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Abstract

A fundamental challenge to understanding patterns in ecological systems lies in

employing methods that can analyse, test and draw inference from measured associations

between variables across scales. Hierarchical linear models (HLM) use advanced

estimation algorithms to measure regression relationships and variance–covariance

parameters in hierarchically structured data. Although hierarchical models have

occasionally been used in the analysis of ecological data, their full potential to describe

scales of association, diagnose variance explained, and to partition uncertainty has not

been employed. In this paper we argue that the use of the HLM framework can enable

significantly improved inference about ecological processes across levels of organization.

After briefly describing the principals behind HLM, we give two examples that

demonstrate a protocol for building hierarchical models and answering questions about

the relationships between variables at multiple scales. The first example employs

maximum likelihood methods to construct a two-level linear model predicting herbivore

damage to a perennial plant at the individual- and patch-scale; the second example uses

Bayesian estimation techniques to develop a three-level logistic model of plant flowering

probability across individual plants, microsites and populations. HLM model develop-

ment and diagnostics illustrate the importance of incorporating scale when modelling

associations in ecological systems and offer a sophisticated yet accessible method for

studies of populations, communities and ecosystems. We suggest that a greater coupling

of hierarchical study designs and hierarchical analysis will yield significant insights on

how ecological processes operate across scales.
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I N T R O D U C T I O N

Scale is essential to the analysis of ecological systems. The

relationship between two variables in a natural system can

be obscured by other variables at other scales (Wiens 1991;

Maurer 1999), and the inferences drawn from an observed

relationship can be distorted or even reversed depending on

the scale at which that relationship is measured (Wiens 1991;

Denny et al. 2004; Cadotte & Fukami 2005). For this reason,

there have long been calls to incorporate scale explicitly in

designing, analysing and drawing inference from ecological

studies (Allen & Starr 1982; O’Neill et al. 1986; Rahel 1990.

Wiens 1991; Holling 1992; Levin 1992, 2000). Although a

great deal of work has addressed quantitative methods for

measuring scale (Borcard et al. 1992; Thrush et al. 1997; Dale

1999; Dungan et al. 2002; He & Legendre 2002; Borcard

et al. 2004; Harte et al. 2005), it is remarkable that so few

ecological studies incorporate scale in the analysis of

observed natural patterns or experiments. As the import-

ance of scale in determining ecological patterns has become

more apparent (Levin 1992, 2000; Harte et al. 2005)

techniques explicitly designed to measure and interpret

interactions and associations at different scales will better

enable the generalization of these analyses to other systems

and the predictive application of the results to future system

behaviours (Underwood & Chapman 1996; Noda 2004).

Scale in general and hierarchical approaches to scale in

particular have rich histories in ecological theory, observa-

Ecology Letters, (2007) 10: 437–452 doi: 10.1111/j.1461-0248.2007.01036.x

� 2007 Blackwell Publishing Ltd/CNRS



tion and experimentation. Ecological data are often hierar-

chically structured, a fact that arises both from common

sampling designs (e.g. quadrats on transects, plots within

blocks) as well as biological phenomena (e.g. species within

genera, clonal stems attached to rhizomes, behaviours over

time, fish within reaches within watersheds). Hierarchical

structure in ecology has over the years inspired treatises on

proper experimental design (Hurlbert 1984; Oksanen 2001),

statistical analysis (Wu & David 2002; Clark & Gelfand

2006), and broader theoretical and philosophical explora-

tions (Allen & Starr 1982; O’Neill et al. 1986; Rahel 1990;

Levin 1992, 2000; Whittaker et al. 2001; Noda 2004). Over

the years, ecologists generally agree scale is important, have

offered methods to quantify scale, and have implemented a

number of studies that show scale to be important.

Unfortunately, most ecological research that is not specif-

ically focused on the issue of scale fails to account for scale

in analysis and inference. It is this oversight, the vast gap

between the agreed importance of scale and the failure to

include scale in analysis, that we hope to address in this

paper.

There is no consensus approach to quantifying scale in

ecological studies, in part due to different philosophical

approaches to scale and in part due to different sampling

regimes necessitating different analyses. The methods that

are applied generally fall into three categories. The first

category consists of methods that primarily determine the

scale at which a pattern is evident [e.g. principle coordinates

of neighbour matrices (Borcard et al. 2004), wavelet analysis

(Keitt & Urban 2005), fractal dimensions (Sugihara & May

1990; Keitt et al. 1997)]. Although these methods effectively

designate the scale at which a response variable shows

distinct patterns and are quite effective at capturing scale-

dependent patterns along a continuously scaled variable (e.g.

a fine-grained time-series, or detailed spatial measurements

such as GIS), most require an indexing (ordination) of the

variable of interest and generally cannot take into account

correlation between the same measurement of predictor

variables across scales (Keitt & Urban 2005). They often,

therefore, serve as an initial, exploratory or detective

approach to data with unknown scale dependencies.

The second category of methods relates to the classical

design of experiments. Nested analysis of variance (ANOVA)

and mixed models estimated with ordinary least squares

(OLS) fall into this category (Benedetti-Cecchi 2001; Chase

& Leibold 2002; Benedetti-Cecchi et al. 2005; Cadotte &

Fukami 2005). We include here studies that use any basic

statistical techniques to examine potential effects but apply

them at two scales to perform a qualitative analysis

(Tolimieri 1995; Gotelli & Ellison 2002). These methods

have the benefit of ease of use, ease of interpretability and

clarity of result. They fail, however, to be flexible in design

(unbalanced data, more complex model constructions and

missing data are difficult to contend with). Demonstrating

significant differences between response to discrete treat-

ments at a given spatial scale (e.g. using nested ANOVA) does

not easily translate into generating predictions (Clark 2003b,

2005; Moran 2003). Analyses that compare independent

studies done at two different scales cannot control for latent

differences in compared systems, fail to account for

correlations shared by scales, and fail to estimate variation

at each scale given variation at the others (Underwood &

Petraitis 1993).

The third category includes a suite of modelling methods

which are built upon classical statistical approaches (such as

likelihood), but which have advanced further in recent years

because new computational power allows investigators to

analyse more complex, flexible and robust models. In this

category we would place more general models that include

variance component estimation (Searle et al. 1992; Edwards

2004), multilevel models (Buckley et al. 2003; van de Pol &

Verhulst 2006) and hierarchical Bayesian models (Clark

2003a; Hooten et al. 2003; Gelman et al. 2004; Helser & Lai

2004; Clark et al. 2005). Hierarchical linear models (HLM),

the focus of this paper, relate to all three of these methods

as they offer a specific model structure within the

hierarchical Bayesian context, a generalization of the mixed

models, and specialize in estimating variance components.

Although HLM can be estimated using maximum likelihood

or Bayesian approaches, iterative computational techniques

are required for either estimation method [expectation-

maximization (EM) algorithm (Dempster et al. 1977) or

Gibbs sampler (Gelfand & Smith 1990) respectively].

