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Abstract The degree to which variation in plant commu-
nity composition (beta-diversity) is predictable from envi-
ronmental variation, relative to other spatial processes, is of
considerable current interest. We addressed this question in
Costa Rican rain forest pteridophytes (1,045 plots, 127 spe-
cies). We also tested the eVect of data quality on the results,
which has largely been overlooked in earlier studies. To do
so, we compared two alternative spatial models [polyno-
mial vs. principal coordinates of neighbour matrices
(PCNM)] and ten alternative environmental models (all
available environmental variables vs. four subsets, and
including their polynomials vs. not). Of the environmental
data types, soil chemistry contributed most to explaining
pteridophyte community variation, followed in decreasing
order of contribution by topography, soil type and forest
structure. Environmentally explained variation increased

moderately when polynomials of the environmental vari-
ables were included. Spatially explained variation increased
substantially when the multi-scale PCNM spatial model
was used instead of the traditional, broad-scale polynomial
spatial model. The best model combination (PCNM spatial
model and full environmental model including polynomi-
als) explained 32% of pteridophyte community variation,
after correcting for the number of sampling sites and
explanatory variables. Overall evidence for environmental
control of beta-diversity was strong, and the main Xoristic
gradients detected were correlated with environmental vari-
ation at all scales encompassed by the study (c. 100–
2,000 m). Depending on model choice, however, total
explained variation diVered more than fourfold, and the
apparent relative importance of space and environment
could be reversed. Therefore, we advocate a broader recog-
nition of the impacts that data quality has on analysis
results. A general understanding of the relative contribu-
tions of spatial and environmental processes to species dis-
tributions and beta-diversity requires that methodological
artefacts are separated from real ecological diVerences.

Keywords Environmental control · Model speciWcation · 
Spatial structure · Species composition · 
Variation partitioning

Introduction

Several studies have documented that plant species compo-
sition and abundances within tropical forest landscapes
respond to heterogeneity in soil properties, topography and
forest successional stage (e.g. Denslow 1987; Dirzo et al.
1992; Tuomisto et al. 1995; Clark et al. 1999; Tuomisto
and Poulsen 2000; Harms et al. 2001; Duque et al. 2002;
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Potts et al. 2002; Tuomisto et al. 2003a, b; Cannon and
Leighton 2004; Valencia et al. 2004; John et al. 2007).
However, it is debated to what degree Xoristic composition
depends on environmental factors relative to other pro-
cesses, such as dispersal limitation and biotic interactions
(Hubbell 2001; Dalling et al. 2002; Fine et al. 2004; Wyatt
and Silman 2004).

Many factors that inXuence plant distributions will gen-
erate spatial pattern in community composition. Dispersal,
biotic interactions, and gap dynamics are likely to produce
spatial structure most evident at relatively Wne scales,
whereas edaphic or topographic variation may produce
structure at diVerent scales depending on underlying geol-
ogy and geomorphology.

There has been a lot of recent interest in modelling spe-
cies abundances using both environmental and spatial
explanatory variables to study their relative contributions to
explaining beta-diversity, i.e. variation in community com-
position. This can be done using canonical analysis, such as
redundancy analysis (RDA) or canonical correspondence
analysis (CCA) in a variation partitioning framework (Bor-
card et al. 1992). In theory, Xoristic composition can
exhibit two diVerent kinds of spatial structure: (1) autoge-
nous structure, independent of any environmental variation;
and (2) exogenous structure, which results when species
respond to environmental variables that themselves are spa-
tially structured. In practice, interpretation is complicated
by the fact that spatially structured but unmeasured envi-
ronmental variables may also aVect Xoristic composition.

Variation partitioning has been used in numerous studies
on plant species composition, with the total proportion of
variation explained ranging from 20 to 72% in some recent
temperate forest studies (Borcard et al. 1992; Gilbert and
Lechowicz 2004; Cottenie 2005; Karst et al. 2005; Sven-
ning and Skov 2005; Thomsen et al. 2005; Corney et al.
2006), and from 16 to 86% in studies in tropical forests
(Duivenvoorden 1995; Balvanera et al. 2002; Dalle et al.
2002; Arbeláez and Duivenvoorden 2004; Svenning et al.
2004; Duque et al. 2005; Chust et al. 2006).

Ecologically meaningful comparison of the results of
diVerent studies is diYcult because the amount of variation
in community composition explained by “space” and “envi-
ronment” will depend on how these are modelled. The spa-
tial model has usually been based on either the x and y
coordinates of the sampling sites, or on the coordinates and
their second- and third-order polynomial terms. Although
polynomial terms enable modelling more complex spatial
patterns than simple linear trend surfaces, these are none-
theless restricted to broad-scale patterns (Borcard and
Legendre 2002). Through the use of principal coordinates
of neighbour matrices (PCNMs, Borcard and Legendre
2002; Borcard et al. 2004; Dray et al. 2006), complex spa-
tial patterns can be modelled at diVerent spatial scales, so a

PCNM model may capture a larger proportion of the varia-
tion in community composition than the simpler polyno-
mial model. How big the diVerences are has rarely been
tested on real data (but see Borcard and Legendre 2002).

