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MULTIPLE REGRESSION
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Abstract. The natural complexity of ecological communities regularly lures ecologists
to collect elaborate data sets in which confounding factors are often present. Although
multiple regression is commonly used in such cases to test the individual effects of many
explanatory variables on a continuous response, the inherent collinearity (multicollinearity)
of confounded explanatory variables encumbers analyses and threatens their statistical and
inferential interpretation. Using numerical simulations, I quantified the impact of multi-
collinearity on ecological multiple regression and found that even low levels of collinearity
bias analyses (r $ 0.28 or r2 $ 0.08), causing (1) inaccurate model parameterization, (2)
decreased statistical power, and (3) exclusion of significant predictor variables during model
creation. Then, using real ecological data, I demonstrated the utility of various statistical
techniques for enhancing the reliability and interpretation of ecological multiple regression
in the presence of multicollinearity.

Key words: confounding factors; multicollinearity; multiple regression; principal components
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INTRODUCTION

Ecologists often use multiple regression to develop
models that describe the regulation of particular aspects
of organismal, population, and community ecology (de-
pendent or response variables) by various environ-
mental and biological factors (independent or explan-
atory variables) (James and McCulloch 1990). Multiple
regression analyses, however, can be hindered by the
complex nature of ecological data, in which targeted
ecological responses are linked to many explanatory
variables that are often correlated among each other
(multicollinear). Multicollinear explanatory variables
are difficult to analyze because their effects on the re-
sponse can be due to either true synergistic relation-
ships among the variables or spurious correlations.
Ecologists often counter by designing experimental
studies that break correlations among explanatory var-
iables and analyzing the data with analyses of variance
(ANOVA) that allow for the isolation of main effects
and higher-order interactions among individual ex-
planatory variables (Scheffe 1959). In practice, how-
ever, ecological explanatory variables are often not un-
der experimental control, in which case the explanatory
variables of interest may be correlated. It is under these
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conditions that multiple regression is often used to an-
alyze ecological data (James and McCulloch 1990).

The statistical and inferential problems of multicol-
linearity in multiple regression have been well estab-
lished in the statistical literature (e.g., Cohen and Co-
hen 1983, Hocking 1996, Neter et al. 1996, Tabachnick
and Fidell 1996, Draper and Smith 1998, Chatterjee et
al. 2000), although problems specific to ecological data
have rarely been discussed (James and McCulloch
1990, Phillipi 1993, Legendre and Legendre 1998; and
see Mitchell-Olds and Shaw 1987 and Petraitis et al.
1996 for related discussions of fitness regression and
path analysis, respectively). Yet, despite previous
warnings by statisticians, only 32 of 294 (11%) papers
published in Ecology, Ecological Monographs, Func-
tional Ecology, Journal of Animal Ecology, and Jour-
nal of Ecology from 1993 to 1999 that used multiple
regression for data analysis even discussed the poten-
tial presence of multicollinearity. Of these 32 papers,
only 17 (53%) actually tested whether multicollinearity
was present; of these 17 papers, 11 (65%) found sig-
nificant multicollinearity, suggesting that ecological
data are typically collinear. But how desperate is the
problem for ecologists? The goal of this paper was
twofold: (1) to quantify through numerical simulation
the statistical and inferential biases caused when mul-
ticollinearity is present in multiple regression analyses;
and (2) to demonstrate the utility of various statistical
techniques for enhancing the reliability and interpre-
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tation of ecological multiple regression in the presence
of multicollinearity.