Further, although estimated with sophisticated algorithms,

the structure, lexicon and analysis of HLM use the common

language of regression analysis. Results and predictions can

be communicated across systems and research programmes.

HLM has been applied to ecological problems related

to community interactions (Vazquez & Simberloff 2004),

species–area relationships (Storch et al. 2005), habitat

covariates in species count data (Thogmartin et al. 2006),

age-dependent reproduction (van de Pol & Verhulst 2006)

and spatial covariance (Gering & Crist 2002; Berk &

de Leeuw 2006). Applications of HLM in ecology, however,

can benefit from a protocol of analysis that builds models

towards a clear concept of the role of scale in a system, and

incorporate into the analysis important diagnostic measures

of variation and association.

In this paper we demonstrate how HLM both identifies

important scales of information and measures associations

that explain the information at those scales, developing this

in the conceptual and mathematical framework of linear and

generalized linear regression, and then demonstrate a variety

of models that can be built within this framework. This

method is conceptually accessible to a wide range of

ecologists with a wide range of statistical experience. Our
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goal, therefore, is not merely to offer another approach to

ecologists interested in scale issues. We hope to show that

ecological studies with no explicit treatment of scale must

justify that omission. We also hope to offer a method that is

readily applicable to studies with classic sampling and

experimental designs. This method can be applied to any

nested question, whether temporal, spatial, phylogenetic,

geographical, ecological or physiological in nature. In the

following sections, we introduce the basic mathematical

structure of hierarchical models and use two examples to

show how HLM can be fully exploited to draw inference

beyond that possible using other approaches. To firmly

establish the core application of HLM, we apply maximum

likelihood methods to estimate the parameters in a two-level

linear model that describes the association between the

amount of herbivore damage to plant leaves, plant size and

the species richness of the patches in which the plants grow.

In order to demonstrate the more flexible approaches of

hierarchical generalized linear models as well as some of the

strengths of using Bayesian techniques to estimate variance–

covariance parameters, we present a three-level model

exploring how biotic and abiotic factors at the individual

plant-level, the microsite level, and the population-level

influence the probability that an individual plant will flower.

We conclude with a discussion of these analyses focusing on

the role of scale in inference and a call for expanded

incorporation of scale into quantitative analyses of natural

systems.

H I E R A R C H I C A L L I N E A R M O D E L S

Hierarchical linear models use nested regression equations

to investigate associations between variables at different

scales. This accounts for how observations can be related in

groups within a hierarchy. HLM can apply hypothesis tests

and diagnostic reports that address not only the significance

of the relationships between variables at different scales, but

also the strength of those relationships and their explanatory

power across scales. Although the equations describing

HLMs can be generalized to contain multiple predictors and

link functions, a basic two-level linear model serves to

introduce the core structure of HLM, the parameters that

need to be estimated, and the inferences that can be drawn

from an estimated model. Further, Raudenbush & Bryk

(2002) demonstrate a protocol for model building that

incorporates variation at different scales into the analysis.

We begin with a description of HLM model structure and

then explain the protocol for model building in our first

example.

Fundamentally, HLM describes relationships between

variables within a hierarchical data set. Variables can be

incorporated into the model at the level they were collected

or any higher level. This is an important feature of HLM, as

the same observations can reflect different mechanisms at

different scales. For example, variation in soil moisture

measured at a fine scale (1 m2) might reflect outflow of

water through leeching due to soil texture or evaporation

due to light characteristics, while at larger scales soil

moisture differences (gathered from the same sampling

protocol) might reflect input differences such as different

weather patterns. One can imagine that soil moisture might

negatively correlate with plant growth at a fine scale if higher

moisture reflected low-light conditions, but positively

correlate with growth at the population level if it reflected

higher average precipitation.

The first level (the individual level in our examples) of an

HLM in its linear form is a simple regression equation [all

notation in this paper follows Raudenbush & Bryk (2002)],

Yij ¼ b0j þ b1j Xij þ rij ; ð1Þ

where Yij is a measured response variable i that is observed

in a group j. This response has a group-level intercept b0j

and is related to an individual-level predictor variable Xij by

the group-level regression coefficient b1j. Why are these b
terms �group� variables? This stems from the fact that the

residual error of the estimated relationships between the Yij

response variable to the Xij predictor variables, rij, is as-

sumed in a simple linear regression model to be distributed

independently as normal random variables with a mean of

zero and variance r2. Because the response variable Y is

associated not only with the individual i observations, but is

nested within the j groups, the residuals are correlated and

cannot be assumed to be independent [to assume so would

constitute pseudo-replication (Hurlbert 1984)]. To correct

this aggregation in HLM, the first-level relationships are

modelled not around an overall intercept and slope, but

around the intercept and slope of each of the j ¼ 1,…, J

level-2 groups. This corrects for non-independence of the

errors generated by the correlation of variables within

groups. Doing this however, results not in a single regres-

sion, but in j different regression equations. To obtain an

overall estimate of the relationships between the response

variable and the predictors, we use the j first-level regression

coefficients to form two, higher-level regressions:

b0j ¼ c00 þ c01Wj þ u0j ; ð2aÞ

and

b1j ¼ c10 þ c11Wj þ u1j ; ð2bÞ

where c00 and c01 are the level-2 coefficients for the inter-

cept and slope, respectively, of these level-2 regression

models (in other words, the c parameters are group-level

equivalents of the b parameters at the individual level). Wj is

a level-2 predictor, and behaves as the Xij does in equation.

The level-2 random effects u0j and u1j are assumed to be

distributed as multivariate normal with means of zeros and
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variances of s00 and s11 respectively. The covariance

between these random effects is s01. If we substitute eqns

(2a) and (2b) into eqn (1) we get the combined model that

simultaneously describes the relationships between all pre-

dictors and response variables including their error terms at

the two levels (see Table 1 for a detailed explanation of this

model):

Yij ¼ c00 þ c01Wj þ c10Xij þ c11Wj Xij þ u0j þ u1j Xij þ rij :

ð3Þ
The fundamental difference between this combined

model and models typical of single-level models is that

instead of having independent random errors with constant

variance (the rij term), the error term of eqn (3) takes the

form u0j + u1jXij + rij. We assume now that rij � N(0,r2)

and that u.j � N(0,s..), where s is the variance–covariance

matrix of the u.j terms, whose diagonal elements describe the

variance of each u parameter. The s variance–covariance

matrix of the second level models becomes an important set

of parameters as it describes between-group variance and

determines whether higher-level relationships between

variables are needed, significant or explanatory (this will

be clarified in the examples below).

