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Summary

1.

 

Resource selection estimated by logistic regression is used increasingly in studies to
identify critical resources for animal populations and to predict species occurrence.

 

2.

 

Most frequently, individual animals are monitored and pooled to estimate population-
level effects without regard to group or individual-level variation. Pooling assumes that
both observations and their errors are independent, and resource selection is constant given
individual variation in resource availability.

 

3.

 

Although researchers have identified ways to minimize autocorrelation, variation
between individuals caused by differences in selection or available resources, including
functional responses in resource selection, have not been well addressed.

 

4.

 

Here we review random-effects models and their application to resource selection
modelling to overcome these common limitations. We present a simple case study of an
analysis of resource selection by grizzly bears in the foothills of the Canadian Rocky
Mountains with and without random effects.

 

5.

 

Both categorical and continuous variables in the grizzly bear model differed in inter-
pretation, both in statistical significance and coefficient sign, depending on how a ran-
dom effect was included. We used a simulation approach to clarify the application of
random effects under three common situations for telemetry studies: (a) discrepancies
in sample sizes among individuals; (b) differences among individuals in selection where
availability is constant; and (c) differences in availability with and without a functional
response in resource selection.

 

6.

 

We found that random intercepts accounted for unbalanced sample designs, and
models with random intercepts and coefficients improved model fit given the variation
in selection among individuals and functional responses in selection. Our empirical
example and simulations demonstrate how including random effects in resource selection
models can aid interpretation and address difficult assumptions limiting their generality.
This approach will allow researchers to appropriately estimate marginal (population)
and conditional (individual) responses, and account for complex grouping, unbalanced
sample designs and autocorrelation.
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Introduction

 

Resource selection by animals is an important deter-
minant of fitness and is a focus of many ecological studies
(Franklin 

 

et al

 

. 2000). A common approach for exam-
ining species occurrence and habitat selection in the
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ecological literature is resource selection functions (RSF;
Manly 

 

et al

 

. 2002). RSF models are attractive to eco-
logists because they provide quantitative, spatially
explicit, predictive models for animal occurrence (e.g.
Mladenoff 

 

et al

 

. 1995; Johnson, Seip & Boyce 2004). RSF
models are commonly developed by comparing habitat
characteristics at sites that were used by animals to
those that were potentially available (RSF; Manly 

 

et al

 

.
2002). Model coefficients are estimated using logistic
regression, which assumes independence among obser-
vations (Hosmer & Lemeshow 2000). While independ-
ence is feasible in some RSF designs, recent reviews
emphasize that most studies fail to satisfy this assump-
tion (Morrison 2001). Autocorrelation among obser-
vations produces incorrect variance estimates (Otis &
White 1999) and an increased Type I error rate (Leban

 

et al

 

. 2001). To avoid pseudoreplication (Hurlbert 1984),
researchers often rarify data to achieve independence
(Swihart & Slade 1985), resulting in an unfortunate loss
of information (McNay & Bunnell 1994).

There have been two general solutions for non-
independence among observations in resource selection
studies. The first is compositional analysis (Aebischer,
Robertson & Kenward 1993), in which individual ani-
mals are identified as the unit of replication. Unfortu-
nately, compositional analysis is limited by increased
Type I error rates from rare habitats (Bingham & Brennan
2004). In addition, it cannot accommodate continuous
covariates or interaction terms when comparing among
individuals, nor Poisson, binomial or other dependent
variable structures. A second solution is the Huber–
White sandwich variance estimator, which can be used
to calculate robust standard errors without affecting
coefficient estimates (White 1982; Newey & West 1987;
Pendergast 

 

et al

 

. 1996). However, because unbalanced
numbers of locations among individuals are common
in telemetry studies, coefficients will be biased toward the
most sampled individuals (Follmann & Lambert 1989).
Therefore, in the presence of an unbalanced design,
variance inflators provide only a partial solution to
non-independence.

Mysterud & Ims (1998) discuss an additional difficulty
in studies of resource selection that has yet to be addressed
comprehensively. They demonstrated how use of a re-
source might differ contingent upon the availability of that
resource, which they define as a functional response in
resource selection. If animals require a particular amount
of a given resource, they may show strong selection for it
when scarce but avoid it when it is abundant. Although
Mysterud & Ims (1998) criticized the assumption that
selection is independent of availability, a flexible treat-
ment of functional responses has not been attempted.

The dual problems of non-independence and func-
tional responses in resource selection can be addressed
through the application of random effects to RSF models.
Random effects are applied widely in cohort, survival
and other hierarchical designs where individuals or groups
are sampled repeatedly (e.g. Natarajan & McCulloch
1999; Burnham & White 2002; Krawchuk & Taylor 2003).

Random effects can accommodate non-independence
within groups, such as samples within individuals or
individuals within populations (Breslow & Clayton
1993). Although Aebischer 

 

et al

 

. (1993) first suggested
using random effects in resource selection studies, few
have incorporated random effects into resource selec-
tion or species distribution models in general (see reviews
in Rushton, Ormerod, & Kerby 2004; Guisan & Thuiller
2005). Recent developments of generalized linear mixed
models extend random-effect designs to binomial respon-
ses (Breslow & Clayton 1993; Skrondal & Rabe-Hesketh
2004) and, thus, to modelling resource selection.

