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ABSTRACT: Two phylogenetic comparative methods, independent
contrasts and generalized least squares models, can be used to de-
termine the statistical relationship between two or more traits. We
show that the two approaches are functionally identical and that
either can be used to make statistical inferences about values at
internal nodes of a phylogenetic tree (hypothetical ancestors), to
estimate relationships between characters, and to predict values for
unmeasured species. Regression equations derived from independent
contrasts can be placed back onto the original data space, including
computation of both confidence intervals and prediction intervals
for new observations. Predictions for unmeasured species (including
extinct forms) can be made increasingly accurate and precise as the
specificity of their placement on a phylogenetic tree increases, which
can greatly increase statistical power to detect, for example, deviation
of a single species from an allometric prediction. We reexamine pub-
lished data for basal metabolic rates (BMR) of birds and show that
conventional and phylogenetic allometric equations differ signifi-
cantly. In new results, we show that, as compared with nonpasserines,
passerines exhibit a lower rate of evolution in both body mass and
mass-corrected BMR; passerines also have significantly smaller body
masses than their sister clade. These differences may justify separate,
clade-specific allometric equations for prediction of avian basal met-
abolic rates.

Keywords: allometry, ancestor reconstruction, comparative method,
metabolic rate, phylogeny, regression.

Interspecific comparisons have undergone a renaissance
in the last decade, and comparative data sets are now
analyzed routinely by phylogenetic methods (Eggleton and
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Vane-Wright 1994; Losos and Miles 1994; Martins 1996a;
Garland et al. 1997). Among these methods are several
that use phylogenetic information in an explicitly statistical
fashion (Grafen 1989; Harvey and Pagel 1991; Garland et
al. 1993; Miles and Dunham 1993; Martins and Hansen
1996, 1997; Reynolds and Lee 1996; Schluter et al. 1997;
Pagel 1998; Garland et al. 1999). The rationale for these
methods is the theoretical prediction and empirical ob-
servation that closely related species are more likely to be
similar than are distantly related species. Hence, in com-
parative studies, species cannot be treated as if they rep-
resent independent and identically distributed data points,
and ordinary statistical methods, such as standard least
squares regression, cannot be used.

The best understood and most prevalent phylogeneti-
cally based statistical method is Felsenstein’s (1985) in-
dependent contrasts (IC). Independent contrasts are cal-
culated as differences in the value of a trait between two
sister species (or internal nodes of a phylogenetic tree)
divided by the square root of the sum of their branch
lengths (branch lengths must be in units of or proportional
to expected variance of character evolution). If evolution
along the separate branches of the phylogenetic tree occurs
independently, then the contrasts will be statistically in-
dependent. Felsenstein’s (1985) original presentation re-
lied on a Brownian motion model of character evolution,
but the procedure can also be justified on first-principles
statistical grounds (Grafen 1989; Pagel 1993). In the con-
text of testing for correlated evolution of two characters,
simulation studies indicate that independent contrasts are
reasonably robust even when character evolution deviates
from Brownian motion and when branch lengths used for
analyses contain errors, at least if diagnostic tests and
transformations of branch lengths are applied (e.g., Type
I error rates are not far from what they should be; Grafen
1989; Martins and Garland 1991; Purvis et al. 1994; Diaz-
Uriarte and Garland 1996, 1998; Grafen and Ridley 1996;
Martins 1996b; Harvey and Rambaut 1998; Garland and
Diaz-Uriarte 1999). Although Felsenstein’s (1985) original



presentation considered applications to simple linear cor-
relation and regression, independent contrasts can also be
applied to most problems that require such related statis-
tical techniques as principal components analysis, multiple
regression, ANOVA, and ANCOVA (e.g., Garland 1992;
Garland et al. 1993; McPeek 1995; Diaz et al. 1996; Gray
1996; Martin and Clobert 1996; Clobert et al. 1998; Bonine
and Garland 1999; Foufopoulos and Ives 1999). In addi-
tion, by rerooting (see below), the method can be used to
estimate trait values and standard errors for internal nodes
on a phylogenetic tree (Garland et al. 1999), with results
equivalent to those estimated by maximum likelihood
(Schluter et al. 1997).

An alternative approach relies on generalized least
squares (GLS) models. The phylogenetic information re-
quired (topology and branch lengths) is identical to that
needed for computing independent contrasts. Rather than
constructing contrasts, however, GLS involves regression
in which error terms are neither independent nor iden-
tically distributed. Instead, the expected variances of and
correlations between error terms are assumed to be known
from the available phylogenetic topology and branch
lengths. Under the assumption of Brownian motion char-
acter evolution, GLS estimates of regression parameters
are also maximum likelihood estimates, with error terms
described by a multivariate normal distribution. Grafen
(1989), Martins and Hansen (1997), and Pagel (1998) pro-
vide discussions of many possible applications of GLS to
comparative analyses, including multiple regression, esti-
mating rates of evolution, and reconstructing ancestral
traits.