The uncertainty ascribed to this modelled system

contains random error at the individual level and the

group level. The error estimation that partitions uncertainty

across groups for both the mean and slope of the level-

one model does so by estimating the group level variance

of the mean (u0j) and slope (u1j). This model provides a

great deal of information about the relationships between

predictor variables and the response variable and the scales

at which those relationships are found. These error terms

mark an essential difference between the OLS approach

which requires the deviations from the grand mean to be

independent, normally distributed and with constant

variance. Because the terms u0j and u1j can differ between

groups, their variances are not assumed equal. When these

terms are null (there is no group-error variance), this

model reduces to an analogue of the OLS regression

model. To estimate whether these terms are null, however,

we must employ iterative maximum likelihood methods,

such as the EM algorithm. Furthermore, by setting various

parameters of this combined model to zero, a variety of

more specific questions that incorporate the scale compo-

nents of the system can be tested (Table 2).

E X A M P L E S

The great advantage of HLM lies in its ability to estimate

parameters in complex models that incorporate scale

explicitly in the analysis. Determining environmental influ-

ences on population dynamics presents a challenge ideally

suited for analysis using HLM. In our examples we explore

the possible biotic and abiotic mechanisms that influence

plant populations at different scales. These examples use

data sets not specifically designed for the purpose of

illustrating HLM, yet successfully demonstrate how both

naturally occurring biological hierarchies (such as popula-

tions of clonal plants) and experimental hierarchies (such as

nested sampling designs) can take advantage of HLM

analysis.

The two-level and three-level models we constructed

were estimated using two different approaches on two

different data sets. The two-level model assumes maximum

likelihood parameters which were estimated using EM

algorithms (Dempster et al. 1977; Raudenbush & Bryk 2002)

written in MATLAB (The Mathworks, Inc. 2003) and employs

traditional hypothesis tests for model diagnosis and inter-

pretation. In the three-level model, we applied a hierarchical

Bayes approach that uses a Markov chain Monte Carlo

(MCMC) sampling procedure in WinBugs (Spiegelhalter &

Best 2000) to estimate model parameters (see Appendix B

for code). It is worth noting that tools for implementing

HLM are progressing quickly in a number of software

packages. For example, PROC MIXED in SAS uses a similar

EM algorithm [Singer (1998) provides a clear tutorial on

Table 1 Parameters in the combined multilevel model

Parameter Description

The model: Yij ¼ c00 + c01Wj + c10Xij + c11WjXij + u0j + u1jXij + rij

Yij The estimated percentage of leaf damage for individual plant i in patch j

Xij Initial height of individual plant i in patch j

Wj Species richness in each patch j

c00 The grand mean of leaf herbivory

c01 The mean effect of patch species richness on leaf herbivory

c10 The average slope of the relationship between initial plant height and herbivore damage

c11 The average effect of patch species richness on the relationship between plant height and herbivore damage

u0j The effect of patch j on leaf herbivory, holding species richness (W) constant

u1j The effect of patch j on the relationship between herbivore damage and plant size, holding species richness (W) constant

rij The random effects on individual leaf damage
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using SAS for HLM]. Also, there are several packages in R

(R Development Core Team 2006) (most notably, lme4)

that estimate HLM parameters [see package details and

Gelman & Hill (2007) for description of using R and Bugs

for fitting multilevel models]. The program �HLM� is a

standalone application (Raudenbush et al. 2004) for HLM.

We choose not to debate the relative merits of Bayesian

and frequentist methods in this paper, although the

distinction can be important, especially as the hierarchical

Bayesian approach accurately distinguishes between error in

models and biological variation in models (Raudenbush &

Bryk 2002; Clark 2005). We refer the interested reader to

work that explicitly and effectively tackles this issue in

statistical ecology (Ellison 1996, 2004; Clark 2005; Clark &

Gelfand 2006). This paper instead focuses on the import-

ance of analysing hierarchically structured data in general.

We include both estimation methods to show how either

approach offers insight into the scale of ecological proces-

ses, while acknowledging a growing interest in development

and estimation of ecological data with Bayesian approaches.

T W O - L E V E L M A X I M U M L I K E L I H O O D M O D E L

The data used in this example are a portion of a larger

demographic study. The models constructed here are

designed only to advance an understanding of HLM and

not address issues in plant community ecology. Here we

explore the possible relationship between several charac-

teristics of an understory forest herb, Eurybia chlorolepis

(Asteraceae) (Burgess) Nesom (1994), and its micro-

environment with the interest of identifying associations

with patterns of leaf herbivory. Why would this problem

merit a hierarchical approach? First, the plant of interest

has a natural hierarchical structure. A genetically distinct

plant (a genet) is comprised of many stems (ramets) often

connected by rhizomes. Ramets show variation in size,

stage, herbivore damage, phenology, etc. Second, a

protocol that includes the collection of such fundamental

environmental variables as species richness, soil moisture

and canopy openness will necessarily require sampling at a

scale above the individual ramet of the plant. Plots in

which these variables were sampled were designed to

correspond to patches of the stems of the plant. In this

way, initial study questions incorporating questions of

scale are linked to sampling design and subsequently

hierarchical analysis. Any questions that implicitly or

explicitly address genotype, phenotype, habitat traits or

demographics should distinguish between patterns and

associations at the scale of the ramet and the genet.

Reproductive stems vary significantly in size, even within

genets; they can grow between 10 and 50 cm and have

between 3 and 25 leaves.

Table 2 Various models described by hierarchical equations

Model Description

Full regression model

Yij ¼ c00 + c01Wj + c10Xij + c11WjXij + u0j + u1jXij + rij Describes relationship between the individual leaf herbivory, initial plant

height and patch-level species richness

One-way ANOVA with random effects

Yij ¼ c00 + u0j + rij Describes the grand mean of leaf herbivory (c00), the effects of patch on

individual leaf herbivory (u0j), taking into account individual variation in

leaf herbivory (rij)

Means-as-outcomes regression

Yij ¼ c00 + c01Wj + u0j + rij Estimates how the mean leaf herbivory for each patch of plants can be

predicted by species richness (Wj) taking into account the difference

between patch variation in leaf herbivory (u0j) and individual variation

in leaf herbivory (rij)

One-way ANCOVA with random effects

Yij ¼ c00 þ c10ðXij � �X::Þ þ u0j þ rij Estimates the average patch leaf herbivory, accounting for how the level-1

covariate (initial plant height (Xij)) influences herbivore damage within

each patch

Random-coefficients regression model

Yij ¼ c00 þ c10ðXij � �X::Þ þ u0j þ u1jðXij � �X::Þ þ rij Describes leaf herbivory as a function of the average slope of the regression

between leaf herbivory and initial plant size (c00 þ c10ðXij � �X::Þ) with

estimates of three error terms: the effect of patch j on the mean level of

leaf herbivory (u0j), the effect of patch j on the slope of the

regression relationship between leaf herbivory and initial plant size

b1j (u1jðXij � �X::Þ, and the individual variation in leaf herbivory (rij)
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Herbivory on the leaves of E. chlorolepis during the

summer by a host of arthropods and molluscs can influence

both reproductive output in any one year and age-class

structure in the following year (S. McMahon unpublished

data). The relationship between stem height and herbivore

damage, measured on the ramet scale, indicates two

potential processes. If the relationship is positive, it would

indicate that herbivores might key in on healthy, large stems.

