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ABSTRACT Structural equation modeling (SEM) represents a framework for developing and evaluating complex hypotheses about
systems. This method of data analysis differs from conventional univariate and multivariate approaches familiar to most biologists in several
ways. First, SEMs are multiequational and capable of representing a wide array of complex hypotheses about how system components
interrelate. Second, models are typically developed based on theoretical knowledge and designed to represent competing hypotheses about the
processes responsible for data structure. Third, SEM is conceptually based on the analysis of covariance relations. Most commonly, solutions are
obtained using maximum-likelihood solution procedures, although a variety of solution procedures are used, including Bayesian estimation.
Numerous extensions give SEM a very high degree of flexibility in dealing with nonnormal data, categorical responses, latent variables,
hierarchical structure, multigroup comparisons, nonlinearities, and other complicating factors. Structural equation modeling allows researchers
to address a variety of questions about systems, such as how different processes work in concert, how the influences of perturbations cascade
through systems, and about the relative importance of different influences. I present 2 example applications of SEM, one involving interactions
among lynx (Lynx pardinus), mongooses (Herpestes ichneumon), and rabbits (Oryctolagus cuniculus), and the second involving anuran species
richness. Many wildlife ecologists may find SEM useful for understanding how populations function within their environments. Along with the
capability of the methodology comes a need for care in the proper application of SEM. (JOURNAL OF WILDLIFE MANAGEMENT

72(1):14-22; 2008)
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WHAT IS STRUCTURAL EQUATION
MODELING?

Structural equation modeling (SEM) is a collection of
procedures whereby complex hypotheses, particularly those
involving networks of path relations, are evaluated against
multivariate data (Bollen 1989, Grace 2006). Structural
equation modeling can be described in terms of its history,
purpose, statistical and mathematical framework, and
philosophy of application. I describe aspects of SEM that
are most relevant to practicing wildlife biologists. I focus on
why and how one would use SEM, rather than the variety of
mathematical and statistical procedures encompassed by
SEM, although I give some information on statistical
procedures in association with examples.

Using multiple equations to represent complex path
relationships opens a new set of scientific questions for
quantitative investigation. This is important because, to a
great degree, univariate statistical models are best suited for
the study of single processes or responses. In contrast,
structural equation models are better suited to study the
multiple processes that control the behavior of systems.
Researchers commonly want to know the interplay between
processes, their relative importance, and how effects of
perturbations cascade through systems. Of ultimate
importance for many is the desire to understand and
predict how properties of the system will behave in natural
settings with multiple controlling factors. Conventional
multivariate procedures are useful in summarizing complex
data but are largely exploratory and not well-suited for
representing or evaluating network hypotheses (McCune
and Grace 2002).

Y E-mail: Jim_Grace@usgs.gov

EXAMPLE 1: THE LYNX AND THE
MONGOOSE

A simple example for illustrating one application of SEM to
wildlife populations comes from Palomares et al. (1998).
They were interested in the relationships between Iberian
lynx (Lynx pardinus) and Egyptian mongoose (Herpestes
ichneumon) in southwestern Spain and how this relationship
was influenced by the protection afforded by the Dofiana
National Park.

The construction of an SEM depends on what is known or
suspected about the elements of the system being studied.
The authors were aided by an extensive history of studies of
this system (see references in Palomares et al. 1998). Lynx
are known to feed primarily on European rabbits (Orycto-
lagus cuniculus), although they are not believed to regulate
rabbit populations in the study region. They also are known
to kill mongooses and other smaller carnivores. Mongooses,
on the other hand, are considered opportunistic feeders, and
they feed on rabbits, small mammals, birds, reptiles,
amphibians, and carrion. Both lynx and mongooses depend
on shrub-land areas and only rarely use open habitats. Lynx
are a protected species in Spain, but they are generally more
abundant in Dofiana National Park, which is buffered from
human activities, than in the surrounding landscape. In
contrast, mongooses seem quite adaptable to human
activities and are abundant outside as well as inside the park.