THEORETICAL PROBLEMS AND

EMPIRICAL CONSEQUENCES

In multiple linear regression, data are fit to a linear
model that predicts values of a response (Y) as the
weighted sum of explanatory variables (Xi) and random
error («): Y 5 b0 1 b1X1 1 b2X2 1 . . . 1 biXi 1 «,
where bs are regression coefficients. The typical goal
is to build a model using the fewest variables to explain
the greatest variability in the response, and to accu-
rately parameterize regression coefficients for those
variables. If all explanatory variables are independent
of each other, each regression coefficient represents the
total contribution of a given predictor to the response.
If, however, two or more variables are collinear to any
extent, partial regression coefficients need to be cal-
culated to isolate the unique contribution of a particular
explanatory variable (hereafter the predictor) from that
shared with other variables (hereafter confounders).
This unique contribution is the extra sums of squares.
The distinction between unique and shared contribu-
tions is the crux of multiple regression’s statistical and
inferential problems due to multicollinearity.

When data are standardized to a mean of zero and
unit variance, the partial regression coefficient for a
predictor in the presence of a single confounder is de-
fined as: b 5 (rY1 2 rY2r12)/(1 2 , where rY1 is the2r )12

correlation between the response and predictor, rY2 is
that between the response and confounder, and r12 and

are the correlation and coefficient of determination2r12

between the predictor and confounder (Neter et al.
1996); b reduces to b* 5 rY1 in the absence of mul-
ticollinearity (i.e., r12 and 5 0). As such, partial2r12

regression coefficients decrease nonlinearly with in-
creasing multicollinearity (as shown by Petraitis et al.
1996) and deviations from b* will occur in the presence
of even the weakest multicollinearity (i.e., b , b* at
all . 0). The marginal statistics used to test the2r12

significance of b (i.e., H0: b 5 0), which is typically
used as a criterion to determine whether a given pre-
dictor is to be included in a model, is defined as t 5
b/SE(b) (or t 5 (rY1 2 rY2r12)/ ). Here, SE(b) isÏMSresidual

the standard error of the coefficient which increases
linearly with increasing (Neter et al. 1996). Power2r12

to detect an effect as significant will therefore also
decrease nonlinearly with increasing multicollinearity.

If, during stepwise variable selection, a predictor is
ultimately excluded from a model due to its low ap-
parent significance, regression coefficients and mar-
ginal statistics of the other variables will change
(Mitchell-Olds and Shaw 1987, Philippi 1993, Neter et
al. 1996, Petraitis et al. 1996). The use of stepwise
variable selection procedures that rely on calculation
of marginal statistics may even exclude explanatory
variables that are actually highly correlated with the
response (i.e., decrease statistical power). Furthermore,

although statistical significance and fit of a final model
are not directly affected by multicollinearity (expected
sums of squares and marginal statistics are not com-
puted), interpretation of the model may be uncertain
due to biased parameterization of partial regression co-
efficients for individual explanatory variables. Not only
will the sum of r2 for individual predictors generally
differ from the R2 of the final model, actual application
of the final model to predict future values for the re-
sponse can be grossly inaccurate, since none of the
partial regression coefficients reflect shared contribu-
tions (Tabachnick and Fidell 1996).

These statistical difficulties in analyzing ecological
data in the presence of multicollinearity were illus-
trated numerically by calculating marginal t statistics
and P-values for a predictor in the presence of a single
confounder (Fig. 1). The purpose of the simulation was
to estimate the level of multicollinearity that would
result in the erroneous exclusion of significant predic-
tors from a final model. In general, (1) apparent sig-
nificance (P or apparent a) decreased rapidly with in-
creasing multicollinearity; (2) weak predictors were
more vulnerable to erroneous exclusion than strong
ones; (3) predictors with high true significance became
more vulnerable to erroneous exclusion as the corre-
lation between the response and confounder (rY2) in-
creased; and, (4) even if correlations between the re-
sponse and confounders were relatively weak, low lev-
els of multicollinearity (i.e., r12 $ 0.28 or $ 0.08)2r12

resulted in significant predictors appearing insignifi-
cant.