If the relationship is negative, it might indicate that plants

can outgrow herbivore loads and therefore taller stems

would display proportionally less herbivore damage. Soil

moisture at the patch level can increase mollusc activity

(S. McMahon personal observation). In the dark understory

(average canopy cover > 90%), light levels raise air

temperature and therefore can increase arthropod activity

as well as promote plant growth. Plant species richness at

sites indicate overall microsite soil quality (generally less

acidic soils in an otherwise highly acidic soil profile correlate

with higher species richness).

Species, study site and protocol

Eurybia chlorolepis (Asteracea) is an understory perennial herb

that grows in cove forests in the southern Appalachian

mountains of the United States. Ramets emerge from

rhizomes in the early spring as either a juvenile form

(rosettes) or reproductive form (with internodal stems). The

reproductive ramets grow through the summer and, if

conditions allow, flower, are pollinated, and set seed in the

fall (September through November). Leaf herbivores can

cue on a range of plant features, such as palatability and

biomass, and also respond physiologically and demograph-

ically to environmental variables (Price 1997). Thus,

endogenous and exogenous factors can influence herbivore

activity. Yet these processes often operate at distinct scales.

In order to detect how herbivores respond to and are driven

by these cues, a hierarchical design can organize the many

potential mechanisms that influence herbivore activity.

This study tagged 10 stems in each of 20 plots (designed to

correspond to the patch scale) and measured the herbivore

damage to leaves on each stem by visually estimating a per

cent damage to every leaf on every stem. Damage was then

averaged for each stem. Stem height and leaf length are good

proxies for plant biomass therefore reflect available

resources for folivores. These variables were measured in

late-summer (at peak growth). Abiotic factors can influence a

plant’s palatability and therefore herbivore load, but abiotic

variables can often not easily (or accurately) be collected at

the scale of the plant stem. Therefore, at the patch-scale, soil

moisture was measured using gravimetric water content

methods, a basic soil chemistry assay was conducted through

an agricultural service, and light transmittance was estimated

from the analysis of hemispherical photographs using Gap

Light Analyzer software (Frazer et al. 1999). Species richness

was also recorded for all patches.

Model building, parameter estimation and hypothesis
testing

The percentage of leaf herbivory in September was chosen

as a response variable to see if damage to leaves differed

between patches and was predicted by biomass of the plants

or environmental variables. Constructing a hierarchical

model, unlike a simple linear model, explains variation in

the response variable differently at different scales and

therefore requires an assessment of the scale at which

variation in the response variable occurs. By fitting what

Raudenbush & Bryk (2002) term an �unconditional model�,
which is effectively a one-way ANOVA model where the

levels of the data hierarchy are the treatments of the single

factor, we can establish this baseline of variation. The

�combined model�, the analogue of eqn (3) is:

HERBij ¼ c00 þ u0j þ rij : ð4Þ

Here, the per cent of herbivore damage for an individual

plant i in a specific patch j can be modelled as an overall

average of the damage to every plant in every patch (the

�grand mean� c00) plus some difference between the average

herbivore damage to plants in that jth patch from that

overall mean (u0j) plus the difference between the damage to

that individual plant and its patch mean (rij). In the

terminology of HLM, patches in this study correspond to

the group level of the models. Thus, the variance

component of every plant has two parts, the individual

variance (taking into account group-variance) and group

variance (taking into account individual variance). This

simple formulation offers a base understanding of variation

in a hierarchical system. Although rudimentary in the

context of this problem, this basic understanding of the

variation of a simple response variable is almost universally

overlooked in ecological studies with hierarchical designs.

After assessing the scale of variation in the response, a

model can be built to explain that variation in the two scales

of the response variable (in this case, that of the individual

stems and that of the patches). How this is done should

depend directly on the distribution of the variance compo-

nents discovered in the first model. For example, two

distinct but not mutually exclusive additions to this

�unconditional model� could include a �random effects�
formulation or a �means-as-outcome� formulation (Table 2).

A random effects model includes covariates at the individual

level and would not explain group level variance, while a

means-as-outcome model would include covariates at the

group level to explain the intercepts among the groups, but

not within them. We begin with the random effects model.

Using plant height as a predictor of leaf herbivore damage,
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and remembering that modelling the relationship between

plant height and herbivore damage within groups (b1jXij)

becomes b1j ¼ c10 + u1j at the second level. The complete

random effects model is

HERBij ¼ c00þ c10ðHEIGHTijÞþ u0j þ u1j HEIGHTij þ rij :

ð5Þ
This model posits a series of relationships that combine

to describe the herbivore damage to an individual stem

given the height of that stem. Across-patch characteristics of

herbivore damage are captured by the overall average

damage to all plants c00 (given the new regression

relationship included in the model) and the deviation of

this plant’s patch intercept from that grand intercept (u0j).

The relationship between an individual’s height and the

amount of herbivore damage exhibited is partitioned into

two components: first is the across-patch slope relating

herbivore damage to plant height multiplied by the

individual’s height ((c10*HEIGHTij); the second is the

difference between the slope of the within-patch relation-

ship between plant height and herbivore damage multiplied

by that plant’s height (u1j*HEIGHTij). Finally rij, which is

now the residual error, takes into account deviation from

the expectation of this individual given all of the above

model components.

The second basic expansion on the unconditional model

estimates effects of predictor variables at the second level

(the patch level). It is termed the �means-as-outcomes�
model (Table 2) because the explanatory variables are set up

to explain variation in group means of the response variable

and not variation in individual observations of the response.

If we regress herbivore damage of individual plants on

patch-level soil moisture, for example, we get this combined

model:

HERBij ¼ c00 þ c01SMj þ u0j þ rij : ð6Þ

Here, we again have an individual’s herbivore damage

explained first by the grand intercept of herbivore damage

(c00). The regression term (c01SMj) contains the relationship

between patch-average herbivore damage and the soil

moisture at each site. The u0j term is the residual difference

between average site herbivore damage and the overall

across-site damage, taking into account site soil moisture.

The rij term is the difference between the herbivore damage

to an individual stem and the average damage within that

stem’s site. Its variance should not have changed from the

unconditional model as no predictors were set up to explain

that variance.

These two models, the random effects and means-as-

outcome models, are easily combined or expanded to

construct more sophisticated models (Table 2). Indirect

effects can be modelled as second-level predictors of first-

level slopes (in other words, second-level predictors can be

used to predict the relationship between first-level variables

and not the response group averages as in the means-as-

outcome variables). Variance components can also be

modelled with diagnostics of covariances.

