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9.1. Introduction 
The world is increasingly becoming a mapped world. Google and Yahoo are now highly 30 

spatially aware and are quick to represent searches on a map when possible. The study of 
biodiversity is becoming increasingly a mapped discipline as well. The 19th century approach to 
biodiversity across space was a “checklist” – a list of species found within a geographic entity 
like a park, county/shire, state/province or country. But it is clear that the 21st century approach 
to biodiversity is to map it. This is in no small part due to the advancement of technology. The 35 
ready availability of GIS programs, Google Earth, etc have made us less willing to live without 
maps. But this propensity to map also arises from the fact that our sampling of biodiversity has 
intensified to the point where we now have many measures repeated across space which is a 
prerequisite for mapping biodiversity. 

Drawing a map consists of taking data, locating it in space and then plotting the data with 40 
an accurate (scale) representation of the spatial location of data points relative to the other data 
points. Usually other “layers” of information are added such as political boundaries, rivers or 
elevation. Such direct acts of drawing maps are best left to a GIS course or textbook (and are 
fairly simple these days with the software tools available) and are therefore not covered here. 
Here I explore the more detailed question of how we can measure and use the spatial structure of 45 
biodiversity to ask rigorous questions. Questions about the fundamental processes that drive 
biodiversity. And questions about the implications of the spatial structure of biodiversity for 
management and conservation. 

9.1.1. Questions 
Tobler (1970) coined the first law of geography: “everything is related to everything else, 50 

but near things are more related than distant things”. The contrapositive of the second half of 
Tobler’s law is “far things are less related”. This implies that a law of geography is that 
everything varies across space. One would be hard press to dispute this from the study of 
biodiversity. The distribution of diversity across space varies at all spatial scales (See Chapter 
??? – Jetz Global). The abundance of an individual species varies across space (Brown et al. 55 
1995); even whether  a species is present or absent varies across its range (See Chapter ??? – 
Occupancy). Of course this should come as no surprise because the underlying environmental 
variables such as elevation, temperature, and soil properties vary across space. 

Modern spatial statistics has converged around the model: 
(1) z=μ(s)+ε(s)+η 60 

where z is the variable of interest (e.g. biodiversity, abundance of a target species), μ(s) is the 
average value of z in the area of spatial location s, η is noise or measurement error which does 
not depend on spatial position and is independent (uncorrelated) across space, and ε(s) is 
variability about the mean that is spatially structured (i.e. correlated across space). It is common 
to refer to μ as a first-order effect because it looks only at one point in space and ε as a second 65 
order effect because it by definition depends on two points in space at once (or conceivably 3 or 
more points at once but such higher effects are usually ignored). I extend this semantics to refer 
to η as a zeroth order effect since it does not depend on space at all. Figure 1 explores what the 
variation in z across space likes with different combinations of zeroth, first, and second order 
effects. Conveniently, and not coincidentally, this mathematical organization matches nicely 70 
with the two most common questions one asks about the spatial structure of biodiversity. 



Question 1 – first order effects – is there variation in abundance across space 
The most basic and most useful question is whether there is systematic change in the 

variable of interest across space. For example, are there regions where diversity or the abundance 
of a target species is particularly high or particularly low? From a basic research point of view 75 
this is interesting because it raises the question of why? Questions of what controls diversity and 
abundance are central to ecology and exploring how this varies across space is one of the easiest 
ways to study these questions. From a management point of view, identify specific areas of high 
abundance or diversity can lead immediately to management decisions such as the locations of 
reserves in biodiversity hotspots (Prendergast et al. 1993; Reid 1998) or minimizing human 80 
impact from roads and buildings in regions of high abundance for an endangered species. 
Statistically, these questions all map back to questions about first-order processes – changes in 
the intensity of a process (the average of the variable per unit area) across space. 

Question 2 – second order effects - are there interactions across space 
Second order effects explore the interactions between the organisms under study. Given 85 

that the target species is found at some location, will the species be more likely or less likely to 
be found 20 meters away? 100 meters away? 10 km away? or is there no effect? This is generally 
demonstrated in patterns that are clumped, random or regular (overdispersed) (see Figure 3). In 
the early days of the study of this question, it was generally assumed that individuals of a species 
would have a deterrent effect on other members of the same species nearby due to competition. 90 
A few such examples have been found. For example adult (but not juvenile) creosote bushes 
appear to be overdispersed, presumably due to either competition for water or possibly 
allelopathy (Phillips & MacMahon 1981). But the vast majority of studied organisms appear 
clumped(He & LaFrankie 1997; Condit et al. 2000). Increasingly sophisticated analysis 
techniques allow one to explore how these patterns change with scale (e.g. species might be 95 
clumped at small scales due to limited seed dispersal but random at larger scales). 

9.1.2. Types of data 
Data on biodiversity across space can take many forms (Figure 1, Table 1). This is one of 

the sources of the proliferation of techniques and resulting confusion. But there are just a few 
key variations. The single most important question is the nature of the spatial structuring of the 100 
data and is described by the dichotomous key below: 
a) the locations recorded are controlled by natural events  individual point process data 

Examples include the locations of tree trunks in forest, bird nests, and lightning strikes. 
b) the locations are chosen by the scientist in the design of the sampling protocol 

i. the locations are spaced regularly across space  quadrat data Examples include 105 
quadrats arranged across a line (transects) and quadrats arranged across a rectangular 
area. In addition to the regularity of the data there is also an assumption that some 
area (line or rectangle) has been exhaustively covered. 

ii. the locations spaced irregularly, perhaps apparently randomly across space  
geospatial data Examples include counts of abundance of a target species in quadrats 110 
where the quadrats are  scattered across a large area or true point measurements such 
as soil moisture at irregular spacing across an area. The location may be literally 
random (a randomization was used in the protocol) or may be just irregular with the 
actual locations driven in part by accessibility to roads and trails, etc. 

Note that there is a gradient as one proceeds from the top (a – individual point proceses) to the 115 
bottom (b-ii – geospatial data). As one moves down, the amount of information decreases, but 



the ease of obtaining the information increases. Type a data can be converted to type b-i data 
which can be converted to type b-ii data but not in the other direction. 

A second key question about the data is what the statistical nature of the measurement is 
at each location – is it binary (e.g. presence/absence) or count data (e.g. abundance of a species) 120 
or continuous (e.g. soil pH). Most commonly, point processes record only binary information 
(tree trunk here) while the scientist controlled data typically takes a numerical measurement. 
Some point processes record information such as the diameter of each tree or the species of each 
tree and these are known as marked point processes. In general, analysis methods exist for any 
combination of location structure and measurement variable type. I summarize this classification 125 
of different types of spatial data given by three spatial structures and two types of variables 
measured in Table 1. 

Although it will not affect the type of analysis done, many readers are aware that the 
spatial scale at which the data is measured can have profound implications for the results found 
and the types of questions that can be asked. The scale of the data is usually described by two 130 
terms. The grain is the scale of a single measurement. Thus if a single measurement is a 1m X 
1m quadrat (as is common in grasslands), then the grain is 1 m (or 1 m2 depending on if linear or 
areal measurements are used). The extent is basically the distance between the farthest apart 
measurements. This can range from meters to 1000s of kilometres. The number of sampling 
units, N is another key attribute of any survey. These three factors, if grain and extent are 135 
measured in areal units, can be combined to describe the coverage of study 
(coverage=N*grain/extent – giving the % of the study area actually measured). In point process 
and quadrat data (types a & b-i above) it is often assumed that coverage is 100% while the 
geospatial data survey method is often chosen when the amount of resources available for survey 
is inadequate to provide 100% coverage of the area of interest. The results of analyzing data can 140 
depend heavily on the scales involved (see Figure 2e described later for an example). There is no 
such thing as a best scale for grain or extent. The goal is that the scales should be chosen to 
match the question at hand. Thus if one is studying bird dispersal, then the grain should be small 
relative to the dispersal distance but the extent should be large relative to the dispersal distance. 
If one is studying tree mortality which is a rare event, then the total area covered (N*grain) needs 145 
to be large while the extent should match the question (is one making assertion about mortality 
across the geographic range of a species or in a specific park?). 