In this paper, we first provide a brief  overview of
random-effects models and introduce their application
to resource-selection modelling. We then illustrate the
application of random-effects models to a case study of
grizzly bear (

 

Ursus arctos

 

 L.) resource selection in the
Canadian Rocky Mountain Foothills (Nielsen 

 

et al

 

.
2002). We consider grizzly bear resource selection for
simple categorical and continuous covariates, and com-
pare fixed-effects (without random effects) RSF models
to those with random effects for the intercept, categorical
and continuous variables. To aid in our interpretation
of random effects in this empirical example, we simulated
data for three common scenarios where random effects
are included in RSF models: (1) balanced vs. unbalanced
samples; (2) differences in selection among individuals
for a continuous or categorical covariate where avail-
ability is constant; and (3) availability varying among
individuals and selection is either constant or follows a
functional response. We conclude with a discussion of
how the inclusion of random effects can control for
common limitations in resource selection studies and
yield more robust ecological insights.

 

     

 

Following from their first exposition in 

 



 

-type
models (e.g. Bennington & Thayne 1994), a variable is
considered random when the investigator has not
controlled explicitly for levels of the variable in the
experimental design, but has chosen a random sample
of levels from the population (Neter 

 

et al

 

. 1996). An
example would be individual red deer (

 

Cervus elaphus

 

L.) within a population where levels of  individual
variation (e.g. age) were not fixed but assumed to be rep-
resentative of the population. By including a random
effect for individuals, individual variability is identified
explicitly and the scope of inference can be extended to
the entire population (Neter 

 

et al

 

. 1996).
In addition to providing valid population-level infer-

ences, random effects are often invoked to control for
correlations among samples. For example, a particular
response variable (e.g. telemetry locations) may be cor-
related within particular strata; for example, within a
group (individual deer) or hierarchical association (deer
within herds). This unobserved heterogeneity within levels
could produce pseudoreplicated samples (Hurlbert
1984) that lack independence, even after controlling for
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the fixed effects of covariates (Skrondal & Rabe-Hesketh
2004). Parameter estimates from such fixed-effects models
will often be biased (Skrondal & Rabe-Hesketh 2004).
An added benefit of random-effect models is to allow
group-level specific estimates for a response, known as the
conditional estimate. In comparison, the overall model
estimate is known as the marginal, or population-level
estimator for a particular response variable (Breslow &
Clayton 1993; Begg & Parides 2003; Skrondal & Rabe-
Hesketh 2004).

In addition to accounting for within-strata variation,
random effects can be used to control for unbalanced
designs in the number of  observations among indi-
viduals or groups (Bennington & Thayne 1994). Without
a random intercept for individuals with unbalanced data,
sample size differences may influence model coefficients.
By accounting for these relationships among samples,

including correlation or sampling design-related issues,
random effects provide more robust ecological inferences
(Pendergast 

 

et al

 

. 1996).
Random effects can be added to fixed-effects regres-

sion models, including RSF models, in two ways. Ran-
dom intercepts allow the intercept or magnitude of the
response to vary among groups (Fig. 1a), whereas the
inclusion of random coefficients allows the effect of
covariates to vary among groups (Fig. 1b) (Begg & Parides
2003; Skrondal & Rabe-Hesketh 2004). In RSF models,
random intercepts influence overall prevalence which,
as we illustrate below, often arises because of unbalanced
samples (Fig. 1a). Random coefficients can be included
when there is variation in individual animal, group, etc.
responses to a particular covariate (Fig. 1b). Random-
effects models can easily accommodate two or more levels,
e.g. samples from individual deer within herds within
populations, or wolves (

 

Canis lupus

 

 L.) within packs.
When a model contains both random- and fixed-effects,
it is termed a mixed-effect model. Functional responses
in selection might be accommodated through the com-
bination of a random intercept and random coefficient
(Fig. 1c).

Assumptions of random-effects models include (1) cor-
relations within groups are constant over time unless
modelled explicitly; (2) the random effects are normally
distributed with a zero mean and unknown variance
components; and (3) the variance–covariance structure
is specified correctly (Breslow & Clayton 1993; Skrondal
& Rabe-Hesketh 2004). The most common structure is
compound symmetric, which considers covariance among
all responses of an individual to be constant (Skrondal
& Rabe-Hesketh 2004). For time-series data, an aut-
oregressive structure could be useful (Pinheiro & Bates
2000). More complex structures could include average,
lagged, factor, unrestricted and hybrid correlation
structures that are beyond our purview (see Pinheiro &
Bates 2000 for more detailed information).

 

Materials and methods

 

     


 

Following Manly 

 

et al

 

. (2002: 100), we use a typical
fixed-effects exponential RSF:

eqn 1

with covariates 

 

x

 

n

 

, and  are the coefficients (para-
meters) estimated from logistic regression (Manly 

 

et al

 

.
2002). Commonly, the intercept  is dropped from the
RSF formulation as discussed and justified by Manly

 

et al

 

. (2002); however, because we will be using random
intercepts, we include  in the expression for 

 

∑

 

(

 

x

 

).
Coefficients for the random-intercept and random-

effect RSF model are estimated using logistic regression
by a generalized linear mixed-effects logit model
(Skrondal & Rabe-Hesketh 2004). The conditional mean

Fig. 1. Conceptual plot of the use of a resource unit along a
gradient of a continuous covariate x for individuals having
random intercepts (a), random coefficients (b), or a functional
response to the availability of x (c).