For this example, we applied a straightforward model-

building design and estimated parameters in all models using

an EM algorithm (Raudenbush & Bryk 2002) run in MATLAB

(The Mathworks, Inc., 2003). For the unconditional model,

the parameters of interest were r2 and s00, the first- and

second-level variance components, respectively, as these

describe how herbivore damage Yij varies both from plant to

plant and patch to patch. After estimating the unconditional

model, it was determined that herbivore damage did show

differences across the patch (quadrat) scale (see Results

and interpretation below). In order to explain those

differences, two separate models were estimated. First, to

determine whether the size of the plant (a stem-level

variable) predicted differences in herbivore damage, a

random-coefficients regression model (Table 2) was estima-

ted regressing herbivore damage against mid-summer plant

height. The main parameter of interest in this level-1 model

was b1j, which describes the relationship between plant

height and herbivore damage in each group j. At the group

level, the parameter c10 describes the average slope of this

relationship and u1j describes how the slope of this

relationship varies from group to group around that average

(the residuals after accounting for the overall average slope).

The level-2 predictors were plant species richness, canopy

openness, soil moisture, soil pH and cation exchange

capacity (CEC). Because there was no significant relation-

ship between the plant height and herbivore damage (see

Results and interpretation below), plant height was removed

from the subsequent models, and the level-2 predictors were

included in a means-as-outcome model (Table 2).

Results and interpretation

In every model, the EM algorithm successfully converged in

under 400 iterations. The unconditional model estimated the

variance at the first level, r2, to be 327.85. The variance at

the second level s00 was 364.19, which was significantly

different from 0 (v2 ¼ 478, df ¼ 16, P < 0.001). This

indicates patch level variation in herbivore damage to plants.

To better quantify this variation, we determined the

proportion of variance in the system that is described by

the patch level as the interclass correlation coefficient: q ¼
s00/(s00 + r2). In this model q ¼ 0.565, indicating that

over 56% of the total variation in herbivory exists between

patches of plants and not within them. From this starting

point, we can try to explain this variation at each level.

Late-summer plant height was not related to herbivore

damage (t ¼ )0.658, P ¼ 0.320) (see Fig. 1 for confidence

intervals of all models). The longest leaf of the plants was
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also not associated with herbivore damage (t ¼ )1.187,

P ¼ 0.191). In the means-as-outcome model, direct solar

irradiance and soil moisture were not associated with patch

level herbivore damage (t ¼ 0.612, P ¼ 0.321 and t ¼
)1.359, P ¼ 0.155 respectively). Species richness also

showed no influence on herbivore damage (t ¼ )0.658,

P ¼ 0.312). Two variables from the soil chemistry assay did

show a significant influence. Soil pH showed an overall

negative association with herbivore damage (c10 ¼ )32.831,

t ¼ )2.602, P ¼ 0.020). CEC also showed a negative

relationship (c10 ¼ )31.628, t ¼ )2.673, P ¼ 0.018). To

assess how well these patch-level variables explain

patch-level variation in herbivore damage, we used the

difference between calculations of ŝ00 done in the uncon-

ditional model (UNCON) and in the means-as-outcome

design with the significant variables. This is done by

calculating ðcs00(UNCON) � cs00(SOIL pH))=cs00(UNCON)

or 364.190 ) 122.158/364.190 ¼ 0.664. Over 65% of inter-

patch variation in herbivore damage is explained by the

sampled soil pH of the patch. Using a similar calculation we

find that CEC reduced the patch variance to 128.624, or a

64.7% explanation.

What this hierarchical approach to these community

relationships offers that simple linear models do not is the

estimation of regression coefficients across scales, in

addition to partitioning variation. Every relationship iden-

tified takes into account the scale of the pattern explained.

In this example, we find that variation in herbivore damage

is roughly split equally within and between patches. On the

stem-level, no physical features of the plant predict

herbivore damage. This is not surprising as at that fine

scale, herbivores likely respond to cues that are not reflected

in coarse measurements like height and leaf length. At the

patch scale, two variables associated with soil chemistry and

nutrient uptake, soil pH and CEC, both showed negative

influences on herbivore damage. Soils in the study site are

generally very acidic (c. 4.0 pH) and nutrient poor

(as indicated by low CEC). The benefit of higher pH and

CEC is greater nutrient retention. A more nutrient-rich site

might enable plants to produce compounds that reduce

herbivore damage. We now look at how more complex

models can be organized using HLM.

T H R E E - L E V E L H I E R A R C H I C A L B A Y E S M O D E L

In the second example we are interested in understanding

the scales of variability of the probability of flowering of a

terrestrial orchid, Tipularia discolor (Orchidaceae), in the

south-eastern United States. Factors at multiple scales can

influence plant flowering, from individual level traits, to

microsite variation in abiotic resources and biotic interac-

tions, to larger population level canopy, soil or topographic

effects. Although there is often significant variation from

plant to plant in the likelihood of flowering, flowering

synchronicity at different scales can be observed in many

plant populations, suggesting the need to explicitly explore

possible mechanisms at a range of scales (Crone & Lesica

2004; Satake 2004).

While sharing the same basic multilevel structure as the

two-level example, this three-level model builds on the

two-level in important ways. First, as a Bayesian model, all

parameters of the model are considered random variables

to be estimated (Gelman et al. 2004), and as such they are

given prior distributions that are updated by the data to

yield full posterior probability distributions. Second, as

with many ecological data sets, flowering is a discrete

response, benefiting from a generalized linear model

framework.

To limit confusion about terminology, it is important to

be clear that the term �hierarchical� in �hierarchical Bayes�
refers to the assignment of probability models to model

parameters. These parameters that describe the distribution

of the random parameters we estimate (e.g. b,r) are termed

hyper-parameters. The �hierarchical� in �hierarchical linear

models� refers to the structure of the data used in the model.

These distinctions can be seen clearly in Fig. 2, a conceptual

description of the three-level model developed in this

example. The data structure in such models need not always

be strictly nested (e.g. measurements of individuals may be

nested within both populations and years, but population

and year are not themselves nested hierarchically), suggest-

Parameter values
−10 −5 0 5 10

Richness (patch)

CEC (patch)

Soil pH (patch)

Soil moisture (patch)

Direct light (patch)

Leaf length (stem)

Plant height (stem)

Figure 1 Predictors of leaf herbivore damage. Solid lines represent

95% confidence intervals for estimated effects of variables at three

levels of the model. Dots represent point estimate of parameter

values.
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ing the more general use of the term �multilevel� for models

without strictly nested designs (Gelman & Hill 2007).

Species, study site and protocol

Tipularia discolor is a wintergreen terrestrial orchid found in

mixed deciduous forests of eastern North America. In T.

discolor�s southern range, a plant’s single green leaf emerges

above ground in late fall (end of September) and remains

until spring (March–April). Flowers, if produced, are found

on a single flowering stalk that emerges in August, before

the leaf emerges. Study grids, designed to capture popula-

tion level processes, range from 250 to 480 m2 in size, each

divided into 4 m2 cells within which all plants were

individually marked. Thus, the levels of the experiment,

designed to reflect a priori ideas about interesting levels of

organization in the system, were the i individual plants

(flowering or not), the j cells that reflect microsite

characteristics, and the k population-level grids that contain

a range of microsites. For this study, we use floral surveys

from the late fall of 2004. We test the overall hypothesis that

biotic and abiotic variables at different scales help to explain

the probability of flowering. Specifically, plant size at the

level of individuals, microsite soil moisture and understory

light levels, and soil pH and texture at the grid level are

hypothesized to be important for plant flowering based on

our biological understanding of the species (see Appendix A

for a detailed explanation of sampling protocol). The

predictor variables at the individual, cell and population

levels are designated by p, q and s, respectively, and the

intercepts are designated 0.