In this article, we address the problem of constructing
confidence or prediction intervals for values of a depen-
dent variable regressed against an independent variable.
This problem arises frequently in comparative biology,
such as in studies of allometry (e.g., Calder 1984; Schmidt-
Nielsen 1984; Harvey and Pagel 1991; Garland and Adolph
1994; Garland and Carter 1994; Weathers and Siegel 1995;
Reynolds and Lee 1996; Williams 1996; Kozlowski and
Weiner 1997; Clobert et al. 1998). As a recent example,
Nagy et al. (1999) present a table 2 containing 41 separate
allometric equations for predicting field metabolic rates of
different clades, habitat, or diet categories. Also in their
table can be found the necessary statistics for computing
the 95% prediction intervals in the conventional (phylo-
genetically uninformed) manner. Nagy et al. (1999, p. 259)
note that independent contrasts are an alternative, but then
state that independent contrasts do not yield “equations
that can be used to predict FMR values directly” and do
not yield “statistical parameters that allow calculation of
confidence intervals for predicted values.” Both of these
claims were correct when their paper was published but
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are now obviated by the new methods presented here and
implemented in our PDTREE computer program.

To derive formulae for confidence and prediction in-
tervals, we use both the IC and GLS approaches. We show
that the two approaches produce identical results and can
estimate all of the same parameters, including the
Y-intercept in the original data space (contra Pagel 1998,
pp- 337, 341). This demonstration is important because
many readers of the comparative literature may have been
under the impression that IC and GLS represent funda-
mentally different ways of analyzing comparative data.

We also present three empirical examples to illustrate
the utility and application of these methods. We first show
how predictions for unmeasured species can in general be
made increasingly accurate and precise as the specificity
of their placement on a phylogenetic tree increases. These
prediction methods can be used for both extant and extinct
(fossil) forms, including putative direct ancestors of extant
species (i.e., points along any branch of a phylogenetic
tree). Second, we give a specific example in which use of
the proposed methods yields greatly increased power to
detect whether a particular species deviates from a pre-
viously established allometric equation. This example is
important not only because it illustrates the increased
power that can come from incorporation of phylogenetic
information but also because some workers have claimed
that independent contrasts could not be used for this pur-
pose (e.g., Smith 1994). Finally, we reexamine the allom-
etry of avian basal metabolic rate using the data compiled
by Reynolds and Lee (1996). This analysis highlights the
ability of our methods for mapping phylogenetically cor-
rect regressions back onto the original data space to reveal
new and striking patterns, such as differences in the rate
of evolution of passerines as compared with other birds.
The example also shows how, contrary to some previous
claims (e.g., Weathers and Siegel 1995), allometric equa-
tions derived by conventional and phylogenetic methods
can differ significantly, even for a data set that encompasses
more than four orders of magnitude in body mass, in-
cludes hundreds of species that span almost the full range
of phylogenetic diversity in a major clade, and shows a
high correlation (7> 0.95).

Statistical Approaches to the Problem of
Phylogenetic Correlation

Here we set out the general problem posed by phylogenetic
correlation (the tendency for related species to resemble
each other) in both the IC and GLS formats. Rather than
give a detailed account of these approaches, our intention
is to compare them conceptually. Appendices A and B
provide the formal statistical derivations of the formulae
needed to apply the approaches to data. The IC calcula-
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tions are implemented in our PDTREE program (available
on request from the first author); the GLS approach can
be implemented through any commercially available
program that manipulates matrices, such as MatLab
(MathWorks 1996).

The problem of regression with phylogenetically cor-
related data can be stated as follows. Let x; and y; denote
the values of an independent and a dependent variable
measured for species i in a group of n species. Both x; and
y; are assumed to take continuous values. For simplicity,
we assume a single independent variable, although our
results generalize in a straightforward way to any number
of independent variables, including none. With no inde-
pendent variables, the analysis corresponds to the case of
estimating values of a single trait at internal nodes on a
phylogenetic tree (Martins and Hansen 1997; Schluter et
al. 1997; Cunningham et al. 1998; Martins and Lamont
1998; Garland et al. 1999). The regression problem can be
written as

¥ =B, + Bix; t+ €, o))

where (3, and 3, are regression coefficients and ¢; is a
normally distributed “error” or “residual” term with mean
0. Although this appears to be a standard regression equa-
tion, it is not, because values of ¢; are correlated among
different species owing to their shared phylogenetic
history.

To illustrate the problem of phylogenetic correlation,
consider the phylogeny of four species shown in figure 1.
Branch lengths represent the expected variance of char-
acter evolution. Thus, species 1 and 2 are more likely to
be similar than any other pair of species because they share
evolutionary history along branches v, and v,, and the
variance of the difference between trait values for the two
species will be correspondingly low because of the short
phylogenetic divergence between them, measured as
v, + v,. Hence, the covariance between ¢, and ¢, (i.e., the
portion of the two species’ phenotypes that are not pre-
dicted by x) is expected to be high.

