the 
coefficients are different from zero, the exp term is 

positive and the hazard function for individual / is 
some multiple ofthe base hazard function. That mul? 

tiple is determined for individual i by its set of co? 
variate values. In other words, individual f s hazard 
function is proportional to the base hazard function, 
and, by extension, proportional to the hazard functions 
of the other individuals in the sample. That is why it 
is called a proportional hazards model. In the example, 
the model says that the probability of a visit to a flower 

pair, given that it has not yet been visited, is a function 
of some underlying insect visitation rate; the proba? 
bility is increased (exp term > 1.0) or decreased (exp 
term between 0.0 and 1.0) depending upon the co? 
variate values of pair i. One ofthe covariates is gender. 
The test whether the coefficient of the gender term is 
different from zero tests, in the presence of other co- 

variates, whether gender influences the rate at which 
flowers are visited. 

The base hazard function does not necessarily make 

biological sense by itself. One would usually not be 
interested in estimating it. We want to estimate the /3's 
and test whether they are significantly different from 
zero. A Cox Model computer program will simply print 
the estimates and their P values, so it is quite simple 
to use this statistical procedure. 

Recall that the data are a string of times at which 
we know events occurred or, in the censored cases, we 
know that events had not yet occurred. The program 
finds the values of the /3's that maximize the probability 
of observing that string of events. It handles both ties 
and censored data by computing all the strings of event 
times associated with all the possible rankings given 
those tied and censored points. Since this rapidly gets 
to be a huge number of possible strings of events, the 

program works best when there are relatively few ties 
or censored data points. 

The probability statement of the string of events is 

N A0(f/)exp(2 PjZj,) 
n_i_ 
ii 2 W0exp(2 &*,?/)' 

where N is the total number of observed waiting times 
and R(t) is the set of cases / in which the event has not 

yet been observed. This is written in terms of the haz? 
ard function. The fractional part is the hazard for in? 
dividual i at time / divided by the sum of the hazards 
for every individual still at risk at time t. That is the 

probability that it was individual / who experienced 
the event at time /. Then, to get the probability of the 

string of events over all the times, the probabilities at 
each of the times are multiplied together. The deriv- 
ative of this function is set equal to zero, and the cor? 

responding values for the (Ts found. It is not a linear 

function, so its solution requires iterative estimation 

techniques, such as the Newton-Raphson technique 
employed by the computer program I used. The de? 

velopment of this area of statistics has depended upon 
the advent of computer technology. 

The Cox Model computer program I used in this 

analysis (Cox Model, a Proportional Hazards Model 

Analysis Package for SPSS Users) was written by Law? 
rence J. Emrich and Peter A. Reese at the Computer 
Center of Roswell Park Memorial Center, Buffalo, New 

York, and by John D. Kalbfleisch of the Department 
of Statistics, University of Waterloo, Waterloo, On- 

tario, Canada. It is written in FORTRAN IV. I used 
it on a TANDEM computer at the University of Col? 
orado Health Sciences Center. 

The covariates in the example are starting time, tem? 

perature, flower density, and gender. Starting time and 

temperature did not influence the effect of gender on 
the event times. Gender and flower density were cor? 
related. Male plants bore more flowers in denser inflo- 
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rescences. I stratified to separate the influences of gen? 
der and density: within a gender, denser flower groups 
attracted insects at a greater rate (P = .039); within 

density categories, males were visited faster than fe? 
males (P = .049). Thus, males were more attractive to 
insects both because they bore flowers more densely 
and because they had some other (unknown) attractive 

character(s), perhaps the reward of pollen. 
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