Model building and parameter estimation

The binary flowering data for this study are modelled at the

individual level (each plant is observed to be flowering or

not), so we use a Bernoulli sampling distribution, such that

Yijk � Bernoullið/ijkÞ; ð7Þ

where Yijk is the flowering status of each plant i in cell j and

population k, and /ijk represents the probability of

flowering for each plant.

We use a logit transformation to obtain linearity of

parameters. The first-level model is

Figure 2 This conceptual map of the model roughly follows Clark & LaDeau (2006), but illustrates how the model spans levels of both

parameter organization (vertical in figure) and ecological levels of organization (horizontal in figure). In order to make more clear the meaning

of the model structure, not all estimated parameters and hyper-parameters are included. Further, merely the scale notation is applied to

parameters and the numerical identification of the predictors (the P, Q, and S designation). For the complete model, see WinBugs code in

Appendix B.
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gijk ¼ log
/ijk

1� /ijk

 !
¼ b0jk þ

XP

p¼1

bðpÞjkXðpÞijk: ð8Þ

The gijk represents the log-odds of flowering for

individual plants and is related directly to a cell-level

intercept b0jk and P individual-level predictor variables,

X(p)ijk, in this case just the size of the plant. We chose a

varying-intercept model here, with intercept terms b0jk that

vary among cells, but a single regression coefficient, b1..,

describing the effect of plant size on flowering across sites

because there is no a priori reason to suspect a different

inherent relationship between size and flowering across

sites.

At level-2, the cell-level intercepts are modelled as a

function of population-level intercepts and cell-level cova-

riates. This gives a second-level model

b0jk ¼ c00k þ
XQ0

q¼1

cð0qÞkWðqÞjk þ uðpÞjk; ð9Þ

where c00k is a population-level intercept, with a vector of Q

predictor variables, W(q)jk for every p b (in this case, we are

only modelling intercepts, so Qp is really just the Q predic-

tors for the intercept). These Q predictors include moisture

and light availability, with coefficients c(0q)k, and a normally

distributed random cell effect, u0jk, with a mean of zero and

a variance sb estimated by the data.

Finally, the population-level model (level 3) regresses the

second-level c(pq) parameters against population-level vari-

ables. Because all c parameters are associated with the first-

level intercepts (b0jk), they all begin with �0�, followed by

their �q� designation:

cð0qÞk ¼ pð0qÞ0 þ
XSpq

s¼1

pð0qsÞZðsÞk þ eð0qÞk; ð10Þ

where the population intercept, c0qk, is determined by a

global intercept p(0q)0. The vector of S population-level

covariates, Z(s)k, include pH and per cent sand. Their rela-

tionship to the c parameters is described by the regression

coefficients p(0qs), or in this example, p0qs.

The residuals from these relationships are found in the

level-3 random effect e(0q)k. As before, the random effect is

considered normally distributed with mean 0 and variance

sc, representing the population level portion of the model

variance. We have 16 measurements of pH and per cent

sand per population, and thus only assume that we capture

population average pH values with some variance: pH(s)k �
Normal(pH0k,spH). All regression coefficients were given

non-informative prior distributions.

The level-1 variance allowed by the Bernoulli sampling

distribution is sijk ¼ /ijk(1)/ijk). Because with logistic

regressions, this individual-level variance is heteroscedastic

(varying across parameter values), comparison with higher

level variances is not as straight-forward as with Normally

distributed error models. We adopt the approach of Snijders

& Bosker (1999) to assume that the level-1 random effect is

logistically distributed with mean 0 and variance p2/3. This

value can then be used in calculations of variance

partitioning across different levels, as demonstrated in

Table 3. To explore the predictive effects of the important

higher-level explanatory variables, we partition the variance

explained by these predictor variables at each level of the

model (following Gelman et al. (2004). As with a classical R2

the proportion of variance explained by each level of a

model is defined as

R2 ¼ 1� EðV K
k¼1�kÞ

EðV K
k¼1hkÞ

ð11Þ

where ek are the residual errors of the K groups at the given

level, hk are the intercept terms, v is the variance of the K

groups, E is the posterior mean or expectation (Gelman &

Pardoe 2005). Performed at the cell and population levels of

the model, this measure gives us a per cent of the variation

at each higher level of the model that is explained by the

predictors at that level. All level-3 model parameters are

described in Table 4.

The Bayesian models were fit using an MCMC sampling

method run in WinBugs 1.4 (Spiegelhalter & Best 2000), and

we used the R computing package (R Development Core

Team 2006) for calculating R2 following Gelman & Pardoe

(2005).

A note on model selection. Although we built these models

based on parameter estimates, scoring models for selection

may also be used. The deviance information criteria (DIC)

was developed to estimate the penalty term in hierarchical

models (Spiegelhalter et al. 2002; Gelman & Pardoe 2005).

This is complex because the total number of parameters

estimated can equal (P*Q*S) + 2 (regression parameters and

variance components) in addition to hyper-parameters for

these parameters, yet all of these parameters share a great

deal of information and so cannot be so easily captured in a

simple penalty term (as in AIC or BIC). The DIC seeks to

account for this paradox, but its implementation proves

challenging and remains somewhat controversial (see

Spiegelhalter et al. 2002 and subsequent discussion). Because

of the mixed reviews of DIC and our belief that building

models with parameters and variables instead of reducing

Table 3 Variance components of three-level model

Calculation Description

p2=3

ðp2=3þ sb þ scÞ Proportion of variance at level 1
sb

ðp2=3þ sb þ scÞ Proportion of variance at level 2
sc

ðp2=3þ sb þ scÞ Proportion of variance at level 3
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complex models to single numbers better appreciates

biological processes operating in modelled systems, we do

not include DIC scores in these results.

Bayesian results and inference

All inference from the models comes from the posterior

distributions for the parameters and the variance diagnos-

tics. The posterior parameter distributions are summarized

in Table 4 for the unconditional and fully conditional

models. The size of individual plants had a positive effect on

flowering probability, with a mean effect of 1.89 and over

95% of the mass of the posterior of b1 located above 0

(Fig. 3). Given the logit link function, this is an effect on the

log-odds of flowering. At the cell level, light availability had

a positive effect on flowering, with a mean of 1.23 and its

95% probability interval slightly overlapping zero. At the

population level, soil pH was significantly negatively related

to flowering probability, with a mean of )42.32 and 95%

interval from )4.15 to )0.82. The 95% intervals of all other

explanatory variables substantially overlap zero and thus are

not considered likely to differ from zero (Fig. 3).