Palomares et al. (1998) considered 3 alternative a priori
models (Fig. 1). The authors believed that the pathways
(solid lines in Fig. 1) represented processes operating in
their system. Thus, their a priori beliefs were that 1) rabbits
would be more abundant where there were more shrubs; 2)
the abundance of lynx would be greater with abundant
rabbits, dense shrubs, and the protection afforded by the
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national park; and 3) mongoose numbers would be reduced
by lynx and promoted by shrubs. Finally, Palomares et al.
(1998) presumed that shrub densities might differ between
protected and unprotected areas (represented by a double-
headed arrow between these 2 variables in Fig. 1). If the
authors thought that the protection of the park necessarily
caused an increase in shrub density, the model structure
would have included a unidirectional path from protection
to shrubs instead of a double-headed arrow between the
two.

The authors were curious about 2 additional processes that
might have been operating. Do mongooses control rabbit
numbers? Palomares et al. (1998) specified a model that
incorporated a direct path from rabbits to mongooses as
model 2, and they considered it to be a competing model
with model 1 (which omits this path; Fig. 1). Again, it was
an important assumption in this example that neither lynx
nor mongooses were the primary regulators of rabbit
densities, for if they were, one would expect an arrow of
negative influence to point from lynx and mongooses to
rabbits. A second question of interest to Palomares et al.
(1998) was whether mongooses benefit from the protection
afforded by the national park. This additional process was
the basis for a third competing model, model 3.

As investigators, we also may consider questions that
involve networks of variables. Might a positive association
between lynx and shrubs be explained entirely by the
presence of more rabbits where there are more shrubs? In
that case, a positive correlation between shrubs and lynx
would be observed, but a direct path would not. If a direct
path from shrubs to lynx was found to be needed to explain
the data, it would suggest that shrubs were influencing lynx
through some other mechanism independent of rabbit
abundance. In other words, we are now asking whether we
can partition an association between lynx and shrubs into
separate processes and how important those processes were.

There are other questions we can ask about the network of
relationships (Fig. 1). How mongooses relate to shrubs
seems complicated. Although they are observed to use
shrubs to avoid detection, the same is true of lynx, their
nemesis. What is the net result of such potentially offsetting
processes? Is one much stronger than the other so that, for
example, mongooses avoid shrubby areas in the presence of
lynx? Or, do the 2 processes cancel each other out so that
there is no observable relationship between mongooses and
shrubs? What about the relationship between rabbits and
mongooses? We could imagine several different possibilities.
It is possible that the dominant relationship would be
negative because of enhanced predation by lynx. It also is
possible that the relationship would be positive because both
prefer shrubs. Finally, as Palomares et al. (1998) specified in
their model 2, mongooses might be more abundant where
rabbits are available as a food. Although we can imagine all
these processes as true, understanding this system is also
about understanding the importance of the individual
processes, which is what drives the behavior of the system.

The questions I mentioned thus far are of the sort that

Mongooses

Figure 1. A priori models developed by Palomares et al. (1998) to represent
anticipated relationships among mongooses, lynx, rabbits, shrubs, and
protection in southwestern Spain. This diagram represents 3 alternative
models. Model 1 includes all paths shown as solid lines. Model 2
additionally includes the path from rabbits to mongooses (dotted). Model 3
additionally includes the path from protection to mongooses (dashed). Zeta
( £ ) values represent error variances for response variables.

fascinated Sewell Wright and led him to develop the
method of path analysis (Wright 1921). When SEM
became based on maximum-likelihood estimation proce-
dures in the early 1970s, it became possible to ask additional
questions. Are there important forces at work that we have
not anticipated? For example, perhaps our methodology
contains a bias whereby animal tracks for lynx and
mongooses are underreported in some samples but not
others. What if some major factor having joint influence on
elements of the model was omitted from the study? Would
we be able to detect such omissions? In modern SEM we
might detect such effects manifested in the form of
correlated errors or other missing pathways. Similarly, if it
turned out that rabbits were being directly aided by the
protection of the park, SEM would lead us to that discovery.
Also, we might be able to detect any confounding feature of
the park that promoted or reduced rabbit numbers.

Data Collection Methods

Palomares et al. (1998) conducted track surveys during
winter and early spring inside and outside Dofiana National
Park for several years. Along with lynx and mongoose track
abundance, they recorded signs of rabbit and shrub coverage
was measured. Confidence in the track survey data was
based, in part, on previous radiotracking and trapping
studies conducted by the authors. Palomares et al. (1998)
conducted sampling within squares of a 5 X 5-km grid.
Rabbit estimates were based on both sightings of rabbits and
their activities (warrens, pellets, and tracks). Rabbit
abundance was expressed as a rank-order variable from
scarce (= 1) to very abundant (= 4). They collected data at 70
sample sites in the study (for more detail see Palomares et al.