9.1.3. – Number of variables recorded – pattern or association? 
The final fundamental question is whether one is recording only one target variable of 

interest (such as species richness or abundance of a target species) or if one is recording multiple 150 
variables (such as other species or environmental variables) and attempting to find associations 
between the variables. With multiple variables, finding associations can inform about the causes 
of or lead to predictive models about a variable of interest. Thus one can build a spatially 
informed model of which environmental variables increase species richness. Or one can build a 
predictive model about which habitat factors are associated with high abundance for an 155 
endangered species. Such associational analyses have traditionally been done in a non-spatial 
context, treating measurements across space merely as replicates and using methods such as 
regression to find the patterns. There is however growing awareness that if the replicates are 
across space there are a number of special statistical challenges and opportunities. These are 
discussed in section 9.2.4 below. 160 

In summary the combination of: 1) three aspects of spatial structuring (section 9.1.2),  2) 
two types of question (9.1.1); and 3) two options for number of  variables recorded (9.1.3) 
combine in a 3x2x2 grid to determine what types of spatial analysis tools can and should be 



performed (Table 2). If one has a spatial dataset but doesn’t know what types of analyses to 
perform, one should start by determining where in this 3x2x2 grid the data and the questions of 165 
interest fall. 

9.2. Methods 
There has been a great proliferation of spatial statistical methods in the last few decades, 

and starting out in spatial statistics can be overwhelming. Books on spatial statistics, whether 
targeted at statisticians (Cressie 1992) or ecologists (Perry et al. 2002; Fortin & Dale 2005b), list 170 
dozens of different techniques. There have been a few attempts to find links between the 
methods (e.g. Dale et al. 2002), but there has been distressingly little attempt to stress the 
underlying unity of methods to ease the learning curve for beginners. In this chapter I will adopt 
the attitude that details of calculations can be left to software and emphasize the interpretation of 
results and the conceptual unity of different methods. 175 

9.2.1. Null models 
The simplest null model is that the variable of interest is constant across space (Figure 

1A),  but this is not particularly useful. To be useful, a null model must make some specification 
of the variability expected under a null model. The simplest such null model goes under varying 
names including “complete spatial randomness (CSR)” and “homogenous Poisson process”. In 180 
this null model, there are no second-order effects – every location is spatially independent of 
every other location. And the intensity (expected mean value of the target variable) is constant 
across space (i.e. homogeneous or μ(s)=μ). This can be modelled simply by treating each point 
as a sample from the Poisson distribution with the parameter λ held constant (Figure 1B). 
Conveniently, this can also be modelled as a point process (where we model the location of 185 
individuals) as a Poisson point process (Figure 2A). Each point is placed in space randomly 
(independently of other points) with an intensity λ. (Computer simulation of a Poisson-point 
process is trivial – if we rescale spatial coordinates to range from 0-1 on both axes and then 
sample two random uniform numbers over the interval 0-1 (something which nearly every 
programming language provides) and treat these as the x-y coordinates of a point we will be 190 
creating a Poisson-point process where λ=N/Area (N=total # of points simulated)). If we draw a 
grid on this process and count # of individuals per grid-cell we recapture the first null model of a 
Poisson distributed count per cell with independence between cells. So at the null model level the 
two fundamental types of data (nature controlled point processes and human controlled 
measurements of intensity) converge into a single null model derived from the Poisson 195 
distribution. In a Poisson distribution with intensity (average rate λ), the probability of observing 
n points in an area A is given by P(k=n|λA)=(λA)ke-λA/k!. A particularly useful special case of 
this is the probability that at least one point is observed P(k>0|λA)= 1-P(0|λA)=1-e-λA. Often one 
omits A for convenience and it is assumed k is a density (i.e. per unit area). More complicated 
null models become appropriate when several variables are measured and these will be discussed 200 
in section 9.2.4. 

9.2.2. Estimating intensity (first order effects) 
One central goal of spatial analysis (question #1) is simply to create a map of intensity 

across space. This then allows exploration of what factors cause high vs. low intensity and 
management decisions based on areas that are favourable (e.g. high intensity of the target 205 
organism). Two issues arise in creating such maps. First, if coverage is less than 100% (i.e. the 
area sampled is a fraction of the area of interest, typically the geospatial data case), then 



interpolation is needed to make a prediction about the areas that are not sampled. Second, 
whether the coverage is 100% or not, there is a goal to remove the zeroth order noise and find the 
underlying “true” signal. One would hate to locate a critical management resource (e.g. extra 210 
food) at a site to find out it appeared to have a high density due to chance on the day the survey 
was done with no unusually high abundance ever observed since. This process of removing noise 
is called smoothing. Usually one technique accomplishes both smoothing and, if needed, 
interpolation. We discuss four broad classes of techniques that can be used. 

• Local surfaces (smoothing) – Many techniques can be lumped together as smoothing. For 215 
any point where a prediction is needed, the predicted value is a weighted average of nearby 
observed points. If the spot is where an observation occurs, then only smoothing is 
involved, but if the spot is where no observation occurred then interpolation is also 
occurring. Typically nearer points are given a greater weight. This can be captured in the 
equation: 220 

௣ݖ ൌ
∑ ௌא୧௜ݖ௜ݓ
∑ ௌא௜௜ݓ

 

  
The predicted value z at point p is a weighted average of the observed values zi over some 
subset, S, of all the observed values. The simplest case is nearest neighbour interpolation 
where wi=1 if the point i is the closest point to p and wi=0 otherwise. Moving average is 
another technique on gridded data where wi=1 for the cells within h cells of the target cell 225 
p. A similar approach used on geospatial data is the moving window where a box with 
sides of length h are drawn around each point and wi=1 if the point i is in the box and zero 
otherwise.  Similar techniques can be used where points are differentially down-weighted 
the further away they are. Exponential smoothing, where wi=exp(-hdip) where dip is the 
distance between i and p is a common choice. The most modern and probably best 230 
technique is known as kernel smoothing which weights the points according to a symmetric 
probability distribution centered around the point p and where wi=k[(zp-zi)/h] . A 2-
dimensional Guassian bell curve is a common choice where wi=exp(-dip

2/h2) as is the 
quartic kernel wi=3(1-d2/h2)2/π when d<h and 0 if d>h. In the quartic case any point further 
than bandwidth h away has no effect whereas in the Guassian it has an increasingly small 235 
effect. Notice that in all of these scenarios a specification of a smoothing parameter h is 
required where h is a measure of the distance at which effects are still important. As h 
increases more smoothing occurs. In the limit when h is very large a complete flat surface 
(figure 1A) will be produced.  