To illustrate the negative impact of these statistical
biases on the reliability and interpretation of ecological
multiple regression, data were reanalyzed from a study
of the effect of various environmental factors (wave
orbital displacement, wave breaking depth, wind ve-
locity, and mean tidal height) on the shallow (upper)
distributional limit of the subtidal kelp Macrocystis
pyrifera (Graham 1997). The overall severity of mul-
ticollinearity in these data was moderate, as wave or-
bital displacement, wave breaking depth, and wind ve-
locity were strongly correlated among each other (r $
0.6; VIF $ 2), but tidal height was only weakly cor-
related with the other variables (r , 0.4; VIF 5 1.17).
Although Neter et al. (1996) and Chatterjee et al.
(2000) suggested that multicollinearity is only severe
at VIFs . 10, it is clear from Fig. 1 that VIFs as low
as 2 can have significant impacts (see also Petraitis et
al. 1996). When analyzed using separate linear regres-
sions, all of the explanatory variables were significant
or marginally significant predictors of the response
(i.e., P # 0.1; Table 1). Backwards stepwise multiple
regression, however, suggested that only wave orbital
displacement and wind velocity were important (Table
1; Appendix A); forward selection yielded the same
final model. Partial regression coefficients (b in stan-
dard regressions; Table 1) were often more than 1 SE

lower than the nonpartial regression coefficients (b in
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FIG. 1. (A) Effect of multicollinearity on predictor apparent significance (P or apparent a) in the presence of a single
confounder. Multicollinearity was represented by and variance inflation factors (VIF 5 1/(1 2 *R2); *R2 is the R2 when2r12

explanatory variable i is regressed on all other variables in model). Values of rY1 were chosen to provide specific levels of
‘‘true’’ significance in the absence of multicollinearity (a; given on each line). MSresidual equaled 0.1 for 35 degrees of freedom
and was taken from real standardized data. Predictors with apparent P values that increased to $ 0.15 were considered to
be negatively affected by multicollinearity; all true P values were # 0.05 in this exercise. (B) Effect of multicollinearity on
the exclusion of a significant predictor. The y-axis is the true significance of predictors (expressed as P) that would have
been excluded during variable selection. Data were obtained by setting t 5 1.47 (corresponding to P 5 0.15 for 35 df) and
solving for ‘‘true’’ significance (rY1) as a function of various levels of multicollinearity ( or VIF) and confounder strength2r12

(rY2; given on each line).

simple regressions; Table 1), reflecting the omission of
variability in the response shared among predictors.
Thus, although wave-breaking depth was initially iden-
tified as important (Table 1), this was due almost en-
tirely to variability shared with wave orbital displace-
ment. Many would argue that the removal of wave-
breaking depth was therefore necessary because it was
a redundant variable, however, there was no evidence
that wave-breaking depth wasn’t the variable function-
ally responsible for the shared contribution. Clearly,
for two highly collinear explanatory variables that have
a strong shared contribution to the response, the de-
cision as to which is the most important predictor, and
should therefore be retained, is very ambiguous.

SOME OLD AND NOT-SO-OLD SOLUTIONS

If the entire goal of conducting a multiple regression
analysis is to develop a model that best predicts vari-
ability in the response, and there is no interest in study-
ing particular relationships between the response and
explanatory variables, then the problems due to mul-
ticollinearity can be effectively ignored (i.e., ‘‘the
proof is in the pudding’’ scenario). In most ecological
studies, however, researchers are interested in exam-
ining the effects of particular explanatory variables, in
which case various techniques are available for ad-
dressing the statistical pitfalls of multicollinearity. One
approach is to avoid or stabilize the use of marginal
statistics for variable selection. The easiest way to do