[1998]).

Results

A summarization of Palomares et al. (1998) results is
presented (Fig. 2). Also presented is the matrix of
correlations among variables (Table 1). There are several
possibilities for how SEM results can be presented. In this
case (Fig. 2), the numbers next to pathways are standardized
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Figure 2. Results from structural equation modeling analyses conducted by
Palomares et al. (1998, modified from their fig. 3). Path coefficients
without asterisks were judged to be indistinguishable from zero based on
model and parameter evaluations.

path coefficients. The coefficient associated with the
double-headed arrow between shrubs and protection
represents the intercorrelation, which is weak. For the
directional pathways, the interpretation of the coefficients
requires some explanation. Path coefficients are prediction
coefficients. For example, the path coefficient from shrubs to
rabbits represents the expected change in rabbits if we were
to vary shrub density while holding all other correlated
factors constant. In this case, shrubs are the only variable
affecting rabbits, so holding other variables constant has no
effect, but what about the relationship between shrubs and
lynx? According to Palomares et al’s results (Fig. 2), if we
were to vary shrubs while holding rabbits and protection
constant, lynx would not vary to a great degree. However, if
we were to vary shrubs and allow rabbits to respond, a
greater total response in lynx would be expected.

For standardized coefficients, predicted change is meas-
ured in standard deviation units. So, the meaning of the
coefficient from shrubs to lynx (0.08) is that if we were to
vary shrubs by 1.0 standard deviation, rabbits would be
expected to vary by 0.08 standard deviations. However, if we
were to vary rabbits by 1.0 standard deviation, lynx would
increase by 0.35 standard deviations. Standardization based
on standard deviations permits us to compare path
coefficients in similar units, but it has the problem that
standard deviations are a property of the sample. For many
purposes, including predictive forecasting and comparisons
among populations, we would prefer unstandardized
coefficients.

Discussion

The modeling results answer many of the questions I
discussed above. They support the expectation that mon-
gooses are strongly and negatively affected by lynx. This
effect dominates over any positive influence of shrubs on
mongoose habitat use. It also appears that there is no real
evidence that mongoose numbers are promoted by rabbit
abundance. Although lynx are more common where shrubs
are more dense, this association appears to be predominantly
due to the indirect benefit that rabbits afford. Lynx also are
strongly favored by the protection afforded by Doiiana
National Park. Rabbits do depend to a moderate degree on

Table 1. Matrix of correlations for Lynx-Mongoose example (Palomares et
al. 1998).

Shrubs Protection Rabbits Lynx Mongooses

Shrubs . 100

Protection 0.18 1.00

Rabbits 0.34 —-0.04 1.00

Lynx 0.28 0.41 0.37 1.00
Mongooses  —0.02 —0.10 -025 -038 1.00

the abundance of shrubs, which is slightly higher in the
park, though this does not appear to represent a direct effect
on rabbits. There is considerable unexplained variance. The
standardized error variances are shown at the end of arrows
pointing to the upper right corners of the response
(endogenous) variables. These translate to R® values of
0.12, 0.34, and 0.16 for rabbits, lynx, and mongooses,
respectively. It is unclear how much the low variance
explanation depends on 1) the inherently stochastic and
patchy nature of the animal abundances, 2) error of
measurement, or 3) other important influences that are
unmeasured. Additional discussion can be found in
Palomares et al. (1998).

Palomares et al. (1998) appropriately kept their analysis
based on their a priori questions and their sense of what was
important in this case. Structural equation modeling also
allows investigators to ask questions beyond those consid-
ered by Palomares et al. What if shrubs, rabbits, lynx, and
mongooses interacted in an entirely different way in
protected areas than in unprotected areas? A multigroup
SEM analysis would allow us to explore such a question. We
would evaluate 2 models simultaneously, one with and one
without protection, determining if relationships inside and
outside the park fit a common model. To go a step further,
we also could include an assessment of differences among
means in our multigroup analysis (note that thus far we have
modeled covariances, not means).