Similarly, the degree to which environmental eVects on
species composition can be discovered depends on which
environmental variables are measured and on how these are
modelled in the analysis. Many tropical forest studies have
used only environmental data that are easy to obtain, such
as topographic or forest structural variables, or coarse infor-
mation on soils or geology (e.g. Clark et al. 1995; 1999;
Harms et al. 2001; Balvanera et al. 2002; Dalle et al. 2002;
Cannon and Leighton 2004; Valencia et al. 2004; Chust
et al. 2006). Others have also included data from laboratory
analyses of soil samples (e.g. Duque et al. 2002; Potts et al.
2002; Phillips et al. 2003; Tuomisto et al. 2003a, b;
Arbeláez and Duivenvoorden 2004; Vormisto et al. 2004;
Duque et al. 2005; John et al. 2007). Such methodological
diVerences may have important consequences for the
results, but this has been under-appreciated when diVerent
studies have been compared (e.g. Balvanera et al. 2002;
Cottenie 2005; Chust et al. 2006). Moreover, Austin (2002)
strongly criticised canonical ordination studies for failing to
consider the realistic possibility that species responses to
environmental gradients are non-linear.

In the present paper we document patterns in pterido-
phyte community composition at La Selva Biological Sta-
tion, Costa Rica, and quantify the roles of environmental
and spatial variables in explaining observed Xoristic pat-
terns. We model the environmental component using a full
set and diVerent subsets of soil, topographic and forest
structural variables (with and without their quadratic and
cubic functions), and the spatial component both using the
traditional polynomial model and a more Xexible PCNM
model. Through these comparisons, we examine the conse-
quences of spatial and environmental model choice in terms
of: (1) the total proportion of Xoristic variation explained,
(2) the relative contributions of “space” and “environment”,
(3) how the diVerent environmental subsets contribute to
overall environmentally explained variation, and (4) the
patterns of spatio-environmental structuring that can be
identiWed in pteridophyte community composition and in
the distributions of individual species.

Materials and methods

Study site

The study was carried out in c. 5 km2 of old growth rain
forest belonging to La Selva Biological Station of the
Organization for Tropical Studies (OTS), in the Caribbean
lowlands of Costa Rica. The site has a mean monthly tem-
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perature of c. 26°C and receives an average of over 100 mm
of rain each month and over 4,000 mm annually (OTS,
unpublished data).

The study area is covered by a grid of 1,048 permanent
intersection markers with a 50 £ 100-m spacing. It encom-
passes a range of soil types, including alluvial terraces
formed by recent or historical Xooding, swamps, residual
soils formed by in situ weathering of ancient lava Xows,
and stream valleys with infertile colluvial soils (Clark et al.
1999). Elevation increases by c. 100 m across the site in a
south-west direction. Alluvial and swamp soils are
restricted to lower elevations, which are also relatively Xat,
whereas higher elevations have a steeper topography and
are dominated by residual soils.

Floristic data

We inventoried pteridophytes (ferns and fern allies) in
1,042 circular sample plots (each 100 m2) between July
2001 and July 2002. The plots were centred on 1,042 of the
grid intersections within the study area. Within each plot
we identiWed all individuals with at least one leaf longer
than 10 cm; epiphytic and climbing individuals with no
such leaves within 2 m of the ground were excluded. All
apparently separate plants were counted as individuals,
although in certain species some were probably clonal.

We collected voucher specimens of each species and of all
individuals we were unable to identify in the Weld to a previ-
ously collected species. The specimens were cross-checked
to obtain consistent identiWcations to morphospecies, and
these were matched with named species using Flora Meso-
americana (Moran and Riba 1995) and comparisons with
existing herbarium material. Our specimens are deposited in
herbaria in Costa Rica [Herbario Nacional de Costa Rica
(CR), Universidad de Costa Rica (USJ) and the on-site her-
barium of La Selva Biological Station (LSCR); abbreviations
according to Holmgren and Holmgren 1998] and Finland
(University of Turku; TUR). Unicates are in CR.

Due to lack of access or accidental omission, we did not
obtain plot data at six grid intersections. Three of the six
missing plots overlapped with a parallel transect-based sur-
vey (Jones et al. 2006), so we used overlapping transect
subunits of the same surface area (5 £ 20 m) to estimate
pteridophyte data for them. We did this because gaps in the
sampling design result in irregular PCNM spatial descrip-
tors, complicating the interpretation of the resulting spatial
model (Borcard and Legendre 2002).

Environmental data

We classiWed each of the 1,045 plots into one of Wve quali-
tative soil classes (old alluvium, recent alluvium, residual,
stream valley or swamp). Soil chemical data on pH, total

concentrations of C, N, and P, and exchangeable concentra-
tions of K, Ca, Mg and Mn were also available for all plots.
The soil samples (taken to 10 cm depth) were collected
between March 1998 and May 1999 (D. B. Clark, unpub-
lished data).