Independent-Contrasts Approach

The standard IC approach involves assigning trait values
to each of the internal nodes (ancestral species) on the
phylogenetic tree. For each internal node, these estimates
are a weighted average of the trait values of the two daugh-
ter species, with weights proportional to the inverse of the
branch lengths between mother and daughter species so
that the shorter the branch length, the greater the weight.
The independent contrasts are then calculated from the
differences between sister taxa throughout the phyloge-
netic tree. Except at the root (basal) node (see Garland et

Figure 1: Phylogenetic relationships for four species (spI—sp4) with three
(sp5—sp7) hypothetical ancestors. Branch lengths (v;) are in units of ex-
pected variance of character evolution.

al. 1999), the estimates of ancestral trait values are not
optimal estimates; instead, they are merely intermediate
steps in the computation of the entire set of n — 1 inde-
pendent contrasts.

The formulation of regression in terms of independent
contrasts removes the constant coefficient 3, making it
impossible to map the results from contrasts back onto
the original data to obtain confidence intervals for trait y
for the tip species. To obtain confidence intervals, the IC
approach can be reformulated as

Vi = Bl(xi - xw) +y, T (7]:)0‘56{) @)

where y; and x; denote the values of y and x for tip or
ancestral species, y, and x, denote the values at the node
directly below species i, and ¢, is normally distributed with
mean 0 and variance o> Conceptually, the first term in
equation (2), §,(x; — x,,), describes the dependence of y;
on change in x between the ancestral node w and the
present node 3 the second term, y,, incorporates the de-
pendence of y; on the value of y at the ancestral node w;
and the last term, (v))*’¢, accounts for the variance pro-
duced by Brownian motion evolution. Because evolution
along sister branches occurs independently, values of ¢, are
independent of each other. In appendix A, we show how
equation (2) can be used to obtain estimates (with stan-
dard errors) of confidence intervals for estimates of y for
each tip species.

The related problem of predicting the value of y for a
new species h with known value of x, is illustrated in figure
2A. The location of species h on the phylogenetic tree will
influence the prediction of y, because (in general) species
h will be more similar to closely related species than to
distantly related species. The easiest way to obtain pre-
diction intervals for y, is to “reroot” the phylogenetic tree,
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Figure 2: Illustration of rerooting a phylogenetic tree to predict the value
for a hypothetical unmeasured species, designated as sph. A shows that
the species h is putatively the sister of species 4. B shows the tree rerooted
so that the last common ancestor of species 4 and h (sp7) is at the base
of the phylogeny. Note that the branch labeled v, + v, is not drawn to
scale: it is actually equal to the lengths of the branches, as shown
in A.

as is done in figure 2B. In the rerooted tree, species h is
adjacent to the basal node. The estimate (and standard
error) of trait y at the new basal node, y,, can be obtained
from equation (A13) of appendix A. Because species h is
adjacent to the new basal node, the expected value of y,
equals the estimate of y,, and the variance of the estimator
of y, equals the variance of y, plus the variance propor-
tional to v, that is caused by evolutionary changes from
node 7 to species h. The results obtained from this pro-
cedure are identical to those that could be obtained via
the GLS method of Martins and Hansen (1997; see app.
B). To perform these computations in PDTREE, one first
reroots the tree; the program will prompt the user for both
v, and x;.

Generalized Least Squares Approach

The GLS approach differs from independent contrasts by
explicitly dealing with correlations among ¢; for extant
species rather than estimating trait values for ancestral
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species. The general regression problem of equation (1)
can be written as (Martins and Hansen 1997)

Y=X8+¢ 3

where Y is an n-dimensional vector of values of y; (the
measured trait that is considered as a dependent variable),
X is an n x 2 matrix whose first column consists of ones
and whose second column contains values x; (the mea-
sured trait that is considered as an independent variable),
and 8 = [B,, 8,]’ (with the prime denoting transpose). Un-
der the assumption of Brownian motion evolution, € is an
n-dimensional multivariate normal distribution with mean
0 and variance-covariance matrix o°C, where o” is a scalar
measuring the overall rate of evolutionary change, as with
independent contrasts (matrix o”C is called matrix V by
Martins and Hansen [1997]). Elements of matrix C (which
can be produced with our PDDIST program) describe the
phylogenetic relationships as the lengths of the shared
branches, from root to last common ancestor, between
species (Martins and Hansen 1997; see also box 3 in Cun-
ningham et al. 1998). For example, for the tree in figure
1, ¢, =v, + v, + v, and ¢,, =v, + v, Thus, the greater
the shared phylogenetic history between species i and j,
the greater the covariance c; Species 1 and 4 may be
considered unrelated; they share no evolutionary history,
so ¢, =0.

The GLS problem can be analyzed by converting equa-
tion (3) into the form of standard linear regression with
uncorrelated error terms. Because C is a real symmetric
nonsingular matrix, there exists another matrix D such
that DCD’ =1, the n x n identity matrix. Matrix D can
be used to transform values of traits y and x by letting
Z = DY, U = DX, and « = De. This gives

Z=U8+ a. )

The variance-covariance matrix of «, V{a}, equals
E{aa'} = E{De(De)'} = E{De€ D'} = DE{e€'}D’ = (Do’C)D’
= ¢’ Thus, no covariance terms appear in the variance-
covariance matrix of @, so the error terms «; are uncor-
related. Furthermore, because « is a linear transformation
of ¢, & is normally distributed. Equation (4) can, therefore,
be analyzed as a standard least squares regression problem
with independent errors (app. B). Unconditional confi-
dence intervals for trait y for the extant species are ob-
tained by back-transforming from Z to Y. Prediction in-
tervals for a new species h can either be calculated by
rerooting the phylogenetic tree, as described for the IC
method, or by remaining in GLS mode (app. B). This GLS
procedure assumes that the elements of C are known and
fixed; more general procedures can be used when C con-
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tains parameters that must be estimated (Judge et al. 1985;
Hansen 1997; Martins and Hansen 1997).