w( )  exp(  ... )x x x xn n= + + + +- - - -0 1 1 2 2

-n

-0

-0
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of 

 

Y

 

 given 

 

x

 

, 

 

π

 

(

 

x

 

) follows the standard logistic regression
notation presented, discussed and reviewed by Hosmer
& Lemeshow (2000). In our example, we consider a
two-level random-effect model, where observations

 

i

 

 

 

=

 

 1 … 

 

n

 

 are clustered within strata 

 

j

 

 

 

=

 

 1 … 

 

m

 

; for example,
locations within individuals. For a random-intercept
model, the logit model, 

 

g

 

(

 

x

 

), is estimated for location 

 

i

 

for grizzly bear 

 

j

 

:

eqn 2

where 

 

x

 

n

 

 are covariates with fixed regression coeffi-
cients 

 

β

 

n

 

, 

 

β

 

0

 

 is the mean intercept, and 

 

γ

 

0

 

j

 

 is the random
intercept, which is the difference between the mean
intercept 

 

β

 

0

 

 for all groups and the intercept for group 

 

j

 

(Skrondal & Rabe-Hesketh 2004: 51–54). Note that 

 

γ

 

0

 

j

 

is the random effect in eqn 2 and all preceding terms
represent the normal fixed effects as in eqn 1. Here and
throughout, we assume that random effects are normally
distributed, as is common in mixed-effects modelling
(Hosmer & Lemeshow 2000; Skrondal & Rabe-Hesketh
2004). However, this assumption should be investigated
using exploratory data analysis and plots of the residuals.

For the model with a random intercept and a random
coefficient, the RSF coefficients are estimated following:

eqn 3

where notation follows from eqn 2 with the addition
of  

 

γ

 

nj

 

x

 

nj

 

 where 

 

γ

 

nj

 

 is the random coefficient of covariate 

 

x

 

n

 

for group 

 

j

 

. Models with a random coefficient include a
random intercept because a random coefficient forces
variation in the intercept (Skrondal & Rabe-Hesketh 2004).

Recent advances in maximum likelihood theory have
made implementing random effects in generalized
linear models easier in many statistical packages. For

 



 

, the standard function is 

 



 

, reviewed by
Skrondal & Rabe-Hesketh (2004), available at http://www.
gllamm.org. For SAS, the standard procedure is 

 

-



 

, from http://support.sas.com/rnd/app/papers/
glimmix.pdf. For 

 



 

-

 

  

 

, standard functions
include glme and glmmPQL, and glmmML, glmm,
respectively (Pinheiro & Bates 2000).

 

     
   

 

Grizzly (brown) bears are a species of conservation con-
cern across the circumpolar north, and as a result their
resource selection patterns have frequently been the
subject of applied research (e.g. McLellan & Hovey 2001;
Nielsen 

 

et al

 

. 2002). To explore how random effects can
influence RSF models, we reanalysed a grizzly bear
global positioning system (GPS) radiotelemetry data set
from Nielsen 

 

et al

 

. (2002) in the Eastern slopes of Alberta’s
Canadian Rocky Mountain Foothills. To minimize com-
plications in seasonal variation in habitat use we focus on
only the late summer and autumn period (1 August to

denning). In total, 2471 use locations from three adult
male and six adult female bears during 1999 were used
from a 5332 km

 

2

 

 study area. Samples were unbalanced,
varying from 89 to 494 observations per individual
(Table 1). Availability was defined for each animal by
drawing 1000 random locations from 100% minimum
convex polygon (MCP) home ranges (ranging in size
from 383 to 1588 km

 

2

 

), thus the measure of availability
was unique to each animal. As such, our analysis cor-
responded to analysing resource selection at the third-
order scale of selection (Johnson 1980). For each used and
available location, two environmental variables were
queried from a geographic information system (GIS):
open habitats [a categorical landcover variable from
Franklin 

 

et al

 

. (2001) identifying the location as either
open 

 

=

 

 1 or forested 

 

=

 

 0] and elevation (in 100 m units).
A more detailed description of the study design, data
and study area can be found in Nielsen 

 

et al

 

. (2002).
We estimated grizzly bear RSF models using four ap-

proaches. We first used fixed-effects logistic regression
to estimate the coefficients of the RSF in eqn 1, which we
refer to as the naive RSF model. Secondly, we evaluated
a common method used to account for autocorrelation
within individuals, namely, by employing the Huber–
White sandwich variance estimator (

 

sensu

 

 Nielsen 

 

et al

 

.
2002) within a fixed-effects logit model. Finally, we com-
pare these two models to the RSF models derived from
a random-intercept model (eqn 2), and models with a
random intercept and random coefficient (eqn 3) for
either open habitat or elevation.

Random-effect models were estimated using the

 



 

 procedure with adaptive quadrature (Rabe-
Hesketh, Pickles & Skrondal 2001; Skrondal & Rabe-
Hesketh 2004) in 

 



 

 version 8·2 (StataCorp 2003)
and a compound symmetric covariance structure, which
assumes that all samples within a group are, on average,
equally correlated (Skrondal & Rabe-Hesketh 2004).
Conditional coefficient estimates for each individual
were produced using the 

 



 

 procedure (Rabe-
Hesketh 

 

et al

 

. 2001). Model selection for models with
random effects is complicated because the intended
scope of inference, conditional or marginal, influences
the derivation of  information theoretic metrics such
as the consistent Aikake information criterion (cAIC)

g x
x

x
x x

x

ij ij

n nij j

( )  
  

     ... 