One can still ask the question, what have we really gained
in this simple example? Is it not possible to arrive at the
same place using univariate models? One limitation of using
univariate models, such as multiple regression or the general
linear model, is that the structure of the model is not
conductive to understanding complex relationships among
predictors. We can best illustrate this graphically by showing
the structure of a univariate model of mongoose numbers as
a function of the other elements of the system (Fig. 3). Such
models fail to permit much understanding of the system
because they treat the suite of predictors as simply being
correlated, and they seck only the goal of selecting some
minimum set of predictors of y. Missing from univariate
models is an explicit representation of the indirect effects of
protection, shrubs, and rabbits on mongooses. Although it is
possible to ask such questions in a piecemeal fashion using
univariate procedures, such an approach is not optimal, and
piecewise approaches are not possible for more complex
examples (see below). In sum, SEM is useful because it
establishes a framework that is amenable to relating the full
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Figure 3. Illustration of structure and results that would be obtained from a
multiple regression analysis of mongooses as a function of lynx, rabbits,
shrubs, and protection. Dashed lines represent paths deemed nonsignificant
using P-values.

matrix of covariances to complex hypotheses about the
processes operating.

A CLOSER LOOK AT SEM

A Bit of History

The roots of SEM extend back to the pioneering work of
Sewall Wright, who published the first application of path
analysis in 1921. Paralle]l to the development of methods
designed to isolate effects of individual processes (e.g.,
analysis of variance [ANOVA]), Wright and others
developed the foundations for SEM. Although biologists
have used path analysis to some extent for many decades,
social scientists have been the ones to push the development
of the methodology. Through the 1950s and 1960s,
extensive work was conducted on path analysis and factor
analysis. In the late 1960s it became clear that a
comprehensive system for representing and evaluating
complex hypotheses was needed, including both paths and
factors. Although many people tried to develop such a
system, the LISREL (linear structural relations) system
developed by the Swedish mathematician Karl J6reskog
became modern SEM (Jéreskog 1973).

The LISREL system was of revolutionary importance for
several reasons (Cudeck et al. 2001, Tomer 2003). First, its
sophisticated matrix formulation permits the representation
of a large variety of model architectures involving factors
(latent variables), paths, correlated errors, reciprocal inter-
actions, and more. Second, a maximum-likelihood solution
procedure was developed that permitted 2 important things
simultaneously: 1) the ability to estimate many types of
complex models, including those containing latent factors
and those with reciprocal pathways; and 2) the ability to
assess the fit between data and model by comparing expected
to observed covariance structures. Joreskog developed
computer software based on the LISREL system, permit-
ting ready access to these procedures for researchers, which
contributed to the adoption of his method.

Today’s SEM Procedures

Here 1 give a skeletal presentation of the LISREL system
(see Bollen 1989, Lee 2007 for details). First, I operationally
define SEM as a multiequational framework. The model in

Table 2. Model fit results for the 3 models evaluated by Palomares et al.
(1998; Fig. 2). Results for model 1 also apply to the multiple regression
results (Fig. 3). Number of samples was 70.

Model ' df 1 4 SBC*
Model 1 255 3 0.467 —-10.20
Model 2 0.83 2 0.661 ~7.67
Model 3 2.26 2 0.323 —6.24

* Schwarz’s Bayesian Criterion.

this case (Fig. 1) can be represented (including all paths
shown) by the following equations, where x; = shrubs, x, =
protection, y;, = rabbits, y, = lynx, and y; = mongooses:

n=o+yyx+§ (1)
=+ 1% + 1%+ By + 5 (2)

p=ou+yyx+ e+ By tBa+8 (3)

Simplifying the LISREL system for the case where there are
no latent variables and ignoring the intercept terms, a
generalized representation of a system of such equations is

Y =BY +TX +¢ (4)

where Y is a vector of ys, X a vector of xs, B a matrix of
coefficients relating the ys to one another, I' a matrix of
coefficients relating ys to xs, and § a vector of errors for the
ys. Additional parameters are associated with more complex
models (e.g., multi-group and multi-level models).