Empirical Examples

We provide three empirical examples to illustrate the in-
ferential power of our procedures. All three examples in-
volve the allometry of metabolic rate. This theme is chosen
because metabolic rate is probably the trait most frequently
studied by ecological and comparative physiologists, who
in turn are heavy users of the comparative method (Calder
1984; Schmidt-Nielsen 1984; Withers 1992; Garland and
Adolph 1994; Garland and Carter 1994; Bradley and Zamer
1999; Garland et al. 1999).

Using Phylogenetic Information to Refine Predictions
for Unmeasured Species

We first show how predictions of values for an unmeasured
species can be made more precise if the phylogenetic po-
sition of the species can be specified (see end of “Inde-
pendent-Contrasts Approach”), which can lead to in-
creased statistical power (see example in next section). This
is important because many workers have complained that
phylogenetically based statistical methods only seem to
reduce the apparent statistical significance of various
effects.

Consider Dutenhoffer and Swanson’s (1996) data on
summit metabolic rates of 10 species of passerine birds
(fig. 3A). Figure 3B shows a scatterplot of their data along
with a conventional regression line and conventional 95%
prediction intervals. Figure 3C shows the regression line
and 95% prediction intervals derived by independent con-
trasts, using the methods we have described. These are
phylogenetically correct but “generic” prediction intervals,
such as those that would be used if one could not specify
the phylogenetic position of the hypothetical species to be
predicted. In effect, the generic prediction intervals assume
that the species to be predicted is attached to the root of
the tree and that the branch leading to it (v,) is equal to
the average length of the branches leading from the root
to every other tip. Note that these phylogenetically correct
but generic prediction intervals are wider than the con-
ventional prediction intervals shown in figure 3B.

Figure 3D and 3E shows examples of predicting hy-
pothetical extant species whose location on the phyloge-
netic tree is known. In both cases, the point estimate for
the predicted log,, metabolic rate is closer to the value
(relative to its body mass) of related species. This effect
occurs, as it should, because the computations are per-
formed by rerooting the phylogenetic tree (as shown in
fig. 2) at the node that gives rise to a three-way polytomy
comprised of the hypothetical species of interest, its sister

species, and the lineage containing all other species in the
data set. The value estimated at this new root node is used
to position the regression line vertically in the original
data space. Because the value at the new root node will
be relatively strongly influenced by the sister species, the
elevation of the regression line will move closer to its value
for the dependent variable. At the same time, the 95%
prediction intervals for particular hypothetical species are
considerably narrower than the phylogenetically informed
but “generic” prediction intervals shown in figure 3C and
are even narrower than the conventional prediction in-
tervals shown in figure 3B. In the limit, if the hypothetical
species were attached infinitely close to the sister tip, then
the prediction intervals would diminish to 0.

Testing Whether a Single Species Deviates from
an Allometric Prediction

Chevalier (1991) studied metabolism in single populations
of four species of procyonid mammals (fig. 4A) and in
two separate populations of a fifth species, the ringtail
(Bassariscus astutus). A main question of interest was
whether the desert population of ringtails had a lower than
expected minimal resting metabolic rate in the thermal
neutral zone (MRM), which would be expected as an ad-
aptation to desert conditions. As discussed in Garland and
Adolph (1994), a traditional approach would have been
to exclude the datum for the desert ringtail population,
use conventional statistics to fit a least squares linear re-
gression to the remaining five data points (log trans-
formed), compute a one-tailed 95% prediction interval for
a new observation, and compare the desert ringtail pop-
ulation with this prediction. As shown in figure 4B, the
MRM of the desert ringtail population does not fall below
the conventional prediction interval, so we would conclude
that it does not have a significantly reduced metabolic rate.

To repeat the analysis with the methods described above
for independent contrasts, the ringtail population is
pruned from the tree, the tree is rerooted, and an inde-
pendent-contrasts regression line is computed and map-
ped back onto the original data space, and the one-tailed
95% prediction interval is computed with PDTREE. As
shown in figure 4C, as compared with this phylogenetically
informed prediction interval, the desert ringtail does in-
deed have a reduced MRM for its body size.