                                       ,

=
−









 = + + +

+ +

ln
( )

( ) 1 2

π
π

β β β

β γ
1 0 1 2

0

g x x x xij n nij nj nj j( )    ...     = + + + + +β β β γ γ0 1 01

Table 1. Number of GPS telemetry locations per grizzly bear
used in random effect resource selection function (RSF)
models

Bear ID No. of GPS locations Sex

G2 493 F
G3 227 F
G4 388 F
G5 98 M
G6 92 M
G8 89 M
G10 149 F
G16 441 F
G20 494 F
Total 2471

availableathttp://www
http://support.sas.com/rnd/app/papers/
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developed specifically for application to such models
(Burnham & Anderson 2002; Burnham & White 2002).
See Vaida & Blanchard (2005) for details of model selec-
tion with random effects; herein, we do not consider model
selection for random effects further. We focus instead on
evaluating changes to model fit based on log-likelihoods,
log(

 

L

 

), marginal coefficient estimates, their standard
errors (SE) and the variance of the random effects.

 

Understanding random effects in resource selection 
studies: simulated examples

 

To provide insight into interpreting RSF models with
random effects, we simulated data under three common
sampling designs. We designed our simulation follow-
ing the grizzly bear data, generating used and available
points, and estimated the coefficients for RSF models
following eqns 1–3 above. Due to the computational
time required to solve mixed models using conventional
software, our study was a demonstration using a single
simulation for each of the scenarios considered, not a
statistical simulation study with 1000s of iterations to
reveal inferential bounds of random effects in RSF
models (

 

sensu

 

 Burnham & White 2002).

 

Simulating use–availability data

 

Using  version 8·2 (StataCorp 2003), we simulated
data with a logit function of the form π(x) = eg(x)/(1 + eg(x))
because it allowed us to generate used (1) and unused
(0) points, based on the simulation selection function
g(x). We retained only simulated use (1) points and
generated an independent random sample of available
points. The linear function, g(x), of the parameters is
provided for each example discussed below. Our set of
covariates (fixed effects) included one standardized
continuous variable, elevation (x1) and one categorical
variable, open habitat (x2). Unless otherwise noted, all
elevations were standardized to be uniformly available
over a range of 0–2 for x1, and the two categories of x2,
open and closed canopy, were equally prevalent. For each
analysis, we randomly selected 500 available points for
each individual from its range of available elevations and
from the available habitat types. We simulated population-
level resource selection producing a distribution of used
points that selected higher elevations (higher values of x1)
and selected open habitat, with 61% of used points being
in open habitat. A copy of our simulation and analysis code
for  version 8·2 is available from the senior author,
and our simulations were verified independently (M. Taper,
personal communication, Montana State University).

 1:      
  

Model 1: 

β0 is the intercept, β1 and β2 are the coefficients on
the variables x1 and x2, respectively (i designates the

observation while j designates the group). In all three
examples β0 = −0·5, β1 = 1, and β2 = 1. In this example,
selection was invariant across individuals for both
elevation and open habitat, and animals had the same
availability. For our balanced design we observed 20
individuals ( j = 1 … 20) with 100 observations each
(i = 1 … 2000). For the unbalanced design, the number
of observations per individual was drawn from a nor-
mal distribution (µ = 100, σ = 40). No random effect was
used in the generation of these example data.

 2:     
     


Model 2a: 

Model 2b: 

For model 2a, γ1 was drawn from a normal distribu-
tion (µ = 0, σ = 2) for each individual j, while γ2 for
model 2b was drawn from a normal distribution (µ = 0,
σ = 1) for each individual j. The gamma (γ) terms are
random effects that add differences in selection among
individual animals (as in eqns 2, 3). We considered dif-
ferences in selection among animals for either elevation
or open habitat across the same range of availability,
with balanced samples among individuals (Fig. 1b).

 3:     
    


Model 3a: 

Model 3b: 

Model 3c: 

Model 3d: 

We hypothesized that availability and the correspond-
ing selection function could differ among individuals in
two ways. Individuals with differences in availability
could exhibit the same selection despite differences in
availability (Fig. 1a). Alternately, selection could change
with availability for each individual, with the popula-
tion exhibiting a functional response (see Fig. 1c). Model
3a uses a fixed-effects model but the range of available
elevations (x1,i,j) for each j individual was different. All
individuals had the same selection. Model 3b uses the
same shifts in the range of available as in model 3a but
the strength of selection (represented as γ1,j) for higher
elevations by an individual ( j) was inversely related to

g x x xij ij( )       = + +β β β0 1 21 2

g x x x

x
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( )      

              

= + +
+ +
β β β

γ γ
0 1 2
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1 0

g x x x

x
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( )      
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β β β

γ γ
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the shift in x1,i,j. This produced stronger selection for
higher elevations when the mean elevation available to
that individual was low and weaker selection when the
mean elevation available was high. This reflects a situ-
ation where bears living at lower elevations show strong
selection for higher elevations within their home range,
whereas bears living in high mountain areas do not exhibit
selection for high elevations areas because these areas
may be unproductive high alpine areas. Models 3c and 3d
mirrored those above but for the categorical open habitat
covariate. In both scenarios, the availability of the two
resource categories differed among individuals. The
prevalence of open habitat ranged from 7% to 84% and
in Model 3d, selection for open habitat was related to
its prevalence such that selection increased as open habitat
declined in prevalence and selection decreased when
open habitat was more prevalent. This type of func-
tional response to open habitat could occur if  grizzly
bears were obtaining most of their forage in this open
habitat so they would exhibit strong selection for
this habitat when it is rare, but much weaker selection
for this habitat when it, and the forage it contains, is
abundant.