For each plot we also deWned Wve topographic variables
using data on slope, aspect, elevation and topographic posi-
tion (Clark et al. 1999). Slope was measured in the steepest
direction across the plot. Aspect was divided into sine
(aspect), to distinguish plots on either side of a north–south
axis, and cosine (aspect) to distinguish those on either side
of an east–west axis. Elevation was based on optical ground
surveys for 1,026 plots, and for 19 plots it was taken from a
digital elevation model based on Light Detection and Rang-
ing (LIDAR) data (from the University of Maryland and
NASA Vegetation Canopy LIDAR Mission; cf. Hofton
et al. 2002). Topographic position was deWned as one of
Wve ordered classes: Xat high ground, upper slope, mid-
slope, base of slope/Xat low ground, riparian.

We measured canopy openness at 1,042 plots using the
canopy-scope method (Brown et al. 2000), which estimates
the size of the largest visible canopy gap on a scale of 0–25.
We estimated missing data for three plots on the basis of
average light levels measured at similar sites elsewhere in
the study area (closed canopy, small canopy gap, medium-
sized tree fall gap). Additional measures of forest structure
were the number of tree stems ¸10 cm diameter at breast
height and their basal area in each of the 1,045 plots (col-
lected between 1993 and 1995, Clark et al. 1999).

Spatial data

We generated two sets of continuous spatial variables from
the x and y coordinates of each plot in the program Space-
Maker2 (Borcard and Legendre 2004). The Wrst set con-
sisted of the nine terms of a cubic trend surface polynomial
(the centred site coordinates, x and y, and x2, y2, xy, x3, y3,
x2y and xy2). The second set was created using the PCNM
method (Borcard and Legendre 2002; Dray et al. 2006).
The polynomial variables represent linear or curved struc-
tures at the extent of the entire study area, whereas PCNMs
consist of orthogonal waves, whose wavelengths range
across all scales encompassed by the sampling scheme. In
our case, PCNM wavelengths ranged from c. 100 to
2,000 m. If sampling is unidimensional and regular, the
PCNM variables are sine waves and their number is about
two-thirds of the number of sampling sites (Borcard and
Legendre 2002). If sampling is two-dimensional or irregu-
lar, the shape of the PCNMs is less regular and their num-
ber varies. To make our sampling grid and the resulting
PCNMs more regular, we added three supplementary pairs
of coordinates to Wll holes in the grid, for the purpose of
PCNM generation alone, where actual sample data were
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unavailable (Borcard and Legendre 2002). The subsequent
removal of these resulted in a small loss of orthogonality
among the PCNMs (nonetheless, the largest correlation
among any pair of PCNMs was just 0.0093). A total of 665
PCNMs was generated.

Data analysis

Prior to analysis, we Hellinger-transformed the pterido-
phyte data (Legendre and Gallagher 2001) to express spe-
cies abundances as square-root transformed proportionate
abundances in each sampling site. This transformation
reduces the weight of the most abundant species in the anal-
ysis. We also transformed the soil chemical data (except
pH) by taking their natural logarithm. This was done
because plants are likely to respond more strongly to a
given absolute change in nutrient availability when the
nutrient is scarce than when it is abundant. We coded each
of the Wve soil type classes as a binary variable.

For comparison with the dataset comprising the original
20 environmental variables (simple environmental model),
we generated a polynomial environmental dataset consisting
of the original 20 variables and their quadratic and cubic
functions. Additive combinations of the original variables
and their higher order functions allow nonlinear relation-
ships with variation in pteridophyte species composition to
be modelled. Polynomial terms were calculated for all vari-
ables except the binary soil types and the sinusoid variables
sine (aspect) and cosine (aspect). The polynomial environ-
mental dataset thus included a total of 48 variables.

We ran forward selection on each set of environmental
(simple or polynomial) and spatial (polynomial or PCNM)
explanatory variables separately, to select those variables
with a signiWcant (P · 0.05 after 999 random permuta-
tions) contribution to explaining variation in Xoristic com-
position (following the procedure recommended by
Blanchet et al. 2007). This was done using the R-language
(R Development Core Team 2006) function forward.sel in
the Packfor package (available at http://www.bio.umon-
treal.ca/legendre/). Only the selected variables were used in
subsequent analyses.

We ran variation partitioning (Borcard et al. 1992) to
quantify the proportion of the variation in community com-
position explained by variation in each of the four combina-
tions of environmental and spatial explanatory variable sets.
We adjusted the R2-values to account for the number of
sampling sites and explanatory variables, as unadjusted R2-
values are biased (Peres-Neto et al. 2006), and report the
adjusted values (Ra

2 ) throughout. We recorded the propor-
tion of variation explained (Ra

2 ) in RDA analyses by either
the signiWcant spatial (polynomial or PCNM) or the signiW-
cant environmental (simple or polynomial) variables, or
both simultaneously. Using these Ra

2 -values,  we calculated

the purely environmental (PE), purely spatial (PS), and spa-
tially structured environmental (SSE) fractions of the total
explained variation in Xoristic composition (Borcard et al.
1992). We tested the signiWcance of the PS and PE fractions
by means of 999 permutations under the reduced model.
The R-language functions varpart, rda and anova.cca in the
vegan library were used (Oksanen et al. 2007).