Garland and Adolph (1994, their fig. 4) presented a
similar test but remained entirely within the context of
phylogenetically independent contrasts. That test yielded
similar results but was less intuitive because graphs of
contrasts indicate estimates of minimum rates of evolution
within particular bifurcations of the phylogeny (differences
between sister species or nodes, divided by square roots
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Figure 3: A, Phylogenetic relationships of 10 species of birds studied by Dutenhoffer and Swanson (1996), as depicted in their figure 1. Branch
length from root (basal node) to Contopus virens is 19.7 units. Splits between hypothetical tips T2 and T3 and their closest relatives (Parus atricapillus
and Contopus virens, respectively) are set at 1.75 units, the same as the split between Spizella pusilla and Spizella arborea. B, Log-log plot of summit
metabolism in relation to body mass for the birds studied by Dutenhoffer and Swanson (1996; data from their table 1). Least squares linear regression
and 95% prediction intervals (dashed lines) are from conventional analysis. C, Same as B, but using phylogenetically independent contrasts, as
described in this article and computed in our PDTREE program. D, Predictions (dashed-dotted lines) and 95% prediction intervals (dotted lines)
from independent-contrasts procedures, across a range of body masses for hypothetical species T2. Pa indicates Parus atricapillus, the closest relative
of T2 in the data set. E, As in D, but for hypothetical species T3. Cv indicates Contopus virens, the closest relative of T3.
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Figure 4: Use of new methods presented here to test whether a single
species (actually, a desert population of the ringtail Bassariscus astutus)
deviates from the allometric pattern observed among related species. A,
Cladogram (from Decker and Wozencraft’s [1991] cladistic analysis of
129 morphological characters) for the six procyonid taxa studied by
Chevalier (1991). Numbers at nodes indicate divergence times in millions
of years before present, as estimated from fossil and biogeographic in-
formation (corrected from fig. 4 of Garland and Adolph 1994); the two
ringtail populations probably began diverging about 10,000 yr ago, at the
end of the last ice age. B, Log-log plot of minimal resting metabolism
(MRM) versus body mass (from Chevalier 1991; data also shown in
Garland and Adolph 1994), along with a conventional least squares linear
regression fitted to the five taxa shown as closed circles (slope = 0.734,
Y-intercept = 0.479) and one-tailed 95% prediction interval for a new
observation. The MRM of the desert population of ringtails does not
deviate significantly from this conventional allometric prediction. C, As
in B, but regression (slope = 0.864, Y-intercept = 0.071) and one-tailed
95% prediction interval derived by use of methods for phylogenetically
independent contrasts presented herein; the desert ringtail population
has a MRM that is significantly lower that predicted for its body mass.

of sums of branch lengths) rather than showing actual
values for species.

Allometry of Avian Basal Metabolic Rates

Reynolds and Lee (1996) compiled the available data for
basal metabolic rates of birds. Phylogenetic relationships
(topology and branch lengths, as shown in their figs.
A1-A8) for the 254 species were based on Sibley and
Ahlquist (1990); the taxonomic scheme in Sibley and Mon-
roe (1990) was used to place some species within their
respective genera (sometimes along with arbitrary parti-
tioning of branch lengths). Reynolds and Lee (1996)
checked the adequacy of the branch lengths derived from
DNA hybridization (shown in fig. 5A) and used a modified
Box-Cox procedure to arrive at an optimal branch length
transformation of raising each branch segment to the
power —0.2 (fig. 5B). Note that this sort of inverse trans-
formation actually converts the longest branches into the
shortest. Such a transformation is difficult to reconcile
with known microevolutionary mechanisms. Therefore,
we also report analyses with the original untransformed
branch lengths (fig. 5A ) and with all branch lengths set
equal to 1. Results do not change very much (see table
1), which is consistent with a number of published em-
pirical examples and results of a simulation study that
examined the effects of errors in branch lengths (D{az-
Uriarte and Garland 1998).

For all 254 species, all four of the independent-contrasts
regression slopes shown in table 1 exceed the upper 95%
confidence interval (0.687) of the conventional estimate.
Figure 6 shows the independent-contrasts regression equa-
tion presented by Reynolds and Lee (1996, p. 741), based
on DNA branch lengths raised to the —0.2 power, plotted
in the original data space by use of our procedures for
computing a Y-intercept, confidence interval, and predic-
tion interval. The regression line seems to fit the data for
nonpasserines fairly well, but it clearly underestimates the
log metabolic rate of most passerines in the data set. This
is surprising, given that Reynolds and Lee (1996) applied
phylogenetic ANCOVA (by both independent contrasts
and computer simulation [see Garland et al. 1993]) and
found no statistically significant difference between the
mass-adjusted log metabolic rates of passerines and non-
passerines. What gives?

Figure 7 shows a diagnostic plot for contrasts in log,
body mass. The statistical problem illustrated by this plot
is the apparently lower average (minimum) rate of evo-
lution (Garland 1992) in passerines as compared with
other birds in the data set. The mean rank of the absolute
values of standardized contrasts in passerines (n = 100) is
99.52 as compared with 144.25 for contrasts within the
nonpasserines (n = 152; Mann-Whitney U = 4,902, two-
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Figure 5: Topology and branch lengths compiled by Reynolds and Lee
(1996, figs. A1-A8) for analyses of avian basal metabolic rate data. A,
Branch lengths derived from DNA-hybridization data (from their
DATA.PDI file). B, Branch lengths as in A but transformed by raising
each segment to the —0.2 power, as used by Reynolds and Lee (1996)
for independent-contrasts analyses. C, As in B but with branch lengths
within the passerine subclade rescaled so that height from its basal node
to highest tip species is 4.0 (see text for explanation).

tailed P < .0001 [the contrast between passerines and their
sister clade is excluded from this test]). Moreover, if one
examines the absolute values of the residuals from a re-
gression of contrasts in BMR on contrasts in mass, the
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passerines contrasts (mean rank = 105.84) also average
smaller in magnitude than those for other birds (mean
rank = 140.09; Mann-Whitney U = 5,534, two-tailed P =
.0003). The differences in rate of evolution are also ap-
parent in figure 2 of Reynolds and Lee (1996): contrasts
within passerines are clustered near the origin. Results (not
shown) are very similar when all branch lengths are set
equal to 1, and the pattern is also apparent with the orig-
inal DNA branch lengths.