 

The statistical analyses of our simulated data were the
same as for the grizzly bear data, but we used 

in STATA version 8·2 (StataCorp 2003) to solve models
with only a random intercept.

Results

  

Model coefficients, their standard errors and random
effect variances are presented in Table 2. The ‘naive’
RSF model indicated that relative probability of use
was higher in open habitats and declined at higher
elevations (Table 2). Instead of reducing variance by
clustering on individual bears, the Huber–White vari-
ance estimator (cluster) increased the standard error on
the coefficients for both open habitat and elevation

(Table 2). The addition of a random intercept improved
model fit substantially and changed the magnitude of the
coefficients with the coefficient for elevation becom-
ing marginally significant and, notably, changing sign
(Table 2). In the model with a random coefficient for
open habitat, model fit improved again, and the coeffi-
cient for elevation changed markedly from being nega-
tive and non-significant to being positive and highly
significant (Table 2). The model with a random coeffi-
cient for elevation exhibited similar results to the model
with only a random intercept with relatively large vari-
ance in the random intercept (Table 2). Conditional
estimates for selection for elevation for individual grizzly
bears (Fig. 2) confirms the absence of functional
responses or more complex patterns in selection, yet
reveals clearly how much individual variation in selec-
tion for elevation occurs. Clearly, the variability in
coefficients and their significance yields differing con-
clusions depending on the model used. In most of the
models, managers would conclude that elevation is not

Fig. 2. Conditional estimates of the relative predicted
probability of use as a logit function for individual grizzly bear
selection for elevation (thin lines), the marginal population
estimate (connected white dots), and the traditional fixed-
effects logit model estimate (connected black dots) for a grizzly
bear RSF model with a random coefficient for elevation.

Table 2. Grizzly bear RSF models with (a) fixed effects, (b) fixed effects with cluster, (c) mixed effects with random intercepts and (d) mixed effects fitting
a random intercept and coefficients, with parameter estimates (βi) and standard errors (SE). Elevation is in 100 m intervals, and open habitat is a categorical
covariate (open = 1 or forested = 0). Log-likelihood reflects model fit. The variance estimates represent the variance in the random intercept (Int.) or
coefficient (Coef.)

Model structure

Log-likelihood

Elevation x1 Open habitat x2 Variance 

Grizzly bear RSF parameters βi SE P βi SE P Int. Coef.

(1) Logistic −5902·4 −0·005 0·008 0·503 0·572 0·050 <0·001 –
(2) Logistic with cluster −5902·4 −0·005 0·089 0·951 0·572 0·288 0·046 –
(3) Logistic with random intercept −5555·7 0·023 0·012 0·065 0·477 0·052 <0·001 0·47
(4) Logistic with random intercept and random x1 −5426·2 0·026 0·033 0·439 0·417 0·055 <0·001 19·4 0·047
(5) Logistic with random intercept and random x2 −5499·1 0·041 0·013 0·001 0·431 0·145 0·028 0·761 0·300
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an important variable, but its effect becomes very
strong once a random coefficient for open habitat is added
to the model. The model with the random coefficient for
elevation is, however, a much better fit to the data, meas-
ured by the log(L).

In these data, individual bears had differing sample
sizes of used points, differing home ranges and hence
differing availability, and they appear to have differing
selection for both elevation and the open habitat vari-
able. It is not clear, however, which of these individual
differences are exerting the greatest influence in the
random effects models.



Balanced vs. unbalanced designs

When simulated data contained no variation in resource
selection among individuals and the design was balanced
across individuals, as expected, the inclusion of a random
effect did not improve model fit (Table 3a). Log-likelihoods
[log(L)] and coefficient estimates were stable across all
modelling approaches. As expected, there was very
little variation in the intercept and coefficient estimates
for models that included respective random variables.
In contrast, when the design was unbalanced across indi-
viduals (a range of 31–181 use points per individual),
model fit was improved with the inclusion of a random
intercept (Table 3b, Fig. 3a). All three mixed-effect
models resulted in a similar decrease in log(L) com-
pared to the fixed effect logistic model. Coefficients and
standard errors were fairly robust across all models, with
coefficients in mixed-effect models deviating only slightly
from the fixed-effect logistic model. In the unbalanced
design, where the model included both a random intercept
and coefficient, the variance in the random intercept was
much larger than the variance in the random coefficient,

when compared relative to the coefficient estimate, sug-
gesting that individuals vary primarily in their intercept.
In both balanced and unbalanced designs, clustering on
individuals using the Huber–White sandwich estimator
resulted in decreased standard errors for both the con-
tinuous and categorical coefficients (Table 3).