this is to simply drop collinear variables from analysis
(Philippi 1993, Legendre and Legendre 1998). Variable
exclusion, however, ignores the unique contribution of
the omitted variable and can result in a substantial loss
of explanatory power (Carnes and Slade 1988, James
and McCulloch 1990) as well as inferential problems
in choosing which variables should remain (Mitchell-
Olds and Shaw 1987). Another method is to avoid using
marginal statistics during variable selection by pre-
determining model composition (a priori modeling).
This circumvents the problem of choosing which col-
linear variables should be excluded. In the absence of
a reasonable a priori model, marginal statistics can also
be avoided by using an ‘‘all possible subsets’’ method
of analysis (Furnival 1971). F statistics and coefficients
of determination are calculated for all possible com-
binations (subsets) of variables, and the subset with the
greatest fit is identified as ‘‘best’’ using adjusted R2 (or
Akaike’s Information Criteria, Mallow’s CP, PRESS,
MSE, etc.; Neter et al. 1996). Since distinctions are
not made between unique and shared contributions, all
possible subsets analyses can help to identify reliably
the final model that explains the most variability in the
response, although the number of potential subsets can
become analytically untreatable as the number of var-
iables increases. An alternative to avoiding marginal
statistics is to stabilize them using ridge regression, in
which a constant is applied to the elements of the cor-
relation matrix so that it is displaced from singularity,
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TABLE 1. Simple linear regressions, and final models from standard multiple regression,
sequential regression, and principal components regression (final models are after removal
of insignificant explanatory variables; P values $ 0.15).

Method and variable b SE t F2,35 P r2

Simple
Wave orbital displacement
Wave breaking depth
Wind velocity
Tidal height

0.194
0.072
0.018

20.358

0.028
0.017
0.003
0.191

···
···
···
···

43.58
17.41
29.15

3.53

,0.001
,0.001
,0.001

0.068

0.55
0.33
0.45
0.09

Standard
Wave orbital displacement
Wind velocity
Total

0.139
0.008
···

0.038
0.004

···

3.62
2.10
···

···
···

26.06

0.001
0.043

,0.001

0.55
0.45
0.60

Sequential
Wave orbit. displ. (1st prior.)
Wind velocity (2nd prior.)
Total

0.194
0.008
···

0.028
0.004

···

6.91
2.09
···

···
···

26.06

,0.001
0.043

,0.001

0.55
0.05
0.60

Principal components
Principal component 1
Principal component 4
Total

0.157
20.039

···

0.024
0.024

···

6.66
21.69

···

···
···

23.62

,0.001
0.100

,0.001

0.54
0.03
0.57

Notes: Model intercepts were significant for all models (P , 0.0001) and are not given. In
standard and principal components regressions, r2 values represent total contributions, whereas
in the sequential regression, r2 values represent either unique or unique plus shared contributions
as determined by assigned priorities.

increasing the precision of the coefficients (Birkes and
Dodge 1993). A problem with all of these methods is
that they still require the use of marginal statistics to
estimate regression coefficients or determine the rela-
tive importance of individual explanatory variables,
and thus offer no refuge from associated biases due to
multicollinearity.

A more purposeful approach to solving the problems
due to multicollinearity is to explore the functional
nature of the collinearities, rather than avoid them. This
requires methods for identifying and parameterizing
the unique and shared contributions of explanatory var-
iables to a response. Here, I used the kelp forest ex-
ample data to illustrate how three such methods (re-
sidual/sequential regression, principle components re-
gression, and structural equation modeling) can im-
prove the reliability and interpretation of ecological
multiple regression in the presence of multicollinearity.

Residual and sequential regression

When multicollinearity is limited to pairs of explan-
atory variables, the easiest way to disentangle unique
from shared contributions is simply to assume that one
variable is functionally more important than the other,
assign the more important variable priority over the
shared contribution, and ignore the shared contribution
when analyzing the less important variable. This can
be done by regressing the less important variable
against the other, and replacing the less important var-
iable with the residuals from the regression (see for
example, Graham 1997). Priorities can be based on a
researcher’s own instincts and intuition, previously col-
lected data, data currently under analysis, or the results