Thus, relative to DNA branch lengths raised to the —0.2
power (or set equal to unity), passerines have a lower rate
of log,, body mass evolution and also a lower rate of mass-
corrected log,, BMR evolution. The overall data set is com-
posed of (at least) two subsets, whose variances differ.
Hence, fitting a single regression equation to the entire
data set is inappropriate. Several solutions are possible.
One would be to fit separate equations to the passerine
and nonpasserine data sets. Another is to transform branch
lengths differentially (as suggested by Grafen 1989, p. 146)
within the passerine clade, which we illustrate.

The result that passerines have a relatively low rate of
phenotypic evolution can equally well indicate that they
have a high rate of DNA evolution. Indeed, Sibley and
Ahlquist (1990), Bleiweiss et al. (1994), and Bleiweiss et
al. (1995) have all noted that clades of birds do show
significant differences in rates of DNA evolution. In either
case, clade-specific variation in rates of evolution can be
eliminated by rescaling all branch lengths within one or
more clades. We tried several different rescalings of
branches within the passerine subclade, using PDTREE,
each time rechecking the diagnostic plot shown in figure
7. We found that rescaling the total height of the passerine
subclade to 4.0, as shown in figure 5C, yielded absolute
values of standardized contrasts that did not differ
significantly between passerines (mean rank = 126.31)
and nonpasserines (mean rank = 126.63; Mann-Whitney
U = 7,581, two-tailed P =.9732). For residuals from the
regression of contrasts in log BMR on contrasts in log
mass, the passerines contrasts (mean rank = 135.28) also
do not differ significantly in magnitude from those for
other birds (mean rank = 120.72; Mann-Whitney U =
6,722, two-tailed P =.1209).

Thus, a contrast data set whose variance does not differ
significantly between passerines and nonpasserines can be
achieved by use of the branch lengths shown in figure 5C.
Table 1 shows an allometric equation derived from these
branch lengths.

Does Reynolds and Lee’s (1996) conclusion that pas-
serines and nonpasserines show no statistically significant
difference in mass-corrected basal metabolic rate still hold?
Yes. First, we repeated their independent-contrasts analysis
(as described on both their p. 739 and fig. 2 [following
Garland et al. 1993]) with the rescaled branch lengths
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Table 1: Allometric equations for avian basal metabolic rate (log,, watts; body mass in log,, grams) of all 254 species

Diagnostic
Intercept Slope correlation
Lower Upper Lower Upper Log Log
95% CI  Intercept 95% CI  95% CI  Slope 95% CI  mass BMR
Conventional —1.452 —1.411 —1.371 .652 .670 .687 —.500 —.521
Independent contrasts:
Branch lengths = DNA hybridization —1.884  —1.694 —1.504 717 759 .801 —.053 .165
Branch lengths = 1 —1.815 —1.647 —1.478 .688 724 759 .165 .102
Branch lengths = DNA™* —1.822 —1.652 —1.481 .687 722 757 .004 —.034
Branch lengths = DNA™?, passerine clade
rescaled to height of 4.0 —1.827 —1.620 —1.413 671 .709 748 .049 .051

Source: Data from Reynolds and Lee (1996) and P. S. Reynolds and R. M. Lee, personal communication.
Note: Conventional least squares linear regressions and independent-contrasts least squares linear regressions are presented. For the latter, confidence

intervals for the Y-intercept are derived by use of the new methods presented herein. For simplicity, these computations use the maximum possible degrees
of freedom, as if all of the polytomies (unresolved nodes) in the phylogenetic tree (n = 26 branches of 0 length) were hard (see Purvis and Garland 1993;

Garland and Diaz-Uriarte 1999). “Diagnostic correlation” is the Pearson product-moment correlation (not through the origin) between the absolute values

of standardized independent contrasts and their standard deviations (see text and Garland et al. 1992).

shown in figure 5C. The contrast between passerines and
their sister clade was still not a significant outlier (P =
.2935). Repeating the analysis with all branch lengths set
equal yielded P = .2187. We were concerned, however, that
these analyses might be obscured by the inclusion of too
wide a range of taxa. Therefore, we pruned the tree of all
species except passerines (n =101) and their sister clade
(n =85 [Columbiformes + Gruiformes + Charadriifor-
mes]). For this reduced data set, examination of diagnostic
plots as shown in figure 7 suggested that DNA branch
lengths raised to the 0.8 power worked better than those
raised to the —0.2 power. Again, however, the passerines
showed a significantly lower rate of evolution for both log
body mass (Mann-Whitney U =2,794, two-tailed P =
.0001) and residual log BMR (U = 2,947, two-tailed P =
.0005). Consequently, we rescaled the branches within the
passerine subclade to a total height of 8.0, which elimi-
nated the differences in evolutionary rates. We then re-
peated Reynolds and Lee’s (1996) analysis and again found
that the contrast between passerines and their sister clade
was not a significant outlier (P =.2549).