Differences in selection

Simulations introduced variation among individuals in
selection for either elevation or open habitat when avail-
ability was constant (Table 4). Adding a random inter-
cept did not affect model fit or coefficient estimates. The
Huber–White sandwich estimator (clustering) inflated
standard errors for simulated random individual co-
efficients (Table 4a,b). However, clustering deflated the
standard error associated with open habitat where indi-
viduals varied only in their response to elevation (Table 4a,
Fig. 3b) and for elevation where individuals varied only
in their selection for open habitat (Table 4b). Models
including a random intercept and coefficient (Table 4a,b)
resulted in different parameter estimates and standard
errors relative to the fixed-effect logistic models, as would
be expected based on the substantial variance estimated
in the random effect (Table 4). Changes in standard
errors and coefficients were seen predominantly in the
covariate for which we simulated individual variation.

Differences in availability and functional responses

Adding random effects for data with a differing range of
available elevations (Table 5a), improved model fit [log(L)]
and altered β1 and its standard error compared to the
fixed-effect logistic model. Adding random effects had
no influence on the model fit or parameters when there
was differing availability of the two habitat types among
individuals (Table 5c). In contrast, with a functional

Table 3. Parameter estimates and standard errors for logistic regression models on data simulated with no correlation structure
among individuals. Models fitted to the data were (1) fixed effects (2) fixed effects with cluster (see text) (3) mixed effects fitting
a random intercept (4) mixed effects fitting a random intercept and random coefficient for elevation (x1), or (5) a random
coefficient for open habitat (x2). Elevation is a continuous covariate and habitat type is a categorical covariate. Estimates are
shown for (a) a balanced design (100 used and 500 available points for each of 20 animals) and (b) an unbalanced design (31–181
used and 500 available points for each of 20 animals)

Model structure Log-likelihood

Variable x1 Variable x2 Variance 

βi SE βi SE Int. Coef.

(a) Balanced design
(1) Logistic –5303 0·434 0·043 0·513 0·051
(2) Logistic with cluster –5303 0·434 0·033 0·513 0·039
(3) Logistic with random intercept –5303 0·434 0·043 0·513 0·051 0·000
(4) Logistic with random intercept and random x1 –5303 0·434 0·043 0·513 0·051 0·000 0·000
(5) Logistic with random intercept and random x2 –5303 0·434 0·043 0·513 0·051 0·000 0·000

(b) Unbalanced design
(1) Logistic –5257 0·463 0·044 0·490 0·051
(2) Logistic with cluster –5257 0·463 0·043 0·490 0·043
(3) Logistic with random intercept –5168 0·467 0·044 0·494 0·051 0·568
(4) Logistic with random intercept and random x1 –5167 0·467 0·047 0·496 0·051 0·165 0·000
(5) Logistic with random intercept and random x2 –5166 0·469 0·044 0·522 0·058 0·214 0·006
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response in resource selection for either elevation or
open habitat (Tables 5b,d, Fig. 3c), incorporation of a
random intercept and random coefficient improved
model fit. Parameter estimates changed significantly
for the variables that were simulated to have functional
responses. Again, clustering inflated standard errors
for variables that included random variation and deflated
standard errors for variables simulated without individual
variation.

Discussion

Our empirical and simulated examples demonstrate the
utility and need for the application of random effects
for estimating population-level responses in studies of

resource selection. The analysis of the grizzly bear telem-
etry data demonstrated that inferences from resource
selection models can change with the addition of ran-
dom effects, suggesting important group level correlation
that would otherwise be overlooked. For example, the
strength of grizzly bear selection for elevation varied
greatly depending on whether a random coefficient for
open habitat was included in the model (Table 2).
Model fit was greatly improved with the addition of
random effects, suggesting that random effects have merit
in grizzly bears RSF models, and conditional estimates
of selection (Fig. 2) for elevation illustrates wide indi-
vidual variation in this trait. The greatest improvement
in model fit came from the addition of a random inter-
cept (Table 2), which our simulations revealed could
compensate for the widely unbalanced samples among
bears (Tables 1 and 3). Further improvements in model
fit to the grizzly bear data with the addition of random
coefficients combined with the results from the simu-
lations illustrates that there appear to be differences
among individual bears in their selection for these
two variables. While a functional response could be
conceivable for elevation, conditional estimates from
Fig. 2 clearly illustrated that the pattern was a result of
variation in selection, not a functional response.

Where sample sizes are balanced among individuals
and animals respond to resources in a similar way we
found, as expected, random effects to be unnecessary
for estimating coefficients for an RSF model. However,
for unbalanced designs, including a random intercept pro-
vides an alternative to compositional analyses (Aebischer
et al. 1993) or rarefaction of data (Swihart & Slade
1985). The individual animal is accounted for as the
sample unit, and the predicted probability of use for the
population is independent of the sampling intensity for
individuals (Table 1). In the grizzly bear data, three
bears had roughly five times as many locations as three
other bears, which would normally result in those bears
having five times the influence on model coefficients
(Table 1). Using a random intercept alone to account
for this imbalance changed the direction of the response
to elevation and the coefficient changed from being
non-significant to being marginally significant, and
dramatically improved model fit. Use of the Huber–White
variance estimator to generate ‘robust’ standard errors
would have concluded that the selection for open hab-
itat was only marginally significant, a conclusion quite
different from the one drawn from the model with a
random intercept.