The remainder of the variation partitioning analyses
focused on our most comprehensive environmental and
spatial models, the full polynomial environmental model
and PCNM spatial model. We Wrst divided the signiWcant
explanatory variables into subsets. The environmental vari-
ables were divided into four subsets: topography, forest
structure, soil type, and quantitative soil chemical data. The
PCNMs were divided into three subsets of 34 PCNM
variables each: broad-, medium- and Wne-scale, with
wavelengths c. 100–300, 300–650 and 650–2,000 m,
respectively. RDAs followed by variation partitioning were
run with each of the PCNM subsets combined with, in turn,
each subset and the full set of environmental variables.

We then ran RDA using separately the polynomial spa-
tial model, full PCNM spatial model or full polynomial
environmental model as the explanatory dataset in
CANOCO (ter Braak and Smilauer 1998). We extracted the
Wtted site scores for each of the Wrst three canonical axes
and mapped them, to visualize the major patterns of spatial
and environmental structuring detected in the pteridophyte
dataset. We ran multiple regression analyses to check
which environmental variables contributed most to the site
scores on each environmental ordination axis, as judged
from their partial regression coeYcients, in the program
Permute (version 3.4, Casgrain 2001). We then used the
same procedure to check which environmental variables
were most strongly related to the spatial patterns in Xoristic
composition represented by site scores on each PCNM and
polynomial ordination axis. All variables were standardized
prior to running the regression analyses.

Finally, we extracted species scores in CANOCO to
check which pteridophyte species were best modelled by
the PCNM spatial ordination axes and polynomial environ-
mental ordination axes. We tabulated the species with the
highest ten species scores (positive or negative) on each
axis and interpreted their distribution patterns in light of the
explanatory data.

Results

General

During the inventory, we encountered 89,708 pteridophyte
individuals, the vast majority of which were terrestrial.
They represented 128 morphospecies, of which 103 could
123
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be identiWed to a named species, 24 were identiWed to genus
level, and one (a single plant) remained unidentiWed. Two
of the named species were confused in the Weld and are
combined in the analyses, which hence include 127 species.
Each 100-m2 plot contained from three to 780 pteridophyte
individuals (mean 86, median 72) and from one to 28 spe-
cies (mean 10, median 9). The most abundant species was
represented by 25,439 individuals in the entire dataset, and
the least abundant 11 species were represented by a single
individual each (mean 706, median 41). The Wve most
abundant species, in descending order of abundance, were
Danaea wendlandii, Salpichlaena sp. 1, Polybotrya villo-
sula, Lomariopsis vestita and Adiantum obliquum (see
Table 1 for authorities).

Variation partitioning

Forward selection included all 20 original environmental
variables as signiWcant predictors of variation in commu-
nity composition in the simple environmental model, and
39 of 48 terms in the polynomial environmental model. The
simple environmental model explained Ra

2 =21.0%  of
community variation and the polynomial environmental
model explained 25.8%. In the latter case, total variation
explainable using soil chemistry was 19.1%, followed by
topography (14.3%), soil type (8.9%) and forest structure
(3.5%). These subsets of environmental data were partly
redundant (Fig. 1), but each also made a unique contribu-
tion to explained variation. The unique contribution of soil

chemistry was the largest (7.1%), followed by topography
(4.1%), forest structure (1.1%), and soil type (1.0%).

Forward selection of the spatial variables included all
nine terms of the polynomial spatial model, and 102 of 665
PCNMs in the PCNM spatial model. The polynomial spa-
tial model explained 4.3% of the variation in pteridophyte
community composition and the PCNM spatial model
explained 15.9%.

Depending on the combination of spatial and environ-
mental models used, the variation partitioning results varied
greatly (Fig. 2). The lowest total variation explained
(TVE), 6.9%, resulted when the polynomial spatial model
was combined with the simple model of forest structure.
The highest TVE (32.3%) resulted when the PCNM spatial
model was combined with the polynomial model of all
environmental data. Similarly, the PE fraction varied from
1.8 to 23.7%, the SSE fraction from 0.3 to 9.4%, and the PS
fraction from 2.2 to 14.8%. When the polynomial spatial
model was used, PE > PS resulted in all cases except when
the environmental model comprised forest structural data
alone. When the PCNM spatial model was used, the situa-
tion was usually reversed, but PE > PS resulted both when
all environmental data types were used, and when soil
chemical variables were used together with their polynomi-
als (Fig. 2).