One interesting additional result of this last analysis was
that, for standardized contrasts in log,, body mass, the
contrast between passerines and their sisters was the fifth
greatest in magnitude. The probability of this occurring
by chance alone is 5/185 = 0.0270 (this is a two-tailed test
because absolute values are analyzed). This result indicates
that, on average, the passerines in this data set have sig-
nificantly smaller log,, body masses than their sister clade
(see Garland et al. 1993, p. 283). We also performed this
test for the entire data set of 254 species, using the branch
lengths of figure 5C. Here, the contrast between passerines
and their sister clade was only the fifty-first most extreme
of 253 (P =.2016). Thus, inclusion of all available spe-

cies in the analysis obscures statistically significant
clade-specific variation in mean log,, body mass.

Discussion

We have shown how to derive both confidence and pre-
diction intervals for regression equations derived from in-
dependent contrasts but mapped back onto the original
data space. The procedures should be of considerable use
in comparative studies of allometry, and so forth. They
are also useful as a diagnostic in a general sense. For ex-
ample, plotting the equation of Reynolds and Lee (1996)
back onto the original data space clearly showed that some-
thing was amiss (fig. 6).

As explained in Felsenstein’s (1985) original presenta-
tion, when independent contrasts are used to estimate the
form of a relationship between two traits, including least
squares regression, reduced major axis, and major axis
slopes (see Garland et al. 1992 for formulae), the line must
be forced through the origin. Thus, no estimate of the Y-
intercept is immediately available. Plotting the estimated
slope back onto the original data space would, therefore,
be impossible. However, lines describing bivariate re-
lationships are generally constructed to pass through
the point X, Y. One can, therefore, position a line in the
original data space by forcing it through the point X, Y,
where these estimates are computed as the root node es-
timate from independent contrasts (see also Garland et al.
1999). The first published example of this procedure is in
figure 2 of Garland et al. (1993), which depicts home range
areas of mammals in relation to body mass. More recently,
Williams (1996) has used the procedure to derive phylo-
genetically correct allometric equations for evaporative wa-
ter loss of birds. As in many other allometric studies, Wil-



liams (1996) used the equations to predict evaporative
water loss values of hypothetical birds of various body
sizes. No confidence interval was available for the Y-in-
tercept of the regression equation, however, so prediction
intervals could not be computed.

Equivalency of the Independent-Contrasts and Generalized
Least Squares Approaches

Both independent-contrasts and generalized least squares
approaches start from the same statistical model (eq. [1]),
use the same phylogenetic information, and give the same
results. The main conceptual difference is that IC starts
by estimating values of traits x and y for ancestral species;
the trait value for an ancestral species is the average of its
two daughter species weighted by their expected evolu-
tionary divergence. GLS, on the other hand, uses a linear
transformation of traits x and y in which a new set of
variables, Z and U, are created from linear combinations
of Y and X, respectively, weighted by matrix D. Thus, both
approaches are weighted regression, with their difference
being the procedure used to calculate weights.

The conceptual and computational differences between
IC and GLS influence how they can be most effectively
implemented. In the IC approach, weightings are calcu-
lated in terms of trait values of ancestral species. With this
interpretation, it is easy to analyze the case in which traits
show different rates of evolution (e.g., different branch
lengths) across the phylogenetic tree as a whole, or even
varying rates within different subsets of the tree (e.g., see
fig. 5C). Although in principle these calculations are also
possible with the GLS approach, the reference to branch
lengths on a phylogenetic tree—rather than a weighting
matrix—makes the IC approach more intuitive and vi-
sually apparent.

The strength of the GLS approach is that it transforms
a regression with correlated residuals into a standard least
squares regression problem. This opens the toolbox of
familiar statistical diagnostics (such as tests for normality
of residuals, homoscedasticity, linearity, etc.) that can be
applied with standard least squares regression. Of course,
corresponding diagnostics can be applied in the IC ap-
proach, which uses regression through the origin, although
diagnostics for regression through the origin are less well
developed.