Our results suggest that using the Huber–White
variance estimator (White 1982; Pendergast et al. 1996) may
help to identify correlation structure among individuals.
In our simulated balanced design case with no correla-
tion structure among individuals (Table 1a), standard
errors estimated with the Huber–White estimator (clus-
tering) decreased relative to the fixed effect logistic model.
In the simulation, where variation was induced among
individuals in their selection, and in the grizzly bear
example (Table 2), clustering inflated standard errors.

Fig. 3. Conditional estimates of the relative predicted
probability of use as a logit function for simulated individuals
(thin lines), the marginal population estimate (connected
white dots) and the traditional fixed-effect logistic model
estimates (connected black dots) for individuals having
differing samples sizes and a model with a random intercept
(a), differing selection and a random coefficient for elevation
(x1) (b), and a functional response to elevation (x1) with a
random coefficient for elevation (c).
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Thus, clustering may have utility as a diagnostic, directing
researchers to where random effects may be necessary.
Further work is needed to verify these preliminary
suggestions.

We considered only one level of nesting in our simu-
lated examples. In the presence of multiple hierarchies,
random effects become even more important (Ten

Have, Kunselman & Tran 1999; Begg & Parides 2003).
For example, individuals can be nested within herds, which
are nested themselves in river basins, or subpopulations.
Studies of resource selection of social animals in such
settings have suffered from an inability to accommodate
multiple levels of nesting (Garshelis 2000; Morrison
2001). The most important consideration, however, is

Table 4. Parameter estimates and standard errors for logistic regression models on data simulated with (a) individual variation
in their response to elevation (x1) and (b) individual variation in their response to the open habitat (x2). Availability was constant
across all individuals. Models fitted to the data were the same as for Tables 2 and 3

Model structure Log-likelihood

Variable x1 Variable x2 Variance 

βi SE βi SE Int. Coef

(a) Random individual coefficients for x1

(1) Logistic –5331 0·387 0·043 0·414 0·050
(2) Logistic with cluster –5331 0·387 0·150 0·414 0·036
(3) Logistic with random intercept –5331 0·387 0·043 0·414 0·050 0·000
(4) Logistic with random intercept and random x1 –5250 0·423 0·150 0·426 0·051 0·514 0·408
(5) Logistic with random intercept and random x2 –5331 0·387 0·043 0·414 0·050 0·000 0·000

(b) Random individual coefficients for x2

(1) Logistic –5326 0·420 0·043 0·404 0·050
(2) Logistic with cluster –5326 0·420 0·040 0·404 0·158
(3) Logistic with random intercept –5326 0·420 0·043 0·404 0·050 0·000
(4) Logistic with random intercept and random x1 –5326 0·420 0·043 0·404 0·050 0·000 0·000
(5) Logistic with random intercept and random x2 –5261 0·428 0·044 0·460 0·165 0·199 0·488

Table 5. Parameter estimates and standard errors for logistic regression models on data simulated with differing availabilities
among individuals and with and without a functional response to these changes in availability. (a) constant response to elevation
(x1) with changing availability, (b) changing response to elevation (x1) with changing availability, (c) constant response to open
habitat (x2) with changing availability and (d) changing response to open habitat (x2) with changing availability. Simulation
models fitted to the data were the same as for Table 4

Model structure Log-likelihood

Variable x1 Variable x2 Variance 

βi SE βi SE Int. Coef

(a) Constant selection, changing availability of x1

(1) Logistic –5335 0·251 0·033 0·465 0·050
(2) Logistic with cluster –5335 0·251 0·037 0·465 0·046
(3) Logistic with random intercept –5335 0·251 0·033 0·465 0·050 0·000
(4) Logistic with random intercept and random x1 –5333 0·310 0·052 0·465 0·050 0·000 0·007
(5) Logistic with random intercept and random x2 –5334 0·301 0·049 0·465 0·055 0·001 0·010

(b) Differing selection as a function of changing availability of x1

(1) Logistic –5317 0·299 0·033 0·494 0·050
(2) Logistic with cluster –5317 0·299 0·056 0·494 0·042
(3) Logistic with random intercept –5317 0·299 0·033 0·494 0·050 0·000
(4) Logistic with random intercept and random x1 –5305 0·423 0·066 0·496 0·051 0·013 0·038
(5) Logistic with random intercept and random x2 –5312 0·417 0·048 0·496 0·054 0·046 0·008

(c) Constant selection, changing availability of x2

(1) Logistic –5317 0·468 0·044 0·391 0·049
(2) Logistic with cluster –5317 0·468 0·042 0·391 0·042
(3) Logistic with random intercept –5317 0·468 0·044 0·391 0·049 0·000
(4) Logistic with random intercept and random x1 –5317 0·468 0·044 0·391 0·049 0·000 0·000
(5) Logistic with random intercept and random x2 –5317 0·468 0·044 0·391 0·049 0·000 0·000

(d) Differing selection as a function of changing availability of x2

(1) Logistic –5253 0·436 0·044 0·717 0·051
(2) Logistic with cluster –5253 0·436 0·035 0·717 0·176
(3) Logistic with random intercept –5253 0·436 0·044 0·717 0·051 0·000
(4) Logistic with random intercept and random x1 –5253 0·436 0·044 0·723 0·055 0·000 0·000
(5) Logistic with random intercept and random x2 –5154 0·430 0·044 0·741 0·191 0·150 0·679
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that including a random effect in studies with inherent
hierarchical structure ensures that the marginal popu-
lation inferences of the resultant RSF will be valid
(Cam et al. 2002; Cooch, Cam & Link 2002), and will pro-
vide appropriate conditional (group) level inferences
(e.g. Fig. 2). Although we focused on marginal effects
(population-level) here, mixed-effect models provide a
powerful approach for examining evolutionary processes
and questions related to the fitness consequences of
individual-level variation in studies of resource selection
(Franklin et al. 2000). For example, relying on marginal
(population) inferences for an endangered species may
hide important conditional (subpopulation or individual)
differences that could have important implications for
conservation. Conditional estimates of resource selec-
tion could be used to identify which subpopulations to
focus conservation efforts upon.