We further decomposed the PS and the SSE fractions of
variation explained by our most comprehensive model into
broad, medium and Wne-scale fractions. Most of the spatial
structure in community composition was found at broad

Table 1 Pteridophyte species with the clearest relationships (ten high-
est species scores) with each of the Wrst three constrained RDA axes.
The explanatory variables consisted of either a spatial model based on
principal coordinates of neighbour matrices (PCNM) or an environ-

mental model based on all available environmental variables and their
polynomials. Positive (+) and negative (¡) species scores are shown
separately; within each category, the species are listed in order of
decreasing absolute value of their scores

PCNM axis 1 PCNM axis 2 PCNM axis 3 Env. axis 1 Env. axis 2 Env. axis 3

+ Trich coll + Thely nica + Lomar vest + Thely nica + Polyb vill + Lomar vest

+ Polyb osmu + Trich coll + Polyb vill + Trich coll + Thely nica + Polyt feei

+ Thely nica + Campy sphe + Asple cirr + Tecta athy/riva + Sacco inae + Trich coll

+ Lomar vest + Tecta athy/riva + Polyp lori + Salpi sp1

+ Selag arth + Selag arth + Bolbi nico + Dipla stri

+ Tecta athy/riva + Dipla stri + Dipla stri

+ Bolbi nico

+ Tecta sp7

+ Pteris sp2

¡ Polyb vill ¡ Danae wend ¡ Polyb alfr ¡ Adian obli ¡ Danae wend ¡ Polyp lori

¡ Salpi sp1 ¡ Polyp lori ¡ Polyb vill ¡ Lomar vest ¡ Trich eleg

¡ Adian obli ¡ Polyb osmu ¡ Sacco inae ¡ Asple cirr ¡ Danae medi

¡ Sacco inae ¡ Elaph sp9 ¡ Salpi sp1 ¡ Trich eleg ¡ Cyath ursi

¡ Salpi sp1 ¡ Alsop cusp ¡ Elaph sp9

¡ Trich eleg ¡ Alsop cusp

¡ Tecta plan ¡ Polyb alfr
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spatial scales (>650 m) in both the PS and SSE fractions.
Environmental variables contributed slightly more at Wne
(100–300 m) than at medium scales, with the exception of
soil type (Fig. 2d).

Spatio-environmental patterns in pteridophyte community 
composition

In the RDA analysis where polynomial environmental data
were used as explanatory variables, the Wve environmental
variables with the largest partial contributions to axis 1
(henceforth environmental axis 1) were (soil Mg)2, soil Ca,
slope, topographic position, and soil pH. This axis can be
interpreted as a Xoristic gradient from Xat, relatively fertile
swamp and other poorly drained sites at low topographic
positions to sloping, relatively poor, well-drained sites at
higher topographic positions (Fig. 3). Environmental axes 2
and 3, in contrast, reXect Xoristic variation independent of
this swamp–upland gradient. Environmental axis 2 is inter-
pretable as Xoristic responses to relatively Wne-scale varia-
tion in exchangeable cations and topography, and
environmental axis 3 reXects responses to variation in soil
organic matter, especially between stream valleys and other
sites. The Wve variables with the largest partial contribu-
tions to environmental axis 2 were (soil Ca)2, (soil Ca)3,
(soil Mg)2, (soil pH)2 and (soil P)3. Topographic position
also made a sizeable contribution to this axis, ranking sixth.
The Wve variables with the largest partial contributions to

environmental axis 3 were soil C, soil N, (soil C)2, slope
and soil Ca. Canopy openness also made a relatively large
contribution to this axis, ranking seventh. Generally, how-
ever, the contributions of the soil type and forest structural
variables to all three environmental axes were minor.

In the RDA analysis where PCNM spatial data were
used as explanatory variables, axis 1 (henceforth PCNM
axis 1) clearly separated the largest swamp with its

Fig. 1 Partitioning of the variation in pteridophyte community com-
position using four subsets of environmental data: soil type (S), soil
chemistry (C), forest structure (F) and topography (T). The enclosing
box indicates total variation in composition, of which 25.8% was ex-
plained by the environmental datasets. The rectangles within the box
approximately indicate the fraction of explained variation attributable
to each environmental dataset (forest structure is divided into two sep-
arate rectangles to allow its illustration). The exact sizes of the unique
contributions of each dataset, as well as their intersections, are listed to
the right of the Wgure. All the testable model fractions (i.e. the unique
contributions) were signiWcant with P = 0.001 after 999 permutations