The essential problem in SEM is to resolve the equation
§ = Z(®), where § is the sample covariance matrix, and
2Z(0) is the model-implied covariance matrix, expressed in
terms of ©®, which is the matrix of estimated model
parameters. The maximum-likelihood estimation process
involves comparing the observed covariance matrix, §, with
the covariance matrix implied by the statistical model X(®),
and the task is to choose values for the coefficients in © such
that the model-implied X is as close to § as possible. This
typically involves some fitting function that compares the
likelihood for a given model to that of a model with perfect
fit. It happens that the values of the fitting functions often
follow a chi-square distribution, permitting an assessment of
the degree of success of the fitting procedure. Although
numerous comparative fit measures are available for use in
SEM, the measure of absolute fit provided by the chi-square
test is still the most used approach to model evaluation,
though it is typically supplemented by other indices. The
ability to reject individual models based on the degree of
similarity between observed and model-implied covariance
matrices using the model chi-square test has been exploited
as a core functionality in the hypothesis-testing tradition
within SEM. It is important to note that Bayesian
approaches to both model evaluation and estimation also
exist (Lee 2007).

The example from Palomares et al. (1998) represents a
very simple application of SEM. The authors presented
measures of fit for the 3 models they considered (Fig. 1,
Table 2). For model 1, analysis revealed a chi-square of 2.55,

Grace *® Structural Equation Modeling

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which is a measure of the magnitude of difference between
observed and expected covariances. For this model, 3
degrees of freedom exist, representing the difference
between the number of known elements in the covariance
matrix (15) and the number of model parameters (12 = no.
of variances + paths). The P-value of 0.467 represents a high
probability that the differences between model-implied and
observed covariances could be due to chance. Therefore, the
authors drew the conclusion that their data were not
inconsistent with their model. A very important point is
made by this illustration. In SEM, the a priori model is the
model of scientific interest, not the null model.

The Continuing Evolution of SEM

Many extensions of the original formulation have been
made that permit both the relaxation of numerous statistical
assumptions as well as an expansion of the variety of models
that can be evaluated. Most SEM software packages include
procedures for bootstrapping, obtaining robust standard
errors, modeling categorical response variables, repeated
measures, and hierarchical relations. Methods of estimation
used in SEM include several types of maximum-likelihood
and least-squares procedures, Monte Carlo methods, and
Bayesian estimation (Raftery 1993, Rupp et al. 2004,
Palomo et al. 2005, Lee 2007).

Assumptions and Requirements

As with all statistical procedures, the methods incorporated
into SEM are based on certain assumptions. The default
estimation procedure is maximum likelihood (ML), which
provides asymptotically unbiased estimates and has many
large-sample properties that make it an attractive solution
procedure, as well as reasonably good performance in smaller
samples. The ML fitting function typically used in SEM
assumes that there is no excessive kurtosis, though this
assumption can be relaxed by implementing robust estima-
tion procedures that correct for kurtosis. There is no
assumption of uncorrelated error terms using the SEM-ML
procedure, which makes the procedure appropriate for
nonrecursive models (i.e., ones with reciprocal pathways).
A weighted least-squares procedure has been developed for
models containing categorical response variables (Muthén
1984). Monte Carlo procedures, including bootstrapping,
are now available in most software packages, and Markov
chain Monte Carlo methods for Bayesian estimation are
included in some software packages.

It is well beyond the scope of my paper to cover the
characteristics of software that performs SEM. The package
that has been in use the longest is LISREL (Jéreskog and
Sérbom 1996). There are numerous other packages,
including AMOS, CALIS (part of SAS), EQS, Mplus, R,
and several others that have different capabilities (which
change regularly as software is updated).

Model Building Versus Hypothesis Testing in SEM

Structural equation modeling not only allows tests of model
fit, the results obtained depend on adequate fit. Therefore, if
the a priori models evaluated by Palomares et al. (1998) did

not show adequate model fit, the authors would be
compelled to consider alternative models. Such a require-
ment means that models are always compared against the
saturated model in which all variables are allowed to interact
as part of standard SEM practice.

Structural equation modeling can be used either in a
model-building exploratory mode or in a hypothesis-testing
confirmatory mode. In many situations inadequate theory or
insufficient experience with the system (or with SEM) will
necessitate a model-building approach. This is a perfectly
legitimate use of SEM; however, the potential to misinter-
pret chance features of the data is increased by model
exploration. Models achieved through model-building need
further confirmation. For the lynx-mongoose example, the
authors already had a good knowledge of their system and a
solid theoretical basis for their models. Further, by
considering a limited set of alternative models, they were
able to minimize the number of comparisons and achieve a
test of alternative hypotheses. Bayesian methods for model
comparison, such as the Bayesian Information Criterion
(BIC) are believed to provide a superior approach to model
comparison when many contrasts are to be made. It is
typical for studies involving moderate sample sizes that
various indices lead to a common set of conclusions about
model fit.