• Global surfaces (trend surfaces) – In contrast to smoothing approaches which are local in 240 
nature, a trend surface is a global prediction that can be summarized by relatively few 
parameters. A trend surface is described by a function: 

௣ݖ  ൌ ݂ሺݔሺݖ௜ሻ,  ሻߚ|௜ሻݖሺݕ
where x(zi) and y(zi) give the x and y coordinates of the point and β is a set of parameters. 
The function f can vary from simple to quite complicated. The simplest trend surface to fit 245 
is a linear model where f is a plane (i.e. zp=a*x+b*y+c). Such fitting is usually done by a 
least-squares criterion and is basically just a two-variable regression with the independent 
variables being spatial coordinates. The next step up is to use a polynomial. A quadratic 
polynomial would be zp=ax+bx2+cy+dy2+exy+f. A quadratic polynomial yields a 3-D 
parabola and as such can only represent a unimodal (one-peaked) surface. More commonly 250 
cubic or quartic polynomials are used. The number of coefficients that need to be estimated 
goes up quickly with degree (linear=3, quadratic=6, cubic=10 and generally a polynomial 



of degree p has (p+1)(p+2)/2 coefficients). Care must be used. Fitting a quartic (p=4) 
polynomial with only 20 data points would leave only 5 (20-15) degrees of freedom which 
is probably too low to be reliable. A variety of functions with f more complex than 255 
polynomials can also be used. For example if one is modelling a surface that varies 
periodically sine or cosine functions may be appropriate. The most general form is to use 
splines for the function f. This then begins to come around and be not too different in 
practice from the local surface/smoothing approach.  

• Kriging – The first two techniques (local and global surfaces) deal only with first order 260 
effects. However, second order effects can also impact the predicted values zp. Over very 
large scales the second order effects should decay to zero and a surface based on first order 
effects will be unbiased (i.e. be accurate on average). However, on smaller scales second 
order effects can significantly affect the predicted values. Knowing that the variable of 
interest (e.g. abundance) is unusually high at a point p implies that it will usually be 265 
unusually high in a neighbourhood around p. First order processes take this into account to 
some degree (small bandwidths h and highly flexible global surfaces f, such as splines, are 
most influenced by local conditions). However, a second order effect is probably a more 
accurate way to incorporate this information and allows us to make inferences about the 
nature and distances of interactions. The means to do this is called kriging Kriging is the 270 
attempt to produce more accurate predictions of intensity by combining first-order and 
second-order analyses of the data. As such, I postpone further discussion of kriging to 
section 9.2.3 where second order effects are covered in detail. 

• “Let it all hang out” – One approach is to not smooth or interpolate but simply to report 
the data as it exists. Press and colleagues argue for just this approach(2007). The human 275 
mind is naturally good at interpolation. It is only moderately good at smoothing, but 
certainly it can detect and dismiss outliers.  

In comparing these techniques, three things are worth noting. First, the global trend 
surface approach is effectively making a prediction for all points in the area of interest. The 
smoothing and kriging techniques only make predictions for a specified set of points p ∈ P. This 280 
set can either be a set of target points of interest (e.g. locations under consideration for 
management decisions) or it can just be a regularly spaced grid of fairly fine resolution placed 
across the area of interest. Once a trend surface or a grid of predicted points is in hand, the data 
can be plotted a number of ways. Three-dimensional surface plots are most commonly used for 
trend surfaces. Contour maps are probably the most common way to plot smoothed data. In 285 
either case color (or grayscale) intensity can be overlayed. 

Secondly, of the four techniques for estimating intensity surfaces, the fourth is the only 
one directly applicable to point process data. To estimate intensity surfaces across space from 
point process data, two choices are available. The first is to lay a grid over the data, and then 
count the number of points in each grid cell, thereby moving from type i data to type ii-a. Then 290 
any of the four techniques can be used. This entails a loss of information and works best when 
the points are fairly dense in space. Secondly the local surface method can be modified where 
instead of using z, the observed intensity at a point, one uses counts of points (replace zi with ni) 
and adjust the weights by area so λ୮ ൌ  ∑
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point p basically being a density weighted average of neighboring points. Some of the earliest 295 
attempts to estimate density of trees was based on measuring nearest neighbour distances (Konig 
1835), but they are accurate only if complete spatial randomness with no second order effects 
holds and not generally recommended today (see section 9.2.3 for a brief description of one of 
these methods).  



Finally, the first two techniques require the input of a smoothing parameter (degree of 300 
smoothing). The smoothing parameter is implicit as the bandwidth, h, in the local smoothing 
case and implicit in the flexibility of the function f (e.g. degree of polynomial) in the global 
surface case. If too much smoothing occurs then true variation will be eliminated, but if not 
enough smoothing occurs then noise will be represented as pattern. Unfortunately, there is no 
way to determine the mathematically correct smoothing parameter, despite the existence of 305 
various guidelines and rules of thumb. The smoothing parameter is ultimately a subjective, 
human-chosen parameter. The third approach (kriging) essentially derives the degree of 
smoothing from the data itself and must be considered to have an advantage for this reason. The 
final approach also avoids a smoothing parameter. Overall, kriging has often been avoided due to 
its perceivedcomplexity, but with software readily available this argument has lost weight. 310 
Kriging also doesn’t work well  on discrete space (gridded data), although as the number of grid 
cells becomes large, the difference between discrete and continuous space begins to disappear. 
On the whole I would recommend the kriging unless the data is on a fairly small grid. And I 
would recommend always plotting the “let it all hang out” approach for comparison. 

9.2.3. Studying effects at a distance (second order effects) 315 

Early approaches 
There are a couple of reasons one might want to study second order effects. Most simply, 

one might wish to make more accurate predictions of intensity. A more involved reason would 
be to test whether there are effects over distance and whether these effects are attractive or 
repulsive in nature. An even more informative question is to look at how these effects vary with 320 
distance, possibly allowing one to identify critical distances beyond which effects are especially 
strong or weak. From a basic research point of view, this then immediately leads into research 
questions about what processes cause these effects (dispersal limitation, species interactions, 
resource competition). From a management point of view these might give information about 
whether to colocate two species or what spatial scales are optimal for a reserve. 325 

The oldest methods for exploring second order effects is the variance-to-mean-ratio used 
on counts taken in quadrats. This test derives from the fact that the variance of the Poisson 
distribution is equal to the mean of the distribution, λ. This is an unusual and strong property 
(compare to the normal distribution where the mean and variance are completely unrelated). 
Thus we can examine the index of dispersion ID=var(zi)/average(zi)=ሾΣ௜ୀଵ௡ ሺݖ௜ െ ௜ሻଶ/ሺ݊ݖ െ330 
1ሻሿ/ ሾΣ௜ୀଵ௡  ௜/݊ሿ. Under CSR/Poisson, ID=1. When ID>1, then there are more quadrats withݖ
either very low (near zero) or very high (well above average) abundance which is a sign of a 
clumped distribution (positive or attractive second order interactions). Conversely, when ID<1 
then most quadrats have zi very close to ݖ௜ which is a sign of regularity or overdispersion. 
Conveniently, if n>6 and ݖ௜>1 then (n-1)*ID is distributed approximately as a chi-square 335 
distribution with (n-1) degrees of freedom which allows for tests of whether ID is significantly 
larger or smaller than 1. There has been a great deal of criticism levelled at the ID (Hurlbert 
1990) and it is true that ID=1 does not imply a Poisson process, but ID > 1 or ID<1 does imply 
clumping or dispersion. A more telling criticism is that this measure has no spatial structure (two 
quadrats 1km apart are compared in the same way that two quadrats 10m apart are), but this is 340 
such a quick and dirty measure it belongs in the toolbox of spatial analysis. 