of prior experiments that estimated the relative impor-
tance of one factor over another. Subsequent multiple
regression analyses (residual regressions) will be un-
biased since the explanatory variables are no longer
statistically collinear. As multicollinearity among ex-
planatory variables becomes more complicated, a mod-
ification of sequential regression (or hierarchical re-
gression) can be used. Here it is also assumed that some
variables are functionally more important than others,
but fixed priorities are assigned to shared contributions
for all variables in the model (Tabachnick and Fidell
1996). Marginal statistics are computed for variables
in order of highest to lowest priority, with any given
variable’s marginal statistics ignoring variability al-
ready explained by higher priority variables. As such,
the rank (order) of marginal statistics remains constant
as variables are added or removed from the model, and
the decision as to whether a particular variable should
remain in the model does not depend on the presence
of other variables. Furthermore, both unique and shared
contributions are represented in the final parameterized
model by the regression coefficients and coefficients
of determination. The major concern when using these
methods is whether the assigned priorities are relevant
to the true functional importance of the variables, and
thus, it is vital that researchers are critical of the criteria
used to assign priorities.

The final model from a sequential regression analysis
of the example data is presented in Table 1, where
priorities were based on the unique contributions of
each explanatory variable. Regression coefficients and
the rank of marginal statistics were constant for each
variable selection step (Appendix B) and confirmed
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that, by assigning fixed priorities, the decision as to
whether a particular variable should remain in the mod-
el does not depend on the presence of other variables
and model composition is not affected by the use of
marginal statistics. It was concluded from this analysis
that the unique contribution of wave orbital displace-
ment, plus its shared contribution with winds, was the
most important predictor of the response, but that the
unique contribution of winds was also important (Gra-
ham 1997). Note that, although the standard and se-
quential multiple regressions yielded the same final
models, with sequential regression analyses both
unique and shared contributions are represented by the
regression coefficients and coefficients of determina-
tion, and the individual r2 values summed to R2.

Principal components regression

Alternatively, in principal components regression, it
is not generally believed that multicollinearity can be
understood best by a hierarchical assignment of pri-
orities, but that collinearities indicate the presence of
underlying (latent) variables that are responsible for
the shared contributions (Tabachnick and Fidell 1996).
A principal components analysis is done on the ex-
planatory variables that identify vectors (i.e., the linear
combinations of variables) that account, successively,
for the greatest variation in the observations of the
explanatory variables; the principal components anal-
ysis is done in complete disregard of observed vari-
ability in the response. Scores of the orthogonal prin-
cipal components are used as explanatory variables in
a subsequent multiple regression analysis (Philippi
1993, Tabachnick and Fidell 1996, Legendre and Le-
gendre 1998). Since principal components are orthog-
onal, partial regression coefficients and the rank of mar-
ginal statistics do not fluctuate as variables are added
or removed and the results of principal components
regression will be stable regardless of the severity of
multicollinearity. Given that variable selection is un-
biased in principal components regression, all principal
components can and should be included during variable
selection, avoiding the concerns of Mitchell-Olds and
Shaw (1987) that explanatory power may be lost by
limiting analyses to only those variables with high ei-
genvalues. The primary limitation of principal com-
ponents regression lies in the biological interpretation
of the principal components.

A principal components analysis was performed on
the example data (Appendix C). PC1 accounted for
64% (l 5 2.57) of the variability among the variables,
with wave orbital displacement, wave breaking depth,
and wind velocity loading heavily and positively on
this PC (all loadings $ 0.86); mean tidal height loaded
moderately and negatively (loading 5 20.54). PC1
thus represented high wave intensity, high wind ve-
locity, and low tide height, or the occurrence of storms
during low tides (see Graham [1997] for a detailed
biological interpretation of these data). PC2 explained