Our simulated examples demonstrate that random
intercepts can correct for unbalanced designs, but bal-
anced use–availability designs may require both a random
intercept and coefficient to detect individual variation
in selection. Simulations in other fields (Ten Have et al.
1999) draw similar conclusions regarding the importance
of random coefficients. Many wildlife studies thus far,
however, have focused upon the inclusion of a random
intercept without incorporation of random coefficients
(Cam et al. 2002; Franklin, Anderson & Burnham 2002;
Boyce, Irwin & Barker 2005). We caution that in resource
selection studies with use–availablility designs, includ-
ing only a random intercept will only account for dif-
ferences in samples sizes but not for differences in selection
among individuals. In our unbalanced simulation,
adding a random coefficient in addition to a random
intercept decreased the random intercept variance and
improved model fit slightly. This was probably a result
of the random coefficient explaining some of the variance
in the random intercept (Skrondal & Rabe-Hesketh 2004)
and accounting for slight differences in the coefficient due
to the random generation of used and available points.

Perhaps the most compelling argument for consid-
ering random coefficients in RSF models comes from
the ability of random coefficients to model functional
responses (Mysterud & Ims 1998). Mysterud & Ims
(1998) provide a simple framework for assessing func-
tional responses in examples with two habitat types
(e.g. Osko et al. 2004). However, available resources
are often more than two categories or continuous, and
Mysterud & Ims (1998) concluded by urging future
studies to consider generalizations of the logit model.
Our results suggest that inclusion of a random intercept
and coefficient provides a useful generalization. To our
knowledge, this is the first demonstration of an approach
to model functional responses effectively in resource
selection. As a guide in using random effects to uncover
functional responses, we offer the following suggestions.
The isolation of functional responses in continuous
covariates may require a multifaceted approach. Con-
sider that after we simulated a functional response in
elevation (Table 3b), we improved model fit over the

fixed-effect model by including a random coefficient
for open habitat rather than elevation. This is an exam-
ple of conditionality between the model intercept and the
categorical covariate coefficient. When the coefficient
for the continuous covariate (elevation) is altered, indi-
vidual intercepts are altered (see Fig. 3b), having an
effect on the categorical variable (habitat type), because
the effect of habitat type = 0 is absorbed by the inter-
cept. Even so, results in Table 3b indicate a functional
response in elevation given the magnitude of change in
model fit. Thus, we believe that measures of model fit
will be critical to assessing where functional responses in
RSF occur when there is no a priori decision to consider
particular random effects (see also Greenland 2000).

Critical to modelling a functional response in resource
selection is identification of a resource type that is lim-
iting in a trade-off  situation (Mysterud & Ims 1998).
Without a trade-off, constant selection (Fig. 1a) will be
possible (e.g. a constant proportion of habitat in a home
range). However, as in the grey squirrel (Sciurus caro-
linensis Gmelin) example in Mysterud & Ims (1998),
grey squirrels made a trade-off  once the amount of
cropland increased beyond some threshold (Fig. 1 of
Mysterud & Ims 1998), showing avoidance for cropland
once availability of cropland exceeded 30% of a squirrel’s
home range. Often, however, ecologists will be faced
with the problem of  identifying for which covariate
the random effect or functional response occurs. Simple
approaches include graphical examination of conditional
effects (e.g. Figure 2), and dividing animals into two
groups for preliminary RSF modelling (Osko et al. 2004).

An additional challenge for researchers is that in a
RSF design as the number of available points increases,
the magnitude of the log(L) also increases (unpublished
data), and therefore model selection using AIC or simi-
lar likelihood approaches may be sensitive to the choice
of the number of available points. Finding a way to use
information-theoretic approaches in RSF studies and
in mixed-effect models is an issue that deserves future
attention.

Conclusions

Animal data often possess nested or grouped data struc-
tures, and inclusion of random effects in resource selec-
tion and species distribution models will accommodate
such data structures, yielding more robust inference.
Random effects improve our ability to account for dif-
ferences in selection or sample size among individuals
or groups and their inclusion can affect the conclusions
drawn. Conditional inferences from these mixed effect
models will allow researchers to make group-specific
inferences, with obvious applications to endangered
species management and other conservation applica-
tions where individual level variation is important. By
including random coefficients, the assumption that
selection patterns remain constant as availability changes
need no longer restrict the development and applica-
tion of RSF models. We believe that relaxation of this
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requirement will provide increasingly flexible and power-
ful resource selection models that allow extrapolation
beyond study area borders with increasing biological
realism, efficiency and validity. Given the success of
existing resource selection modelling approaches in
natural resource management, we believe specification
of the functional response will increase the utility of
these models to ecology and conservation.
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