The first attempts to incorporate spatially explicit measures of second-order interactions 
(where quadrats far apart are treated differently than those close together) apply only to point-
process data and are based on distance to the nearest point. Diggle’s function G(d) is defined as 
the fraction of points pi where the nearest neighbour of pi is at a distance less than or equal to d. 345 



Under the null hypothesis of CSR, ܩሺ݀ሻ ൌ 1 െ ݁ିఒగௗమ (see the formulas in section 9.2.1) and an 
empirically observed G(d) can be plotted against the null G(d). First order information (intensity) 
can also be derived from nearest neighbour information under (and only under!) the assumption 
of CSR, where a maximum likelihood estimate gives ߣ ൌ 4/ሺ݀ߨଶሻ (Diggle 1983). The related 
function F(d) gives the probability that the distance from a randomly chosen location in the area 350 
(which will usually not coincide with an observed point) to the nearest observed point is less than 
d. The use of these functions and related ideas based on nearest neighbour distances such as the 
Clark-Evans ratio, Hopkins ratio, and Blyth-Ripley ratio, are losing favour because they are poor 
estimates of second order effects under some scenarios. Imagine the scenario where every point 
in a random process is replaced by two points a constant, very small distance apart – the nearest 355 
neighbour distance will imply perfect regularity (nearest neighbour at a constant distance) even 
though the data is strongly clumped at a slightly larger scale and generally gives a poor picture of 
overall second order effects at greater distances. 

As a result, other than the quick-and-dirty use of the ID, second order effects should be 
estimated using estimates that incorporate all spatial distances, not just nearest neighbours. The 360 
exact nature of these estimations depends on whether the data points are nature-controlled (point-
process) or human-controlled (quadrat and geospatial).  

“grams” and kriging 
We cover the quadrat/geospatial approach first. There are a very of tightly related ways to 

describe second-order effects. The most direct is the idea of covariance ݒ݋ܥ൫ݖ௜, ௝൯ݖ ൌ ௜௝ ߪ  ൌ365 
ଵ
௡
∑ ൫ݖ௜,௞ െ ௝,௞ݖ൯ሺݖ െ ሻ௡ݖ
௞ୀଵ . Note that Cov(zi,zi)=Var(zi)=σi

2). Such a definition assumes that we 
have multiple measures of z (k=1…n) at each spatial location which is rarely the case (although 
it could happen if for example we take repeated measures over time). This definition also implies 
the possibility of dependence on the specific locations i and j. A generalization is ܥሺ݀ሻ ൌ
௜௝ሺ݀ሻ ߪ ൌ

ଵ
௡೏
∑ ሺݖ௜ െ ௝ݖሻ൫ݖ െ ൯ԡ௜ି௝ԡୀௗݖ . Here we assume covariance depends only on the distance 370 

between two points ||i-j|| and calculate the covariance between all nd pairs of points that are 
distance d apart. On gridded data and for discrete distances there are likely to be many such 
points (e.g. 5 cells apart). On geospatial data where d is continuous, it is unlikely to find two 
pairs of points that are exactly the same distance apart. In this case it is common to group data 
into bins and take all points that are between d and d+δd units apart. This binning is similar to 375 
what occurs in the creation of a histogram. A rule of thumb (Rossi et al. 1992) is that each bin 
should have 30-50 data points. Moreover d should typically only go up to half the maximum 
distance between points (when d is close to the maximum observed distance one is only 
comparing edges to edges which may not be representative). 

A plot of C(d) vs. d is called a covariogram. According to the first law of geography, the 380 
covariance should decrease with increasing distance, eventually reaching zero and this is in fact 
what is observed. Typically C(0)=σ2 (the variance in the data) and this decreases in an 
exponential- or hyperbolic-like fashion to C(∞)=0. Certain circumstances can also cause negative 
covariances. For example if the data is a peak (e.g. Figure 1C) then distances that match the 
distance from peak to the valley around it will actually have a negative covariance. Several 385 
closely related plots can also be calculated (See Figure 4). A correlogram ρ(d) is simply the 
covariogram C(d) rescaled to vary between -1 and 1, just as a correlation coefficient does (the 
rescaling is based on the fact that r=σij/(σiσj). A variogram analyzes not the covariance of two 
points but the variance of the differences of two points as 



Vሺdሻ ൌ E ቂ൫z୧ െ z୨൯
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୬ౚ
∑  ሺz୧ െ z୨ሻଶ||୧ି୨||ୀୢ  with the same notation as for the covariogram. A 390 

factor of two appears because the pair i,j is counted twice in zi-zj and zj-zi. Thus most often the 
semivariogram defined as γ(d)=V(d)/2 is more convenient to analyze (for example γ(∞)=σ2 while 
V(∞)=2σ2) but is often confusingly just called the variogram. The semivariogram is related to 
the covariogram as γ(d)=σ2-C(d) (although in practice estimates of γ(d) and C(d) do not fit this 
relationship – for example γ(0) is rarely 0 as this formula would require). In general, if the data 395 
violates the assumptions of stationarity (discussed below) the equivalences begin to breakdown. 
Thus all four “grams” are related linearly (I use “grams” to refer to the collect set of the four 
different types of plots: C(d),ρ(d), V(d), γ(d)). 

The main difference between the “grams” is that the covariogram and correlogram isolate 
interactions only at distance d, while the (semi)variogram describes an accumulation of effects 400 
up to distance d. In this sense the difference is conceptually similar (although not mathematically 
equivalent to) the difference in probability between a probability density function (PDF) and a 
cumulative density function (CDF). The strengths and weaknesses of the different approaches 
come from this fact. I find the correlogram the easiest to interpret. If the line is above 0 at 
distance d then there are positive (attractive) second-order effects at distance d and similarly for 405 
negative effects. This is less obvious from a (semi)variogram (a region d of the variogram is 
always still positive but where the slope is high one would have high correlation at d and low 
correlation at d if the slope of V(d) is low). In other words, a high variance at distance d,V(d), 
may be due to processes causing high variability near d=0 or to processes causing high 
variability near to d or at any distance in between. Conversely though, estimates of the variogram 410 
are generally considered more robust to outliers and hence more accurate. This is largely because 
the first order process for a variogram, E(zi-zj) must equal zero, but the first-order process for 
covariogram E(zi) is not generally zero and must be estimated. 

The use of “grams” has come from the world of geospatial data where points are random, 
continuous distances apart. However, they carry over with little modification to gridded data. 415 
Indeed, gridded data can make their application easier in practice. For continuous data one must 
find an appropriate bin size δ so that enough points occur in each bin. In gridded data, this is not 
a problem. One can use the natural distance of the grid where one is guaranteed to have many 
pairs of points that are one cell length apart, two cell lengths apart, etc. Early analyses of gridded 
data ignored most diagonal pairs (e.g. a cell 3 cells North and 2 cells East), but if one locates 420 
each grid cell at its center these distances can also be calculated and the bins can be centered 
around discrete cell lengths as in 0.5-1.5, 1.5-2.5, 2.5-3.5 etc cell lengths. Prior to the dominance 
of the “gram” format, the Moran’s I and Geary’s C statistics were used. These were typically 
applied to gridded data and used only on non-diagonal distances. Interestingly, aside from the 
grid-derived nature of the pairings, Moran’s I corresponds exactly to the correlogram and 425 
Geary’s C corresponds to the variogram divided by σ2 (Figure 4). Moran’s I and Geary’s C are 
also often commonly applied to irregular polygon data such as when a variable is known for each 
county or shire. In these cases an adjacency matrix W is developed that gives the distance 
between each pair of polygons. Moran’s I and Geary’s C can then be generalized to use W 
instead of the classic discrete cell-distances. However, in the end all these methods directly relate 430 
to the correlogram and variogram. I treat them here as conceptually identical with the difference 
occurring only in the practicality of the calculations (which can be relegated to software). One 
minor difference that is important is that, unlike the correlogram, Moran’s I can go outside of the 
interval (-1,1) and for no correlation (i.e. CSR) has I=-1/(n-1) instead of I=0 where n is the 
number of observations. As n gets large the difference disappears. 435 