Fig. 2 Variation in pteridophyte community composition explained
using two diVerent spatial models based on the x and y coordinates of
the plots [a third-order polynomial (a, b) or principal coordinates of
neighbour matrices (PCNM) variables (c, d)], and ten diVerent envi-
ronmental models (Wve categories of environmental data and two lev-
els of model complexity). The environmental data categories were all
data (All), soil chemistry alone (C), topography alone (T), soil type
alone (S) and forest structure alone (F). Environmental model com-
plexity refers to either a simple model of the selected environmental
variables (a, c) or to a polynomial model including cubic and quadratic
functions of the selected variables as well (b, d). For every spatial and
environmental model combination, explained variation is partitioned
into three fractions: purely spatial (space), spatially structured environ-
mental (space + environment) and purely environmental (environ-
ment). For the most comprehensive model (d), the spatial and spatially
structured environmental fractions of explained variation are further
partitioned by spatial scale (from top to bottom: broad, medium, Wne).
All the testable model fractions (i.e. purely spatial or purely environ-
mental fractions) were signiWcant with P = 0.001 after 999 permuta-
tions
123
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surroundings and some stream valleys both from many
upland areas and from the two smaller swamps, one of
which was largely treeless (Fig. 3). PCNM axis 2 was visi-
bly similar to environmental axis 1, and also mainly reX-
ected the gradient from poorly drained soils to uplands,
whereas PCNM axis 3 was less environmentally interpret-
able, although it showed some correspondence with envi-
ronmental axis 3 (Fig. 3). Although environmental

variables were not included in the analysis, there was a
strong positive relationship between site scores on PCNM
axes 1 and 3 and the swamp soil type and soil Ca concentra-
tion, respectively, and a strong negative relationship
between site scores on PCNM axis 2 and the residual soil
type (all P < 0.001 in multiple regression analysis).

In the RDA analysis where polynomial spatial data were
used as explanatory variables, site scores on axis 1 (hence-

Fig. 3 Distributions across the 
study site at La Selva Biological 
Station of a soil types, b eleva-
tion classes and c–k site scores 
of 100 m2 pteridophyte sampling 
plots on the ordination axes 1–3 
obtained in redundancy analy-
ses. Site scores were obtained 
using as the explanatory dataset 
either the polynomial environ-
mental (Poly. Envir.) model 
(c–e), the PCNM spatial model 
(f–h) or the polynomial spatial 
(Poly. Spatial) model (i–k). The 
Wlled circles indicate positive 
values, and the open circles 
negative values. The site scores 
represent the main gradients 
detected in species composition, 
as predicted by a linear combina-
tion of the explanatory variables. 
The proportion of variation in 
species composition explained 
by each axis (Ra

2 ) is given 
in parentheses
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forth polynomial axis 1) showed a much coarser spatial pat-
tern that resembled that of environmental axis 1 and PCNM
axes 1 and 2 (Fig. 3). Among the environmental variables,
soil Ca was most strongly and positively related to site
scores on polynomial axis 1, the residual soil type nega-
tively to scores on polynomial axis 2, and soil P positively
to scores on polynomial axis 3 (all P < 0.001).

Recording the ten species with the highest species scores
on each of the environmental and PCNM axes produced a
list of 26 species, of which 19 had high scores along more
than one axis (Table 1). For eight species (e.g. Polybotrya
villosula, Danaea wendlandii and Thelypteris nicaraguen-
sis; Fig. 4), observed spatio-environmental distribution pat-
terns seem to represent a primary relationship with the
swamp to non-swamp gradient (environmental axis 1 or
PCNM axis 2), and a secondary relationship with edaphic–
topographic variation in non-swamp areas (environmental
axis 2 or 3; Table 1). Four species (e.g. Trichomanes col-
lariatum; Fig. 4), had spatial distribution patterns strongly
reXected in both PCNM axes 1 and 2 (Table 1), which indi-
cates a main distributional bias either towards or away from
the largest, forested swamp and its surroundings, and a sec-
ondary bias related to swamp soils more generally. The
spatial distributions of four species (e.g. Polybotrya villo-
sula, Polybotrya osmundacea and Lomariopsis vestita;
Fig. 4), were strongly reXected in PCNM axis 1 and sec-
ondarily in PCNM axis 3 (Table 1). The distributions of a
further suite of species did not indicate any strong bias
along the swamp–upland gradient, but these were instead
associated with stream and other humid valleys (e.g.
Polypodium loriciforme, with a relatively high species
score on both environmental axis 3 and PCNM axis 3;
Fig. 4, Table 1).

Many species pairs had complementary distribution pat-
terns, often resulting from biases either towards or away
from swamp-like conditions (e.g. Thelypteris nicaraguensis

vs. Danaea wendlandii; Fig. 4). The three Polybotrya spe-
cies also had notably contrasting distributions. Polybotrya
villosula contrasted with Polybotrya osmundacea along
PCNM axis 1 (highly negative vs. positive species scores,
respectively), and with Polybotrya alfredii along PCNM
axis 3 (highly positive vs. negative species scores, respec-
tively). Whereas Polybotrya villosula had high species
scores on environmental axes 1 and 2, Polybotrya alfredii
had a high species score on environmental axis 3 (Fig. 4,
Table 1).