The variance analysis of the unconditional model showed

34% of the variation among individuals, 16% among cells

and 50% at the population level. Using the R2 approach of

Gelman & Pardoe (2005) for estimating the explanatory

power of the covariates, we find that light levels explain

31% of the variation at the cell level, and pH explains 78%

of the variation at the grid level. Leaf width is clearly an

important explanatory variable at the individual level, given

its posterior distribution significantly different from zero,

but because individual level variance is the constant p2/3

(Snijders & Bosker 1999), the per cent variation explained

by individual-level covariates in GLM models cannot be well

estimated.

Model interpretation

As with the two-level model, our inference about the

questions of ecological interest in the three-level model

benefit from a hierarchical approach. From our initial

calculations of variance partitioning we learn that as much

of the variability in flowering resides among populations as

within (50% of the variation in flowering probability exists

at the population level), and most of the variation within

populations is found among individuals (34%). At this

individual level, plant leaf size has a strong influence on the

probability of flowering. Variation in light availability within

populations helps explain 31% of the variation from cell to

cell, but differences in light availability among populations

do not contribute much to explaining overall differences in

flowering. This supports the ecological hypothesis that

within-population variation in canopy light transmittance,

such as light gaps, is more influential than average light

transmittance differences among populations, which is

plausible as these populations were all located in full canopy

forest sites. However, soil pH differences among the

populations explained 71% of the variation that we see in

Table 4 Parameter estimates for three-level logistic models

Parameter Mean estimate Lower interval Upper interval

Unconditional model

r2
individual p2/3 Constant

r2
cell 1.58 0.37 3.86

r2
grid 4.80 0.64 23.32

qindividual 0.34

qcell 0.16

qgrid 0.50

Conditional model: leaf width, light, pH

r2
individual p2/3 Constant

r2
cell 15.16 4.37 45.34

r2
grid 2.77 0.0042 16.58

Regression coefficients

blw 1.55 1.11 2.06

cpar 1.71 )0.636 4.74

pph )2.94 )5.61 )1.12

Per cent variation explained (R2)

Cell level 0.31

Grid level 0.78

−8 −6 −4 −2 86420

% Sand

pH 

Moisture 

Light 

Leaf width 

Parameter values

Individual scale

Microsite scale

Population scale

Figure 3 Scale-explicit coefficient estimates. Solid lines represent

95% posterior credible intervals for estimated effects of variables at

three levels of the model. Those intervals not overlapping the zero

line may be considered significantly different from zero. Leaf width

of individual plants, microsite availability of light and moisture, and

population level soil pH and % sand content are considered. Light

refers to winter PAR readings.
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flowering at this larger scale. Given the correlative nature of

this study, we cannot attribute the effects to soil pH in any

mechanistic sense, but it is an interesting finding nonethe-

less and suggestive that edaphic factors that vary on the

scale of populations (e.g. litter layer composition) are

important in determining reproductive behaviour of these

orchids. It is also important to recognize that without the

explicit incorporation of scale into this analysis of flowering

probability, a researcher measuring light and flowering

probability from a microsite perspective (quadrat to quadrat)

might overemphasize the importance of local light availab-

ility for flowering probability.

These inferences, taken together, illustrate how important

it is to measure the scale at which a life-history trait varies

and further record the scale at which biotic and abiotic

components of the system explain that variation. One might

suspect that with greater future deployment of microsensor

technologies for measuring the environment at finer spatial

and temporal scales, the ability to explore a range of scales

may increase dramatically, and using a statistical framework

that can accommodate multilevel analysis will be critical. In

this study, for example, our exploration of light effects were

constrained to the patch level at which we could make

measurements. Were we able to measure light availability at

the scale of individual plants, it would be interesting to

explore the fine-scale importance of light relative to leaf size

in a combined model incorporating that same information at

the grid and population scales.

T O W A R D S A B R O A D E R S T U D Y O F S C A L E I N

E C O L O G Y

Two paradigms have traditionally guided the discussion of

scale and ecological systems: one describes ecological

patterns as fundamentally scale-invariant (Harte et al. 2005;

Marquet et al. 2005), while the other focuses on ecological

patterns as hierarchical and distinct among scales (Wu &

David 2002; Leibold et al. 2004; Noda 2004; Takada &

Miyashita 2004). Clearly both of these conceptualizations of

ecological systems are appropriate depending on the

question being asked (O’Neill et al. 1986). Regardless of

the paradigm, however, ecologists need to explain mecha-

nisms that influence patterns at different scales (Huston

1999). In the case of scale-invariant systems, power law

relationships, whether derived from a single process

(Marquet et al. 2005) or multiple processes across scales

(Allen et al. 2001), will remain only an intriguing mathemat-

ical artefact until specific mechanisms can be identified that

explain why the association between two variables does not

differ across scales. Investigating patterns of species

diversity, for example, will entail measuring associations

with species richness at different scales in order to develop a

common description of the number of species observed and

the area considered and potential explanatory variables

(Gotelli & Ellison 2002; Lyons & Willing 2002). Because

HLM can explore the same variable at different scales,

interactions between variables, and describe the uncertainty

in these relationships, it is well suited for such an inquiry.

The hierarchical paradigm of ecological systems requires

even closer attention to associations across scales, as not

only might the mechanisms change with scale, the

inferences drawn from those relationships might change

(Menge 1992; Fukami 2004; Cadotte & Fukami 2005). HLM

and the protocol for designing multilevel models we feature

offers a powerful tool with which ecologists can explore the

associations between environmental and biotic variables at

different scales, the strengths of those associations, the

covariance between those associations, and the propagation

of uncertainty in those relationships across scales. In

addition to experimental designs that often structure data

in a hierarchical manner, many sub-disciplines are explicitly

interested in biological hierarchies. In order to address both

the importance of scale in ecological systems and account

for unique mechanisms defining patterns at different scales,

we believe that researchers should design observational and

experimental studies in hierarchical structures. By imple-

menting hierarchical designs, and coupling these with

hierarchical analysis, ecologists can better account for and

justify the scale of the relationships they discover.

Population ecology, ecological genetics and demography

inherently deal with associations among individuals, within

and among populations, and the scale of inference about key

variables can be crucial to the ecological and evolutionary

inferences (Doak et al. 1992; Scott et al. 2002; Buckley et al.

2003; van de Pol & Verhulst 2006). As our understanding of

genetic population structure increases across a wide variety

of taxa, hierarchically designed studies that connect

measured genetic structures to environmental and physio-

logical variables could offer new insights into the way in

which evolutionary and ecological processes generate

genetic patterns. The mechanisms driving species distribu-

tions unfold across environmental gradients at a range of

spatial and temporal scales, from individual generations

within microsites and populations to longer-term commu-

nity level shifts over the course of decades. Accounting for

scale in such analysis will be essential to any fundamental

understanding of the role of ecological niches in structuring

biodiversity patterns (Menge & Olson 1990; Pulliam 2000;

Chase & Leibold 2003). The study of metapopulations and

metacommunities are based fundamentally on a hierarchical

approaches to populations (Hanski 1999; Leibold et al.