Aside from visual inspection of a correlogram or semivariogram, several analyses can be 
done. Variograms are often described by three measures: γ(0) is called the nugget (this is 
theoretically zero but empirically usually not), γ(∞), i.e. the asymptote or σ2 is called the sill, and 
the distance d at which the sill is hit is called the range. A second type of analysis that can be 
done on “grams” is tests of statistical significance (most commonly whether a correlogram is 440 
statistically significantly different from zero). For Moran’s I, the statistic is asymptotically 
normally distributed with a known mean and variance (Legendre & Legendre 1998) allowing for 
a simple analytical test of significance. Alternatively, a randomization test can be performed; 
keeping the same spatial locations randomly reshuffle the values observed. Calculate the 
correlogram that results. Repeat this for say 999 times and draw the 95th perecentile envelope of 445 
these randomizations. Parts of the correlogram outside the envelope are significant. Any 
significance test on a correlogram faces a problem of “repeated measures”; if there are 20 bins 
there are 20 tests of significance and the probability of making a Type II error (believing the null 
model is rejected when it should not be) is high. All the classic approaches to multiple tests 
apply. The Bonferroni test (use significance levels of 0.05/n instead of 0.05) is best known but 450 
overly conservative (Garcia 2004 and see solutions therein). In a final type of analysis, a model 
of the form γ(d)=f(d|θ) or ρ(d)=g(d|θ) where θ is a set of parameters can be fit to the empirical 
estimates. This can smooth out some of the noise in estimation. It can also allow comparison of 
the parameters between different “grams”. The semivariogram is an increasing, decelerating, 
asymptoting function and is typically fit by the spherical model f(d|r)=σ2[3d/2r-d3/(2r3)] if d ≤ r 455 
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three models pass through (0,0) and asymptote at (∞,σ2) with one scale parameter r. Offsets can 
be added to allow for a sill (e.g. f(d|r)=a+(σ2-a)(1-e-3d/r) for the exponential. The correlogram is 
typically fit by simple exponential decay g(d|r)=exp(-d/r) and the covariogram by 
G(d|r,σ2)=σ2exp(-d/r). 460 

Kriging, mentioned in section 9.2.3 as a means of making predictions of intensity that 
incorporate both first and second order effects, builds directly on the fact that the covariogram 
can be described by only the two parameters σ2 and scale r. In the local smoothing methods of 
section 9.2.3 the question arose of how much weight to give to points at a distance d away and 
the only answer was to choose an arbitrary smoothing or bandwidth parameter h. The 465 
covariogram and a fitted model G(d|r,σ2) provides an obvious answer. Weight points that are a 
distance d away by the amount G(d|r,σ2)! The empirical covariogram curve contains many 
degrees of freedom and could not be practically estimated, but if we fit a model and boil it down 
to two parameters, we only lose two degrees of freedom and now get an empirical estimate of 
how best to incorporate second-order effects. 470 

We can now return to equation 1 (z=μ(s)+ε(s)+η) where μ is some surface (e.g. linear) of 
spatial location and ε is a function only of the distance between two points and is described 
completely by the covariogram and its two parameters (η is assumed to be distributed normally 
with mean zero and variance τ2 just as in traditional regression). Equation 1 essentially now fits 
the GLS (generalized least squares) and mixed model forms of regression. Although not well 475 
known, these are standard statistical techniques and methods for fitting them are readily available 
(typically involving some iterative solutions and likelihood methods). And in practice the 
semivariogram (which is more stable) is used rather than the covariogram. But conceptually, this 
is all there is to kriging. I leave the details to the software. Several flavours of kriging exist. 
Simple kriging assumes μ(s)=0 (or that μ is known instead of estimated) and is not too common. 480 
Ordinary kriging assumes μ(s)=c with c to be estimated and requires that the user ensure that 



there are no trends in the data (or that the trends be removed and residuals analyzed – see next 
paragraph). Universal kriging models the full equation 1 with first-order and second-order effects 
treated simultaneously. 

The assumption made throughout this section on “grams” that second order effects 485 
(covariance) depends only on d is in fact an assumption that may be untrue. One common 
violation is when covariance depends on direction. This could occur if dispersal limitation is a 
major driver of second order effects and dispersal depends on prevailing winds or stream 
currents. When covariance is independent of direction we call it isotropic and we call it 
anisotropic if covariance is a function of distance. Another violation is when the covariance 490 
depends on location. This could occur in the previous scenario if the strength of prevailing winds 
or currents varies significantly across space. A full definition of stationarity (the usual 
assumption in spatial statistics) is that the mean is constant (expected value E(zi)=μ independent 
of location) and that the covariance σij depends only on the distance between i and j. The 
condition on the mean is probably more commonly violated than the condition on the covariance. 495 
For example a simple gradient or trend in zi across space violates stationarity. It is common to fit 
a trend surface to the data and then to analyze the second-order structure (covariance) on the 
residuals, thereby removing the trend. On gridded data, differencing zi’=zi+1-zi will also remove a 
trend. With the exception of some analyses that deal with anisotropy, the covariance condition 
for stationarity is almost always assumed true. If one is worried, one can check this using local 500 
autocorrelation statistics. Local autocorrelation statistics (Anselin 1995) calculate a measure of 
correlation for each point just with nearby points and do not lump this together with the 
correlations of other points with their neighbours (as is done in a global correlogram). The result 
can be plotted as an intensity of local correlation. If this varies drastically across space, then the 
assumption of stationarity may not be justified. If one has a particular process in mind (such as 505 
dispersal limitation) underlying the covariance structure, then local autocorrelation statistics can 
be an indicator of the varying strength of that process across space. 

In summary, correlograms and its relatives, provide a simple graph that enables one to 
determine at what spatial scales the variable of interest is interacting (the regions of d where the 
highest or lowest regions of the graph occur).They also allow for determination of whether the 510 
effects are positive or negative (the sign of the graph). Kriging which is a spatial form of 
smoothing makes use of “grams” to determine how to weight the points. 

Mantel tests 
Another test which is focused on statistical significance but which does not produce 

graphs nor identify scales of importance is the Mantel test. A Mantel test starts with two distance 515 
matrices and performs a randomization test that returns a correlation coefficient r and a 
significance value p on whether the two measures of distance are correlated or not. In this 
application, each matrix would be square with one row and column for each point. One matrix 
would hold the physical distance ||i-j|| between each pair of points in the appropriate cells of the 
matrix. The other matrix would hold the difference zi-zj. The Mantel test can be run and if 520 
p<0.05 then distance between points is significantly correlated to the value observed at those 
points with a strength and sign given by r. Mantel tests work by a special sort of permutation. 
Because a point is represented by both a row and a column, one can not just randomly reshuffle 
the entries in a matrix, but must simultaneously shuffle rows and columns. Under this constraint 
a large number (e.g. 999) permutations of one matrix is done and then a simple Pearson’s r 525 
correlation is calculated between the entries in matrix A and matrix B. Pearson r correlation is 
also calculated on the uncorrelated matrix. This is returned as the r value, and its significance is 



determined from the percentile of this unpermuted r amongst all of the r’s calculated from 
permuted matrices. 