Discussion

Ecological interpretation of community variability

With the variables at hand, we were able to explain up to
32% of pteridophyte community variation (after correcting
for sample size and the number of explanatory variables;
Peres-Neto et al. 2006). The main axes of Xoristic diVeren-
tiation could roughly be characterized as diVerences
between swamps and uplands, between open and forested
swamps, between ridge tops and valleys, and between sites
varying in their organic matter deposition and proximity to
streams. Especially soil pH, soil concentrations of Ca, Mg,
C and N, and slope angle and relative topographic position
were strongly related to these major axes of Xoristic varia-
tion. The distributions of numerous pteridophyte species
reXected more than one of these gradients. Soil Ca and Mg
contents have been identiWed as important in several earlier
studies of pteridophyte communities in Amazonian forests,
at spatial scales ranging from metres to kilometres (e.g.
Tuomisto et al. 2003a; Costa et al. 2005; Poulsen et al.
2006). Topographic variation was another major factor both
in these studies and in a recent temperate forest study at a
similar scale to ours (Karst et al. 2005). Responses to soil

Fig. 4 a–h Distribution maps of 
the eight pteridophyte species 
discussed in the text. Small dots 
represent the locations of 100-
m2 study plots at La Selva Bio-
logical Station. Larger circles 
indicate presence of the species 
in question, with the size of the 
circle proportional to the Hellin-
ger-transformed abundance of 
the species
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pH have often been less apparent (except in Karst et al.
2005) than at our site, where pH variation is strongly linked
with the main swamp–upland gradient and exchangeable
cation contents. When soil C and N (or NO3

¡) concentra-
tions have been investigated, they have also been found
important for explaining fern distributions (Costa et al.
2005; Karst et al. 2005).

The pteridophyte species whose distributions were most
strongly related to the RDA axes diVered widely in their
relationships with environmental variables. Many species
had contrasting distributions, which in some cases clearly
reXected speciWc environmental variables (e.g. Thelypteris
nicaraguensis and Danaea wendlandii showed opposite
associations with swamp and upland soils). In other cases
the relationships were less obvious. For example, the rare
Polybotrya alfredii was restricted to a single valley,
whereas congeneric Polybotrya villosula and Polybotrya
osmundacea were abundant but mutually negatively associ-
ated elsewhere. The distribution of Polybotrya villosula
showed strong environmental structuring, but that of Polyb-
otrya osmundacea did not. Without information about the
distributions of these species over time, and over broader
spatial scales and longer ecological gradients (cf. Tuomisto
2006), it is diYcult to draw conclusions about the relative
roles of niche diVerentiation and other factors in determin-
ing these patterns.

Spatial structure in community composition was evident
at all scales encompassed by our study design. The environ-
mental component to spatially explained variation in com-
munity composition was strongest at broad scales (650–
2,000 m), but was stronger at Wne (100–350 m) than at
intermediate scales. This pattern probably reXects the spa-
tial conWguration of environmental conditions at our site.
Much of the broad-scale spatial variability is attributable to
Xoristic diVerences between the largest swamp and other
areas. The detected Wne-scale spatial variability is more
likely related to diVerences in soil fertility, drainage, and air
humidity along topographic gradients.

The complex and varied patterns of Xoristic variation
identiWed here, and the fact that these were strongly associ-
ated with quantitative variation in soil chemistry, suggest
that habitat speciWcity in this community would be severely
underestimated if habitat were characterized by soil type or
topographic position alone, as has often been done in rain
forest studies (Harms et al. 2001; Cannon and Leighton
2004; Valencia et al. 2004; but see Hall et al. 2004; John
et al. 2007). By extension, fewer rain forest species may be
habitat generalists than earlier studies have proposed.

The purely spatial fraction of explained variation has
sometimes been interpreted as predominantly a dispersal
eVect (e.g. Gilbert and Lechowicz 2004; Cottenie 2005;
Karst et al. 2005), but we do not believe this to be the case
in our study. We suspect that this fraction had a consider-

able environmental component, which was not detected
because some relevant environmental variables were omit-
ted even from our most comprehensive dataset. For exam-
ple, the main spatial pattern detected in our Xoristic data
corresponded to the distinction between forested swamp
conditions as opposed to open swamp and uplands, but this
was not well captured by our environmental data. Temporal
variation in environmental conditions, caused by gap
dynamics or climatic variability, may also produce a spatial
pattern that a snap shot environmental dataset cannot repre-
sent.

A relatively large proportion (at least 68%) of commu-
nity variation in our dataset was unexplained by either envi-
ronmental or spatial data. Undoubtedly, this is partly due to
random spore dispersal and mortality, but it may also
include deterministic variation caused by unmeasured envi-
ronmental variables. Moreover, the role of processes oper-
ating at Wner scales than those covered by a study’s
sampling design cannot be quantiWed. These may be very
important at our site, as strong turnover in pteridophyte
species composition has been identiWed at distances less
below 100 m (Jones et al. 2006). Some local turnover is
visibly related to environmental variation, but distance-lim-
ited spore dispersal and interspeciWc interactions are also
likely to be strongest at short distances.