Palomares et al. (1998) not only presented an assessment
of the absolute fit of their model, the chi-square, they also
reported how this model compared to the other models of
interest, model 2 and model 3 (Table 2). Comparing
models, I found that all had adequate model fit based on the
chi-square statistic. I computed a chi-square difference to
test whether a model was significantly superior to another.
In this case, model 2 possessed a chi-square difference from
model 1 of 1.72. For model 3, the difference was 0.29.
Neither indicated that the addition of paths led to a
significant improvement in model fit. Other indices also
suggested that the additional paths associated with models 2
and 3 had small parameter values and were not judged to be
significant. Methods that adjust for parsimony, such as
Schwarz’s Bayesian Criterion, also suggested that models 2
and 3 were not superior to model 1. Thus, the authors felt
justified in staying with the results of their original model.

Users of SEM hypothesis testing need to recognize the
philosophy that underlies its application. Most researchers
in the natural sciences have been trained with a strong
emphasis on variance partitioning and the procedures of
experimental design and analysis using ANOVA. Although
SEM can be used readily for the analysis of experimental
data (Grace 2006, chapter 9), it is not a variance partitioning
method but instead emphasizes parameter estimation. One
fundamental difference between variance partitioning and
parameter estimation is that the former is predicated on
having isolated, orthogonal causes, whereas parameter
estimation presumes that investigators wish to understand
relationships within the context of correlated causal factors.
As investigators, we seeck models in SEM whose parameters
are generally consistent and predictive. Accordant with this,
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Figure 4. Construct (conceptual) model for anuran diversity study.

emphasis in SEM practice is placed on testing a priori
models with actual data and on validation using follow-up
studies and independent data.

When we use SEM to test hypotheses based on
observational data, many factors influence our strength of
inference. Model structure and conclusions about cause and
effect are based on our total knowledge about the system
under observation. The analysis tells us if the data are
consistent with the model. However, even when the data are
consistent with our models, we must be alert to alternative
models that also fit the data. Ultimately, we strive for
sequential learning through the use of SEM and by the
incorporation of all our knowledge about the system.
Perhaps what is most useful to us as researchers is that 1)
SEM strongly encourages us to think about the mechanisms
operating rather than just the associations, and 2) it provides
insights into the relationships most worthy of further study.

A SECOND EXAMPLE: ANURAN
DIVERSITY AND HABITAT FACTORS

Background

In this example I use data from Lichtenberg et al. (2006) in
which they examined 25 wetlands in the lower Mississippi
River alluvial valley, USA, for chorusing anuran species and
associated habitat characteristics. One major goal of their
study was to understand the habitat characteristics associated
with diversity hotspots (i.e., places where a variety of species
are abundant). Lichtenberg et al. (2006) examined several
types of wetlands. Wetlands were classified as either lakes,
impoundments, swales, or riverine areas. They assessed
specific microhabitat conditions at each site, including
vegetation and topographic features. They assessed anuran
diversity using nighttime surveys of chorusing individuals
during several seasons of the year. Chorus surveys were used
during the year to determine the species using a site.
Lichtenberg et al. (2006) measured several characteristics of
the vegetation, including herbaceous cover, vegetation
density at different vertical positions, woody cover, tree
heights, canopy cover, litter cover, and depth (by type). They
also measured hydrologic features, including the area of open
water and the mean and maximum water depths.

Anuran Model Development and Evaluation
In this example, I provide an overview of model develop-
ment and evaluation with a brief description of results. See

Lichtenberg et al. (2006) for more detail about the biology
and Grace and Bollen (2006) for more detail about the
statistical procedures and analyses. I begin with a conceptual
model that will guide the development and interpretation of
SEM. In this case, I used the construct model (Grace and
Bollen 2007), which represents the main theoretical
constructs (i.e., ideas) of interest and their expected
associations (Fig. 4). The SEM, in contrast, represented
the hypothesized statistical relations among variables.
Basically, the goal of this study was to understand the
degree to which anuran diversity can be predicted by the
type of habitat (e.g., lake, impoundment) versus the
particular conditions (e.g., vegetation, litter) within that
habitat. The construct model makes clear that we, as
investigators, expect that the microhabitat conditions may
be a function of the macrohabitat type. Although this
general question is very simple in structure, relating this
question to our data can be anything but simple. When it
comes to the specifics, we may have many uncertainties.
Which of our measures of a habitat feature is most useful as
a representation of the concept of interest? Are there any
nonlinearities or interactions? We know that ultimately our
SEM will produce results that are highly specific to the
particular sample. Our construct model (as well as any more
general models we use to establish the foundation for our
analysis) helps us to relate the specifics to our more general
understanding.