2nd order processes in point process data 530 
Early on I set out a fundamental distinction between data where the point locations were 

driven by nature and where they were chosen by the human. The “gram” analyses in the previous 
section are the dominant tool for studying second-order effects in human-driven data. They look 
at differences in z (zi-zj) as a function of distance between the points (dij). In point-process data, 
we look instead at number of points within a neighbourhood of distance d. The F and G statistics 535 
mentioned earlier are examples of this but in their focus on nearest neighbours can be dominated 
by smaller scale second-order effects. The superior approach is known as Ripley’s K. This 
method gives the average number of points with a neighbourhood of radius d around the points 
in the point process. This is then normalized by dividing by the intensity. By exploring various 
radii around a point, it avoids the problems of nearest-neighbor statistics. K(d) is simple to 540 
estimate. If N(d,pi) is the number of points in a radius d around point pi (not including the point 
pi), then  
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Under the Poisson case, the average number of points in an area A is λA and for a circle of radius 
d it is λπr2. , K(d)=average # points/λ=πr2. This fact is used to create the closely related statistic 
L where L(d)=0 for all values of d under CSR. When L(d)>0 then the points are overdispersed at 545 
scale d, and clumped if L(d)<0 (note the simple menomic; over 0 implies overdispersed, under 0 
= underdispersed=clumped). Unfortunately L(d) is not entirely standardized and some people use 
L*(d)= -L(d), so one most read carefully when looking at L(d) diagrams. 

Conceptually, K(d) and L(d) are similar to the semivariogram and the correlogram. K(d) 
and semivariograms are cumulative monotonically increasing. Correlograms and L(d) are 550 
referenced relative to zero (with CSR giving a flat line at zero). And locations where the 
correlogram or L(d) are noticeably above or below the line (equivalently K(d) and 
semivariogram change slope sharply) indicate clumping or overdispersion at those scales. 

I prefer an ecologically less-well-known alternative to L(d)  that is common in physics 
and known as the pair correlation function g(d)=K’(d)/(2πd) (Wiegand & Moloney 2004). Thus 555 
K(d) is a cumulative density function, and g(d), being the rescaled derivative to it is related to the 
probability density function. The rescaling ensures that g(d)=1 under CSR. Thus from an 
interpretation point of g(d) plays a very similar role to L(d) and correlograms but it is shifted up 
to g(d)=1 instead of L(d)=0 or ρ(d)=0.So g(d)>1 equates to clustered patterns and g(d)<1 relates 
to overdispersed/regular patterns. I prefer g(d) because L(d) is derived from K(d) under the 560 
assumption of CSR while g(d) is derived from K(d) more generally with no assumption of 
pattern. Perhaps the best-known application of g(d) to ecology is by Condit and colleagues 
(2000) who looked at the spatial aggregation of tropical trees; they called their function omega, 
Ω(d), but it is identical to g(d) which has much longer precedence outside of ecology. 

As with, “grams”, the most widely accepted test of significant deviation from CSR is 565 
based on randomization. In this case, if there are n points, then some number, say 99, simulations 
of a Poisson process in the area studied with n points is run. The statistic of interest (say g(d)) is 
calculated on each simulation and the 95th percentile envelopes can be drawn. Places where the 
statistic goes outside the envelope are significant. Issues of multiple tests arise as in the tests of 
correlograms.  570 



9.2.4. Looking for causes – other species and environment 
Sections 9.2.2 dealt with first order effects with one variable and section 9.2.3 dealt with 

second order-effects with one variable. Of course it is very common to have more than one 
variable. For example one might wish to explore how temperature, soil moisture, landcover or 
other environmental variables interacts with a dependent variable of interest such as abundance 575 
or diversity. Nearly all of the techniques already identified can be applied to two variable 
problems. So, for example, where a covariogram looks at the average value of (xi-ݔҧ)(xj-ݔҧ), the 
cross-covariogram looks at the average value of (yi-ݕത)(xj-ݔҧ) (where y and x are two different 
variables and and i and j are still two different points. This is called a crosscovariogram. 
Crosscorrelograms, crosssemivariograms, and also cross-K(d) and cross-g(d) statistics can also 580 
be calculated. These statistics reveal the second order interactions between two variables – e.g. 
does having high soil moisture nearby make it more (positive correlogram) or less (negative 
correlogram) likely to have high species richness. Crosscorrelograms can also be used to 
leverage information from variables that are measured at fewer locations than the target variable 
of interest in the form of crosskriging. Mantel tests can likewise be used in this context with the 585 
two matrices representing distance in two different variables (xi-xj) vs (yi-yj). These models are 
all analogous to traditional correlation in that there is symmetry between the variables involved. 

If one wants a more quantitatively predictive model and has a presumption about which 
variables are dependent and independent, then regression techniques are more appropriate. 
Imagine one is trying to predict species richness (S) as a function of temperature (t) and tree 590 
height(h)  and has measurements of all three variables at many sites across space. The simplest 
approach is a classic multivariate regression Si=β0+β1*ti+β2*hi+Ԗi for iൌ1..n fit via ordinary 
least squares ሺOLSሻ. The problem with this approach is that a key assumption is that the 
errors are independent ሺcovሺԖi,Ԗjሻൌ0ሻ. This is almost never true in a spatial context and 
would technically count as pseudoreplication ሺHurlbert 1984ሻ.  Aside from this worry, we 595 
might actively wish to incorporate first order effects or second order effects. Further 
complicating the picture is that the second‐order effects might come in as an effect of Sj on 
Si ሺspillover effects possibly due to dispersalሻ, tj on ti (temperature is nearly always 
autocorrelated), or by effects of Ԗj on Ԗi (autocorrelation of errors). At the extreme we could 
imagine setting up a regression such as: 600 

(2)   Si= β0+β1*ti+β2*hi+γWS+αVt+ [x,y]ζ+η+Ԗi 
where W is a matrix giving spatial distance derived weights (and with 0s on the diagonal so that 
Si does not depend on Si) and γ indicates the strength of such effects (i.e. is a coefficient to be 
estimated), similarly for V as a spatial weight matrix and α as a coefficient, [x,y] is a matrix of 
the spatial coordinates of the points with ζ being coefficients (i.e. fitting a linear trend surface) 605 
and η is a random term with E(η)=0 and Var(η) being a covariance matrix of second-order 
effects (possibly derived from a model of a covariogram). The term [x,y]ζ incoroporates first-
order effects (and presumably is capturing effects of environmental variables that were not 
measured and used in the model). The terms γWS and αVt capture the second-order effects from 
the dependent and independent variables and are collectively known as “lag” (derived from 610 
timeseries lags) or autocovariate terms while η captures second order effects as an “error” term 
and by depending on a covariance matrix is closely related to the “gram” techniques above. To 
my knowledge no one has ever been crazy enough to try and fit the entire model give above, but 
a variety of techniques have been proposed which fit some subset of the model. Such regression 
techniques that use some subset of equation 2 are known as spatial regression and, being 615 
explicitly aware of spatial relationships, are designed to address the shortcomings of OLS on 
spatial data. A good review of various spatial regression models is by Dormann and colleagues 
(2007).  