only 20% of the variability (l 5 0.81) and appeared
to represent mostly tides (loading 5 0.84; all others #
0.26). PC3 explained less than 10% of the variability
(l 5 0.37) and primarily represented wind activity
(loading 5 0.49; all others # 0.19). PC4 explained
;6% of the variability (l 5 0.26) and represented dif-
ferences in the two estimates of wave intensity (OD
and BD loaded 20.39 and 0.29 respectively; all others
# 0.13). The subsequent principal components regres-
sion confirmed the stability of regression coefficients
and marginal statistics (Appendix C) and that individ-
ual r2 values also summed to the total R2 for the final
model (Table 1). Not surprisingly, the PC that repre-
sented the occurrence of storms (PC1) explained the
greatest amount of variation in the response. The im-
portance of winds (PC3), however, was not emphasized
in the principal components regression. Instead, PC4
was retained suggesting the importance of distinguish-
ing between different aspects of wave intensity, despite
the fact that PC4 explained only ;6% of the variability
among explanatory variables. That the sequential and
principal components regression analyses yielded dif-
ferent results when applied to identical data highlights
the importance of determining whether latent variables
are likely driving variability in the measured explan-
atory variables.

Structural equation modeling

Like residual/sequential regression and principal com-
ponents regression, in structural equation modeling
(SEM), it is generally assumed that the best functional
multiple regression model is one that can account for
both unique and shared contributions. Moreover, like a
priori modeling, SEM does not simply explore data to
search for relationships between the response and ex-
planatory variables, but rather sets out to test and pa-
rameterize hypothesized relationships among the vari-
ables. As such, SEM can be used to develop accurate
and meaningful final multiple regression models when
collinearities among explanatory variables are thought
to be present (Hayduk 1987, Loehlin 1987, Bollen 1989,
Bentler 1995, Ullman 1996, Shipley 1999). Hypothetical
causal links among variables (both unique and shared
contributions) are specified and structural equations
(models) are developed that represent each potential
combination of links. Regression coefficients are then
parameterized simultaneously for each link of each mod-
el (Bentler 1995, Ullman 1996) and the overall fit of the
models are compared as with ‘‘all possible subsets’’
techniques. In its generalized form, SEM directly in-
corporates latent variables into its models that can rep-
resent shared contributions (Ullman 1996; for ecological
examples see Brown and Weis 1995, Bishop and Schem-
ske 1998, Gough and Grace 1999), and thus avoids many
of the problems identified by Petraitis et al. (1996) for
path analysis. Still, the successful application of SEM
to ecological data is vulnerable to inferential errors made
during model development and selection (Ullman 1996,
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FIG. 2. A structural equation model representing the re-
lationships among four measured explanatory variables (wave
orbital displacement [OD], wave breaking depth [BD], mean
tidal height [LTH], and wind velocity [W]), two latent vari-
ables (storm intensity and wave activity), and the response
variable (giant kelp shallow limit). Arrows depict the pro-
posed links between variables. Parameterized regression co-
efficients are associated with each link. The coefficients were
parameterized using iterative normal-theory maximum like-
lihood available with EQS 6 for Windows (Multivariate Soft-
ware, Encino, California, USA). The latent variables were
developed using the covariance matrix and varimax rotation,
and initiated using adjusted principal components according
to Bentler (1995).

Shipley 1999): for example, alternate models may exist
that differ greatly in the form of their hypothetical causal
links, yet may explain similar amounts of variability in
the response.

An SEM was developed for the example data, rep-
resenting one potential relationship between the four
predictor variables (wave orbital displacement, wave
breaking depth, mean tidal height and wind velocity)
and the response (giant kelp shallow limit) (Fig. 2; Ap-
pendix D). It was hypothesized that two latent variables
were important in driving variability in the response.
The first structural equation specified that the latent var-
iable wave intensity could be estimated by a linear com-
bination of wave orbital displacement and wave break-
ing depth. The second structural equation specified that
the latent variable storm intensity could be estimated by
a linear combination of wind velocity, mean tidal height,
and the latent variable wave intensity. The final struc-
tural equation simply specified the linear relationship
between the latent variable storm intensity and the re-
sponse (R2 5 0.59). Again, the results of the parame-
terized SEM support the conclusions of the sequential
and principal components regressions, identifying the
underlying importance of storm activity during low tides
in driving variability in giant kelp upper limits. Fur-
thermore, by including latent variables into the model,
various unique and shared contributions among explan-
atory variables were explicitly parameterized. However,
although R2 was almost identical among the various

methods (i.e., 0.59–0.60), the adjusted R2 was in fact
lower for the SEM (0.51) than the sequential (0.57) and
principal components (0.55) regressions, due to the
greater number of SEM regression coefficients that need-
ed to be parameterized. Thus, although the incorporation
of latent variables adds flexibility during model devel-
opment, SEM may not provide the greatest explanatory
power for all data analyses.