We begin by considering how the available data (relation-
ships summarized in Table 3) relate to the constructs of
interest (see Grace and Bollen [2006, 2007] for details).
Briefly, we possess 4 measures of macrohabitat type (i.e.,
lake, impoundment, swale, or riverine). Because our
measures are nominal, one possibility is to model this
construct using a set of dummy variables representing the
possible macrohabitat types and a composite representing
their collective influences. We assume that the classification
of individual sites as to habitat type was correct. For the
construct labeled microhabitat conditions, the specific details
of how the measured variables are related was not known a
priori. For this reason, J. S. Lichtenberg, S. L. King, J. B.
Grace, and S. Walls (United States Geological Survey,
unpublished analyses) performed an exploratory factor
analysis to see if the correlations among the many measured
microhabitat variables might suggest the operation of a
smaller number of latent factors. The authors identified 2
factors of potential importance to anuran diversity: the
abundance of herbaceous vegetation and the abundance of
leaf litter. Based on this information, it is possible to
represent the construct microhabitat conditions using 2
latent variables and several indicators of each.

An SEM relating the elements of the statistical model (the
specific variables and their properties and interrelationships)
to the theoretical constructs is presented (Fig. 5). The SEM
is based on the hypothesis that the covariances among
observed variables can be explained by the relationships
between 2 composites (Macrohabitat and Microhabitat) and
3 latent variables (Herbaceous, Litter, and Richness).
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Figure 5. Model representing hypothesized relations among macrohabitat types, microhabitat conditions, and anuran diversity. Boxes represent observed
variables, ellipses represent latent variables, and the hexagon represents a composite of observed variable effects. Note that the variable Microhabitat is a latent
composite representing the combined effects of Herbaceous and Litter factors on Richness. Note also that, by omission, the riverine macrohabitat condition

represents the baseline against which other macrohabitats are compared.

Macrohabitat, which is a composite of observed variables,
represents the combined effects of habitat types on micro-
habitat factors and richness, whereas Microhabitat, a latent
composite, represents the combined effects of Herbaceous
and Litter factors on Richness. In this model, the 2
composites provide us with a way of relating the quantitative
results from our SEM back to our construct model so that
we can answer the questions posed about how anuran

diversity relates to macrohabitat type and microhabitat
conditions. In particular, we are interested in the degrees of
associations of richness to the 2 habitat factors.

This model was evaluated in detail by Grace and Bollen
(2006) and explicitly compared to 2 other model structures.
In one of these alternative structures, Grace and Bollen
hypothesized that the Macrohabitat composite affected the
Microhabitat composite directly rather than its 2 compo-

Table 3. Correlations among variables related to anuran richness and their standard deviations. Data from Lichtenberg et al. (2006).

Rich* Lake Imp® Swale Vhie2® Vhit1© Herbl* Herbc® Wi  Lied®  Liexc
Rich 1.0
Lake 0.696 1.0
Imp ~0.167 -0.355 1.0
Swale -0.431 0659  —0253 1.0
Vhit2 0.372 0.167 0.111 —0.099 1.0
Vhit1 0222  -0.156 0552  —0.118 0.653 1.0
Herbl 0060  —0.252 0562  —0.009 0.581 0.825 1.0
Herbc 0.091 —0.087 0419  —0.132 0.437 0.745 0.756 1.0
Wiitr 0.509 0430  —0284  —0.099 —0.051 —0290  -0395  —0.39% 1.0
Litrd 0.238 0.146  —0.433 0.383 0027  —0097  —0180  —0.281 0.419 1.0
Litrc 0.219 0.194  —0.442 0.273 -0.118 0414  -0.509 —0.580 0.568 0.762 1.0
SD 2.170 0.510 0.332 0.476 0512 1.482 0.173 0.122 0.100 0.122 0.148

* Rich refers to the no. of anurans at a site.
® Imp refers to impoundments.
€ Vhitl and vhit2 are measures of vegetation density.
4 Herbl and herbc are measures of dead and live herbaceous vegetation.