Very often when a field sees a new technique introduced, there is a period where methods 
proliferate and become increasingly confusing and then finally a consolidation phase is reached 620 
where the strengths and weaknesses are identified and the toolkit is narrowed back down to one 
or two techniques. The study of spatial regression (at least in ecology) appears to be just entering 
this consolidation phase with a robust debate occurring (Lennon 2000; Jetz & Rahbek 2002; 
Diniz et al. 2003; Dormann 2007b, 2007a; Hawkins et al. 2007; Kissling & Carl 2008). 
Although it is still early, I will provide my personal recommendation. First, there is growing 625 
evidence that the original non-spatial OLS may not be so bad. A regression produces three 
results, estimates of the coefficients β, a measure of fit (r2), and a measure of the significance 
(chance of the null hypothesis of β=0 being true). Theory predicts, and studies have shown 
(Dormann 2007b; Hawkins et al. 2007; Kissling & Carl 2008) that even in the face of spatial 
autocorrelation the estimates of β are unbiased (on average correct), almost as efficient (i.e. 630 
standard errors of β only slightly larger) as spatial regression estimates, and the r2 for OLS is 
lower than in spatial regression but then spatial regression has more parameters. The only real 
problem with OLS is that the p-values are very wrong (much more Type I error than reported). If 
one only cares about prediction and not testing then this is not a problem. If one cares about 
testing, then one has two choices. Simulations have shown that the p-value can be very 635 
accurately corrected using Dutelliel’s method, which adjusts the degrees of freedom in the model 
downwards depending on the amount of autocorrelation (more degrees of freedom lost with high 
autocorrelation) (Dutilleul et al. 1993; Dale & Fortin 2002; Fortin & Dale 2005a). The other 
choice to get accurate p-values is to use a spatial regression model. Which one to use? There is 
growing evidence that lag-based models can be biased and should not be used (Dormann 2007a). 640 
This leaves the error approach where η is incorporated. This has the added advantage of boiling 
down to the already known GLS (General Least Squares) or the slightly more general LMM 
(Linear Mixed Model) approach and the use of covariograms to describe η. A further advantage 
is that these techniques readily generalize to binomial (logistic) and Poisson regression. So my 
recommendation is to: 1) run an OLS; 2) calculate a correlogram on the residuals yi-ݕො௜; 3) if the 645 
correlogram shows significant autocorrelation in the residuals then do not use the p-values from 
the OLS; 4) if you need p-values then a) use spatial regression based on errors (GLS/LMM) if 
and only if second order effects are of interest to you but otherwise b) just use Dutelliel’s 
correction to the OLS p-values. This recommendation will be enormously controversial but it is 
my best read of current evidence combined with an inclination to stick with tried and true 650 
methods unless there is a compelling reason. 

As one might imagine, interpreting all of the coefficients in the regression of equation 2, 
even if only a subset of it is used, can be overwhelming. An interesting tool is the use of variance 
partitioning (Borcard et al. 1992).  Variables can be lumped into groups (environmental=β and 
spatial=ζ is the most common application), and then the amount of variation explained by each 655 
group can be assessed. Of course the environmental and spatial variables are collinear (correlated 
with each other) and regression does not have the ability to resolve this. The result is that a % 
variance is assigned to each of four categories: environmental only, spatial only, environmental 
and spatial combined, and unexplained. Together these percentages sum to one (the sum of the 
first three is the r2 of the environmental+spatial model). Calculating these numbers is easy. Run 660 
three regressions (env+spatial, env only, and spatial only) and note the r2. Then %environment 
only=(r2

env+spat-r2
spat), %spatial only=(r2

env+spat-r2
env

), %environment/spatial combined=r2
env+spat-

%environment only-%spatial only=r2
env+r2

spat-r2
env+psat and %unexplained=1-r2

env+spat. Very often 
the combined environment/spatial variance explained is much larger than either factor alone, 
which is disappointing as this is the least informative category. It is not surprising but worth 665 
noting that the proportions assigned to each category can depend on how many variables are 



used in each category; dozens of environmental variables and just x-y spatial coordinates biases 
toward environment explaining a higher proportion, and using a few environment variables and a 
complex representation of space (e.g. PCNM Dray et al. 2006) can tilt things the other way 
(Jones et al. 2008). The variance partitioning approach just described treats each factor as 670 
conceptually equal. An alternative approach can treat one factor as having precedence. In this 
case if we give environment logical primacy over spatial, then %environment=r2

env and 
%spat=r2

env+spat-r2
spat. This was done for example by Lichstein and colleagues (Lichstein et al. 

2003) and also done implicitly when regression on residuals is used (e.g. Wilcox 1978). There is 
considerable controversy again over which is the right approach. Ultimately though it is not 675 
question of math, it is a question of assumptions and appropriateness for the question at hand. 

9.2.5. Software available 
I have consciously chosen to emphasize the conceptual unity of spatial statistics. 

However, in doing this I have swept under the rug a large number of issues. The practical 
calculations can depend heavily on the exact type of data used. Moreover, I have completely 680 
ignored the issue of edge effects (the fact that some points are near the “edge of the earth” or at 
least the edge of the quadrat raises complications for many methods). There are several methods 
for dealing with edge effects but they complicate the calculations. Finally statistical significance 
test are most often done by randomization methods which is not conceptually difficult but 
requires additional computer code. For all of these reasons I strongly recommend using off-the-685 
shelf software for spatial analysis rather than implementing your own methods. Two excellent 
and free pieces of software are available for immediate download that handle all of the methods 
discussed herein. The first is SAM (Spatial Analysis of Macroecological data)(Rangel et al. 
2006). This is a custom built software package targeted at spatial analysis of ecological data. It 
contains an easy to use interface and an impressive list of spatial methods. The more generic 690 
(and harder to use package) is R, a general purpose statistical package (R Development Core 
Team 2005). With the addition of readily available packages (libraries) in R including 
spatial,spatstat and splanc (for point processes) gstat (for kriging) and spdep (for gridded data) 
(Bivand et al. 2008). 

9.3. Prospectus 695 

At this point in time spatial statistics probably needs to enter a consolidation phase where 
the emphasis is on simplification, rejection of outdated techniques, highlighting the underlying 
unity of methods, and an effort to streamline communication of these methods. In practice, the 
scientific community is not well incented to do this and it may not happen. Additional 
development in some areas is needed such as improved methods of testing statistical significance 700 
and better understanding of the strengths of different forms of spatial regression. But these are 
relatively minor. 

There are three new techniques that I believe deserve highlighting. First a technique 
common in the soils literature but that I have seen applied only once in ecology  (Kendrick et al. 
2008) is based on nested models of variograms (also called coregionalisation). Basically the 705 
variogram is fit using piecewise regression. This automated breakout of scales immediately 
suggests (but does not require) distinct processes at these different scales and assigns variance 
components to make statements about which scales are most important. Unfortunately I am not 
aware of software commonly used in ecology that performs this test. Another promising 
technique is geographically weighted regression (GWR). This model is basically a regression on 710 
spatial points but the coefficients (i.e.the relative importance of different independent variables) 



is allowed to change across space (Fotheringham et al. 2002; Wimberly et al. 2008). In one 
example, Wimberly and colleagues found that climate limited tick abundance in the Eastern US 
but landscape structure was limiting in the Western portions of the range. Instead of treating 
nonstationarity as a nuisance, this method embraces and measures nonstationarity. Finally, an 715 
increasingly promising alternative to spatial regression and the exploration of causal factors of 
autocorrelation is the development of process-based models. Houchmandzadeh (2008) recently 
developed a model that predicts the pair correlation function g(d) under the assumption of simple 
neutral (diffusive) dispersal. Stronger models of how species distribution is affected by the 
environmental context will ultimately allow for the teasing apart of causality. 720 

For the actual application of spatial statistics to ecological data, I believe we are entering 
an exciting time where software tools can bury the details and let the users focus on interpreting 
and learning from their data without having to climb a mountain of technical details first. 