Data quality and variation partitioning

We obtained very diVerent variation partitioning results
depending on which of 20 alternative combinations of envi-
ronmental and spatial data we used as explanatory vari-
ables. The total proportion of explained Xoristic variation
varied more than fourfold, as did the proportion explained
by space, and the proportion explained by the environment
varied ninefold. The unique contribution of the environ-
ment varied 12-fold, and the unique contribution of space
Wvefold. When the results are interpreted in terms of the rel-
ative importance of space versus environment, the ratio of
the PS to PE fractions is of particular interest. This ratio
ranged from 1:11 to 8:1 (or excluding the forest structural
model, which was our most poorly performing environmen-
tal model, from 1:11 to 3:1). This shows that the main result
of a study can easily be reversed by model choice.

Given that the variation partitioning method is an exten-
sion of multiple regression, diVerent explanatory models
can be expected to give somewhat diVerent results. How-
ever, the magnitude of this eVect has been underestimated
or overlooked in recent comparisons (e.g. Balvanera et al.
2002; Cottenie 2005; Chust et al. 2006).

We found that over two-thirds of the spatial Xoristic var-
iation detected by the PCNM model was undetected by the
polynomial model. Of the four environmental data types,
soil chemical data had the highest power to explain Xoristic
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variation, followed by topographic, soil type and forest
structural descriptors. Although these environmental data
types were partly redundant, total environmentally explain-
able variation would have been reduced by a third if had
soil chemistry been omitted from our study.

How do these results compare with earlier Xoristic varia-
tion partitioning studies? Most studies where space
explained more variation than environment used no data on
soil chemistry (Borcard et al. 1992; Svenning et al. 2004 for
trees; Chust et al. 2006). Svenning and Skov (2005) provide
an exception, but their data were derived from coarse-scale
maps rather than actual soil sampling. In contrast, in those
studies where environment explained more variation than
space, either soil chemical data were included (Duivenvoor-
den 1995; Gilbert and Lechowicz 2004; Duque et al. 2005;
Karst et al. 2005; possibly Cottenie 2005 in some cases),
disturbed landscapes were included (Dalle et al. 2002), or
the spatial model was especially coarse (Duivenvoorden
1995; Balvanera et al. 2002). In these cases, model choice
seems to be a strong predictor of the analysis results.

Austin (2002) suggested that canonical ordination analy-
ses would yield ecologically more meaningful results by
enabling non-linear functions of environmental variables.
In the present study, which covered a limited range of eco-
logical variation, including polynomials of the environmen-
tal variables increased total environmentally explained
variation by between one-quarter and one-third. In broader
scale studies that encompass a wider range of environmen-
tal conditions, the results of linear and non-linear methods
can be expected to diverge much more.

In addition to diVering in their explanatory variables,
community studies have also diVered in their response vari-
able (species presence–absence or abundance data, focal
taxa), in the ordination method applied (RDA or CCA), and
in spatial extent, spatial resolution, and the environmental
gradients they cover. The overall proportion of explained
variation should be adjusted for the number of sampling
sites and explanatory variables (Legendre et al. 2005;
Peres-Neto et al. 2006), but this adjustment has yet to be
commonly implemented. Consequently, it is almost impos-
sible to evaluate to what degree diVerences in the results
among studies are methodological, and to what degree they
reXect real diVerences among focal plant groups or geo-
graphical areas. Studies applying consistent methods in
cross-site and cross-taxon analyses would be of particular
value for resolving these issues.

Conclusion

We found evidence of strong environmental control of
beta-diversity in Costa Rican rain forest pteridophytes.
However, the explanatory power of environmental and spa-
tial variables together varied between 7 and 32%, and the

relative importance of “space” and “environment” could be
reversed by model choice. This leads us to the following
conclusions about the interpretation of variation partition-
ing results, and recommendations for future studies:

1. Ecological background knowledge is needed when
selecting environmental variables to avoid omitting
key factors. Plant growth is known to depend on the
availability of various nutrients, water and light, so
quantitative descriptors of these should be included in
Xoristic studies. Incorporating non-linear relationships
between Xoristic and environmental variation may also
be needed, especially if the sampled environmental
gradient is long. Results cannot be assumed to reXect
the eVect of “the environment” in general, unless all
potentially relevant environmental variables have been
adequately modelled.

2. For the adequate modelling of “space”, a suYciently
Xexible spatial model is needed. A simple spatial
model, such as one based on x and y coordinates, or
polynomial functions of these, will only be able to rep-
resent broad-scale spatial patterns. The ability to detect
spatial pattern will also depend on the sampling setup,
such as interplot distances and the spatial arrangement
of the plots.

3. R2 adjustment needs to be applied to eliminate the
inXuence of sample size and the number of explanatory
variables on the proportion of variation explained.

4. Great care needs to be taken in interpreting the results,
as these are subject to constraints imposed by the data-
set and the methods applied. Both generalisations from
a particular study and comparisons across studies need
to carefully consider these constraints. Biological
meaning can only be separated from methodological
artefacts if the impact of data quality on the results is
recognised.
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