Post-analysis

The application of one of the above techniques
should not be considered the final step in analysis of
collinear data. First, each technique demands the stan-
dard set of parametric assumptions: normality, constant
variance, and independence of error terms. As such,
thorough analysis of model residuals should always
follow the application of multiple regression tech-
niques. Some techniques (e.g., principal components
analysis) additionally require (1) nonsingular matrices
of the correlation–covariance among explanatory var-
iables, and (2) that the number of observations of the
response greatly exceeds the number of explanatory
variables (Tabachnick and Fidell 1996). Second, the
generality of estimated regression coefficients should
be validated against data that are collected indepen-
dently of those used during model parameterization.
Such validation procedures may also be useful for as-
sessing whether a given multiple regression technique
offers the greatest explanatory power. Finally, struc-
tural equation modeling and residual, sequential, and
principal components regression all deal with shared
vs. unique variance contributions differently, and there-
fore provide diverse perspectives as to the nature of
the underlying multicollinearity. As such, ecologists
will likely find it most useful to explore multicollinear
data with a combination of techniques.

CONCLUSION

This study has quantitatively shown that statistical
and inferential problems created by multicollinearity
can be extremely severe under realistic ecological con-
ditions. Although straightforward techniques exist for
diagnosing and remediating the effects of multicolli-
nearity in multiple regression, they are not commonly
utilized in ecology. Still, most of these procedures only
help to stabilize the statistical analyses, making them
less biased, less subjective, and more repeatable, but
only the statistical collinearity will have been removed
from the data. The explanatory variables are still, by
nature and in nature, correlated, whether or not func-
tionally. Aside from designing manipulative experi-
ments to break correlations among explanatory vari-
ables, no technique exists that allows researchers to
infer the different functional relationships between the
response and explanatory variables. Experiments, how-
ever, cannot be applied under all field situations and
are especially difficult during the exploratory stage of
data collection and model development. It is then that
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the determination of relative importance of individual
explanatory variables via sampling, and thus a dis-
tinction between unique and shared variance contri-
butions, becomes important. The suite of techniques
described herein compliment each other and offer ecol-
ogists useful alternatives to standard multiple regres-
sion for identifying ecologically relevant patterns in
collinear data. Each comes with its own set of benefits
and limitations, yet together they allow ecologists to
directly address the nature of shared variance contri-
butions in ecological data.
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APPENDIX A

Tables of SYSTAT output for backwards stepwise multiple regression for the model are available in ESA’s Electronic Data
Archive: Ecological Archives E084-073-A1.

APPENDIX B

Residual transformation equations and SYSTAT output for backwards stepwise sequential regression are available in ESA’s
Electronic Data Archive: Ecological Archives E084-073-A2.

APPENDIX C

Results of principal components analysis and SYSTAT output for backwards stepwise principal components regression
are available in ESA’s Electronic Data Archive: Ecological Archives E084-073-A3.

APPENDIX D

EQS protocol and output for structural equation modeling of the original explanatory variables are available in ESA’s
Electronic Data Archive: Ecological Archives E084-073-A4.

SUPPLEMENT

Data used in standard (Appendix A), sequential (Appendix B), and principal components regressions (Appendix C), and
structural equation models (Appendix D) of the effect of various environmental factors on the distribution of giant kelp are
available in ESA’s Electronic Data Archive: Ecological Archives E084-073-S1.