9.4. Key points 
1. Spatial statistics is broadly organized around zeroth-order, first-order and second-order 725 

effects. 
2. There is a fundamental distinction between data in which the spatial locations are 

human-chosen versus nature-chosen. Differences within the human-chosen category 
(e.g. quadrats vs. transects vs. geospatial data) have important implications for how 
calculations are performed but conceptually are of little importance and have been 730 
exaggerated. 

3. Many methods that have been quite popular are now outdated (e.g. F and G functions, 
variance-to-mean-ratio/ID method, moving average and exponential smoothing) with 
better alternatives available. 

4. The most modern methods can be extremely difficult to calculate by hand and naïve 735 
implementations in software are likely to be wrong, but fortunately good software is 
readily available and should be used. 

5. Covariograms/kriging/correlograms are probably the single central concept today and 
users should familiarize themselves with their use and interpretation (although not their 
precise calculations). Moran’s I and Geary’s C are actually members of this set. 740 
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Spatial sampling design Binary Variable 
(Present/Absent) 

Continuous Variable 
(Amount/Abundance)

Sampler controlled Regular across space “Presence/absence 
quadrat” 

Quadrat 

Random across 
space 

“Presence/absence 
geospatial” 

Geospatial 

Biology controlled Point-process Marked point-process 
 750 
Table 1 – Major categories of spatial data. The 
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 Point locations Quadrat counts Geospatial 
One variable 
only 

What is intensity 
(interpolation & 
smoothing) 

Grid, kernel 
smoothing 

Local smoothing 
Trend surfaces 
Kriging 

Local smoothing 
(with 
interpolation) 
Trend surfaces 
Kriging 

What is effect at 
distance? Are 
they aggregated? 

Ripley’s K (# of 
events within 
radius) 

Moran’s I 
Mantel 

Covariograms etc 
Spectral 
Mantel 

Two 
variables 
(dependent, 
independent) 

What controls 
intensity 

Intensity 
regression 

spatial regression spatial regression 

Interactions 
occur at distance 

Cross K Mantel Cross variogram 
Mantel 

 
 
Table 2 – common spatial statistics applied depending on the type of spatial data 

available, the question asked, and the number of variables measured. 760 
 

  



 
 

 765 
 
Figure 1 – Different order effects in spatial modelling. a) No effects – the measurement 

variable (possibly abundance of a species, possibly species diversity, possibly soil moisture) is 

entirely constant. b) Only zeroth-order (measurement error, innate variability or noise) effects. 

The variable is on average constant but there is variability. The variability is completely 770 

independent, even between adjacent points. c) 1st order effect – a systematic change in the mean 

of the variable across space. Here a simple linear trend is modeled, but of course if the mean is 

tracking some underlying variable like soil depth the system can look rugged and irregular even 

with only 1st order effects. d) Combined 0th and 1st order effects. Here there is variability due to 

0th order effects overlayed on top of the same 1st order trend in the mean found in figure (c). e) 775 

2nd order effects only. The mean is constant across space and no measurement error is modeled. 
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However there is autocorrelated variability. When one point is above the mean, adjacent points 

are more likely (although not guaranteed) to also be above the mean. This starts to give rise to 

coherent features that are spread across several points, like the peak in the back corner or the 

trough running across the front corner. f) 2nd order effects (figure e) overlayed on top of first 780 

order effects (figure c). 

 
 



 



 785 
Figure 2 – different types of spatial data. a) Point data from Barro Colorado Island’s tropical 

tree study. This map shows the location of individual tree of the species Licania platypus (with a diameter 

at breast height of 1cm or greater). Elevation contours are plotted as well, showing the plant is biased 

towards slopes (Condit et al. 2000; Harms et al. 2001).  b) This plot shows how the species richness of 

trees varies across the Mt. St. Hilaire nature reserve. The data is collected on a regular grid of 50mX50m 790 

cells. c) This plot shows how the abundance of an individual species of a bird (the Scissor-tailed 

Flycatcher) varies across space (notice that the highest abundances are in Texas and Oklahoma but the 

range extends all the way east to the Carolinas). The white dots represent routes were the birds were 

surveyed and are placed irregularly in space. Data from the North American Breeding Bird Survey 

(Robbins et al. 1986; Patuxent Wildlife Research Center 2001). 795 

  



 

Figure 3 – different kinds of second order (point interaction) processes give rise to different spatial 

patterns. A) A Poisson random process. B) An example of clustering (attraction between points) 

simulated by the Neyman-Scott process. C) An example of regular or over-dispersed (repulsion between 800 

points) simulated by the Mattern hard-core process. D) A process where the locations are Poisson 

Poisson random(A) Neyman-Scott clustered(B)

Marked (species, size) random(C)Mattern regular(D)

Scale-dependent effects(E) Scale-dependent effects(F)



random, but the points are marked by two features: size (e.g. tree diameter) and black/gray (e.g. species). 

E) An example of scale-dependent effects – appears random at small scales, clumped at larger scales, and 

overdispersed at very large scales. F) Another example scale-dependent effects which appear regular at 

small scales but random at large scales. 805 

  



 

 

Figure 4 – Example output from analyses of data discussed in the text. A) A trend surface (global 

smoothing) fitted to the data of Figure 2B. Generally, diversity increases from West to East 810 

which also matches a transition from active human use to a protected area. B) The same data 

kernel-smoothed (Gaussian kernel) and plotted in a colored contour plot. Considerable variation 

occurs with peaks on the North and East edges of the lake (large empty region in the center). C)  

4 types of “grams” on a theoretical data set showing the rescalings that occur. D) Correlograms 

on theoretical data (Figure 1) with zeroth, firtst and 2nd order effects, and then actual data from 815 

Figure 2B. Note that the zeroth order effect shows 0 correlation at all distances – there is no 

spatial interaction. The 1st order effect starts with a very high correlation at short distances and 

goes to a very negative correlation at long distances due to the trend surface. The 2nd order 

effects start with a fairly high correlation in nearby sites, which drops to a negative correlation at 
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the distance at which peaks to valleys are compared and then fades to zero correlation at long 820 

distances, indicating no interactions. Thus this analysis gives a clear indication of the scales of 

interaction. The actual data shows a low, but positive, correlation at short distances fading out to 

zero correlation at longer distances. 

 

  825 



 

Figure 5 – The relationships between the most common second-order spatial statistics. In 

almost all case, the conversions are simply a matter of linear rescaling (g(d)=a*f(d)+b) or moving 

between a cumulative vs. a local form. Minor adaptations are also needed when moving from continuous 

space (geospatial data) to discrete space (gridded data) or from 2 dimensions to 1-dimension. In the above 830 

figure, d=distance between two points, λ=intensity (average # of events per area), W=a connection matrix 

(on gridded data or on areal data such as a map of states), σ2=Var(zi) the variance of the  z value across 

all points in space. The most commonly used technique for each type of data is in bold print. The phrase 

“grid +d W” indicates that the data, instead of being located continuously in space, is located on a grid 

and consequently the idea of a distance, d, between two observations is replaced by a notion of adjacency, 835 

summarized in the matrix W. Note that there are no arrows connecting point data to geospatial data, 

indicating that the match is conceptual rather than mathematical. 
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