2004). Studies in these fields could benefit greatly from a

more explicit incorporation of predictive relationships

between variables at the sub- and meta-population scales.

The importance of spatial correlation in ecological studies

has become manifestly important (Tilman & Kareiva 1997),
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and new methods to detect relationships between variables

across space are more powerful (Borcard et al. 2004; Griffth

& Peres-Neto 2006). Output from these methods could

provide strong starting points for hierarchically designed

studies and explicit predictive models.

The development of ecological theory, inference drawn

from empirical studies, and the confrontation of one by the

other will be well served by a more expanded use of tools

for explicitly analysing scale. As computational power

increases and data collection begins to reflect the potential

for high-dimensional models, HLM can serve to integrate

sub-disciplines, which are often focused around specific

levels of organization.
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A P P E N D I X A . T H R E E - L E V E L T I P U L A R I A
F L O W E R I N G S T U D Y D E T A I L S

Study design and sampling regime

Tipularia discolor is a wintergreen terrestrial orchid found in

mixed deciduous forests of eastern North America. In

T. discolor�s southern range, a plant’s single green leaf

emerges above ground in late fall (end of September) and

remains until spring (March–April). Flowers, if produced,

are found on a single flowering stalk that emerges in August,

before the leaf emerges. Seed pods, containing thousands of

seeds each, become dry and dehisce over the course of the

fall and winter, with the seeds being predominately wind/

gravity dispersed. Individuals within the 10 populations,

ranging from Whitehall Forest in Athens-Clarke County,

GA (33�92¢N latitude, 150–240 m elevation) to the Nancy-

town area (34�31¢N latitude, 315–450 m elevation) in

Habersham County, GA have been visited yearly since

1999 to measure growth and reproduction. All populations

are found in relatively mature (c. 80 years old) deciduous

forests. Study populations range from 250 to 480 m2 in size,

each divided into 2 m2 cells within which all plants were

individually marked. For this study, we use floral surveys

from the late fall of 2004.

A hand-held unit from Hydrosense was used to measure

soil moisture in the top 12 cm of soil at 80 points within

each of the study populations during the summer

preceding flowering. Understory light availability was

measured above the forest litter layer using a hand-held

AccuPAR ceptometer wand at the same 80 points as soil

moisture, and after leaf fall due to the wintergreen

phenology of Tipularia. Concurrent light measurements

taken in nearby open clearings allowed calculation of per

cent photosynthetic photon flux densities at the forest

floor. The 80 abiotic sampling points were selected to

allow geostatistical predictions of light and moisture for all

cells in the study grids. Soil cores were taken from 16 cells

in order to characterize population-level pH and soil

texture.

A P P E N D I X B . M O D E L F I T T I N G D E T A I L S A N D

W I N B U G S C O D E F O R T H R E E - L E V E L B A Y E S I A N

M O D E L

Model building, estimation and interpretation

The three-level Bayesian models were fit using WinBugs 1.4,

which uses a variety of Markov chain Monte Carlo sampling

methods, depending on the demands of the model, to

describe the posterior distributions of model parameters

(Gilks et al. 1996; Spiegelhalter & Best 2000). For

hierarchical logistic regressions such as this model,

Metropolis–Hastings algorithms are used for sampling, as

conditional posterior distributions cannot often be directly

sampled. After a burn-in period of 5000 iterations, used to

avoid any relic effects of starting points, we simulated three

independent chains for 50 000 iterations, thinning to every

fifth sample. Convergence was assessed via the Gelman–

Rubin statistic and examination of iteration histories. Non-

informative priors were used in all cases to allow data to

dominate posterior estimation. Both Gamma and Uniform

priors were used for variance terms, and no detectable

difference was observed, but Uniform priors on the standard

deviations were used in accordance with recommendation in

Gelman & Pardoe (2005).

WinBugs code

# Conditional 3-level with Grid level Abiotic

model;

{

for (i in 1:716){ # Individual-level

flr04[i] ~ dbern(p[i])
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logit(p[i]) <- cell.int[tipdata[i,5]] + lw*lw04[i]

lw04[i] ~ dnorm(lw.mean, lw.prec)

}

lw.mean~ dnorm(0,.01)

lw.prec~ dgamma(.01,.01)

for (c in 1:180){ # Cell-level

cell.int[c] ~ dnorm(cell.int1[c], cell.prec)

cell.int1[c] <- grid.int[gridc[c,3]] + par*PARWtr04[c] +

tdr*TDRSum04[c]

logit(cellpred[c])<- cell.int[c]

e.cell[c] <- cell.int[c] - cell.int1[c]

}

# Coefficient Priors

tdr ~ dnorm(0, .001)

par ~ dnorm(0, .001)

tdr2 ~ dnorm(0, .001)

par2 ~ dnorm(0, .001)

lw ~ dnorm(0,.001)

tdr.g ~ dnorm(0, .001)

par.g ~ dnorm(0, .001)

for (g in 1:10){ # Grid-level

grid.int[g] ~ dnorm(grid.int1[g], grid.prec)

grid.int1[g] <- global.int + ph.g*ph.mu[gr[g]] + sand.g*

sand.mu[gr[g]]

ph.mu[g] ~ dnorm(ph.global, ph.prec2)

sand.mu[g] ~ dnorm(sand.global, sand.prec2)

e.grid[g] <- grid.int[g] - grid.int1[g]

}

for (s in 1:138){

ph[s,2] ~ dnorm(ph.mu[grid[s]], ph.prec)

sand[s,2] ~ dnorm(sand.mu[grid[s]], sand.prec)

}

ph.global~ dnorm(0,.001)

ph.g~dnorm(0, .001)

sand.global~ dnorm(0,.001)

sand.g~dnorm(0, .001)

global.int ~ dnorm(0,.001)

sigma.g ~ dunif(0,10) #### Using Uniform priors on

StDev, following Gelman 2006

sigma2.g <-sigma.g*sigma.g

grid.prec<- 1/ sigma2.g

sigma.c ~ dunif(0,10)

sigma2.c <-sigma.c*sigma.c

cell.prec <-1/sigma2.c

sigma.ph ~ dunif(0,10)

sigma2.ph <-sigma.ph*sigma.ph

ph.prec <-1/sigma2.ph

sigma.ph2 ~ dunif(0,10)

sigma2.ph2 <-sigma.ph2*sigma.ph2

ph.prec2 <-1/sigma2.ph2

sigma.sand ~ dunif(0,10)

sigma2.sand <-sigma.ph*sigma.ph

sand.prec <-1/sigma2.ph

sigma.sand2 ~ dunif(0,10)

sigma2.sand2 <-sigma.sand2*sigma.sand2

sand.prec2 <-1/sigma2.sand2

} # end model
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