¢ Wiitr refers to woody litter depth.

f Litrd and litrc are measures of total litter.
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Figure 6. Results obtained from the analysis of a priori model (Fig. 5). Coefficients are standardized values. ns indicates nonsignificant.

nents, Herbaceous and Litter. In the other alternative
structure, Grace and Bollen hypothesized that there are
distinctly different macrohabitat effects on herbaceous,
litter, and richness. In this case, we used multiple measures
of model adequacy, including both chi-square tests of overall
fit of data to model and measures of residual variation in
response variables.

In the presentation of final results (Fig. 6), I show only the
standardized coefficients and omit the error variances for the
observed variables for simplicity. The model chi-square was
30.03 with 24 degrees of freedom, giving a P-value of 0.18.
This result indicates that the probability of these data, given
the model, was reasonably high. Further, variation in
richness was well explained by the model (R? = 0.74).
According to the results, richness in this sample appears to
be more sensitive to macrohabitat type than microhabitat
conditions (coeff. of 0.75 and 0.44, respectively), although
both were important. Unexpectedly, microhabitat compo-
nents, including both herbaceous plant abundance and litter
characteristics, were not consistently related to macrohabitat
type; thus, the effects of macrohabitat and microhabitat were
found to be largely independent. Results further indicated
that the associations among litter and vegetation variables
were consistent with the existence of 2 general factors: the
abundance of herbaceous vegetation and litter depth.

CAUTIONS AND RECOMMENDATIONS

Although SEM provides a flexible and powerful framework
for analyzing complex models, many opportunities exist for
missteps. Kline (2005) listed 44 errors that should be
avoided when using SEM. These errors can be generally
classified into 1) errors of model specification, 2) problem-
atic data, 3) errors of analysis, and 4) errors of interpretation.
Model specification often is hampered by either the
investigator’s knowledge or ability to measure some of the

important factors. Models are, by definition, simplistic
representations, so as investigators, we do not expect to
include all major influences. However, the omission of
certain key influences can lead investigators astray in their
interpretations. Practitioners should be careful to appreciate
the possibility of alternative models that also fit the data.
Ultimately, we must recognize that as we begin using SEM,
our first efforts may be poor approximations. Confidence is
developed through the process of investigation, modeling,
model testing, resampling, retesting, and refinement.

The adequacy of data for addressing particular questions is
an ultimate limitation for any study. In SEM, if we have
strong confidence in our initial model and find the data are
inconsistent with that model, we may conclude that the data
are faulty. Usually, however, we have to judge our data by
the way in which they were collected, the magnitude of the
sample, and whether the information provided by the data
measure up to our scientific objectives. Rules of thumb for
sample sizes suggest 5-20 observations per model parameter.
However, we must recognize that the quality of the data, as
well as the behavior of the system components, also
influence sample adequacy. Further, SEM is sensitive to
the usual set of problems that arise from inadequate
inspection of data prior to analysis.

Errors of analysis, as well as errors of interpretation, are
largely caused by insufficient training in SEM procedures. I
find that the training many receive in experimental statistics
courses that emphasize variance partitioning provides
inadequate background for using SEM. A much better
background is provided from training in regression or
statistical modeling. Ultimately, biologists will benefit from
courses in SEM, which are reasonably common in programs
in sociology, psychology, economics, and health sciences,
although a bit of translation is required.
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MANAGEMENT IMPLICATIONS

In the application of science to real-world problems, it is
typical that managers and decision-makers wish to under-
stand how natural and managed systems will behave under
various scenarios. Conventional approaches to the analysis
of data based on the univariate model are not well suited
either to understanding systems, nor predicting their
behavior. Responses to management or -to changing
conditions are conditional. We cannot successfully under-
stand systems by attempting to factor out correlated
environmental effects, but instead, need to understand their
contributions to function within our models. As an example,
reliance on the univariate model has led to the proliferation
of dozens and dozens of models of biodiversity based on
individual processes. The use of structural equation model-
ing has the ability to address the relevant question of which
processes dominate in controlling system behavior and move
us into the realm where science naturally informs manage-
ment (e.g., Grace et al. 2007). Thus, SEM would appear to
have a particularly important role to play in applied science.
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