Allometry of Avian Basal Metabolic Rate

Table 1 shows that conventional and phylogenetically
based estimates of allometric equations can differ signif-
icantly, even with large sample sizes (n =254 species),
when several orders of magnitude in body mass are in-
volved and when the relationship is quite tight (conven-
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Figure 6: Independent-contrasts regression equation (see table 1) pre-
sented by Reynolds and Lee (1996, p. 741), based on DNA branch lengths
raised to the —0.2 power, plotted in the original data space by use of
our new procedures for computing a Y-intercept, 95% confidence interval
(dotted lines), and 95% prediction interval for a new observation (dashed
lines). The regression line seems to fit the data for nonpasserines fairly
well (A), but it clearly underestimates the log metabolic rate of most
passerines (B) in the data set.

tional r* = 0.958). These differences alter one’s conclusions
with respect to hypotheses about allometric exponents.
Comparative physiologists have argued for years about the
theoretical and empirical scaling exponent of basal met-
abolic rate. Scaling exponents of both 2/3 and 3/4 are often
claimed to have special meaning (references in Calder
1984; Schmidt-Nielsen 1984; Harvey and Pagel 1991; Koz-
lowski and Weiner 1997). For the avian metabolic rate
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Figure 7: Diagnostic plot of absolute values of standardized independent
contrasts in log,, body mass versus their standard deviations (square roots
of sums of branch lengths, based on DNA distances raised to the —0.2
power, as shown in fig. 5B). This plot suggests that the branch lengths
are statistically acceptable in that it shows no overall trend (r =0.004)
and approximates one-half of a normal distribution in the vertical di-
rection (following Garland et al. 1992). However, it clearly shows that
contrasts within the passerines (closed circles) are, on average, smaller in
magnitude (Mann-Whitney U-test, two-tailed P < .0001; a plus sign de-
notes the contrast between passerines and nonpasserines, which was ex-
cluded from the test). This indicates a difference in the average (mini-
mum) rate of evolution (Garland 1992). Thus, the data as a whole are
not “identically distributed,” as would be required for subsequent re-
gression analyses.

data set taken as a whole, a conventional allometric equa-
tion has a slope of 0.670 and a 95% confidence interval
that excludes 0.75 (table 1). Independent-contrasts equa-
tions have higher slopes, whose lower 95% confidence
intervals exclude 0.67. Ironically, our preferred equation
for all 254 species (table 1), which incorporates slower
evolutionary change within the passerine clade, has a slope
of 0.709 and confidence intervals that exclude both 0.67
and 0.75. Before too much is made of these slope estimates
and confidence intervals, however, it should be remem-
bered that if one attempted to incorporate variance caused
by uncertainty about topology, branch lengths or the
model of character evolution, then confidence intervals
would be even wider (e.g., see Purvis and Garland 1993;
Abouheif 1998; Garland and Diaz-Uriarte 1999).

The conventional and independent-contrasts equations
can yield quite different predictions and prediction inter-
vals. For a 2-g bird, for example, the conventional equation
for all 254 species yields a prediction of 0.0617 w and a
95% prediction interval of 0.0344-0.1105 w; correspond-
ing values for the independent-contrasts equation with the

passerine branch lengths rescaled are 0.0392 and
0.0061-0.2544 w. The latter may seem depressingly wide,
but they can be narrowed greatly by more precise speci-
fication of the phylogenetic position of the species to be
predicted, using the new methods that we present here
(e.g., see fig. 3 and next section).

We do not offer the allometric equations of table 1 as
final answers to problems of scaling avian metabolic rate.
Only 2.6% of the world’s extant avian species (9,702 in
Monroe and Sibley 1993) are included in the data base.
As in Reynolds and Lee’s (1996) original analyses, we have
not compared all possible subclades with respect to either
allometric relationships or rates of evolution. We suspect
that statistically significant heterogeneity of average mass-
corrected metabolic rates may yet be shown to exist among
clades of birds. For example, three of the four largest out-
liers in the nonpasserine data set are hummingbirds, which
are only represented herein by four species (of 322 extant).
Plus, as noted by Reynolds and Lee (1996), the available
data are not a representative sample of birds. This can be
illustrated even within the passerines, which consist of two
major subclades, oscines (suborder Passeri: 4,580 species)
and suboscines (suborder Tyranni: 1,159 species). In this
data set, the oscines are represented by 92 species (2.0%),
the suboscines by only nine (0.8%). Also, an analysis that
accounted for variation associated with diet or ecology as
additional independent variables could increase power to
detect clade differences. Finally, the topology used for anal-
yses includes species grafted onto Sibley and Ahlquist’s
(1990) phylogeny with little empirical support, a tree that
itself almost certainly contains topological errors (but see
Bleiweiss et al. 1994, 1995). As with most broad-scale com-
parative studies, both more (and more representative) tip
data and additional phylogenetic information would be
highly desirable. Ideally, a descriptive and predictive equa-
tion for an entire clade, such as Aves, should be derived
from a (perhaps stratified) random sampling of its
members.

As compared with other birds, we have shown that pas-
serines have lower rates of evolution for log body mass
(fig. 7), log BMR, and mass-corrected (residual) BMR.
These differences were not noted by Reynolds and Lee
(1996), in part because they did not have the methods to
map regressions with confidence intervals back onto the
original data space (e.g., fig. 6). The difference in evolu-
tionary rates suggests that separate allometric equations
are warranted, even though phylogenetic ANCOVA fails
to detect a significant difference in allometric relationships
between passerines and nonpasserines (Reynolds and Lee
1996; see also below). The significant difference in mean
body mass between passerines (smaller) and their sister
clade—reported here for the first time—also bolsters the
argument for use of separate equations.



Predictions for Unmeasured Species

Moving beyond the idea of clade-specific allometric equa-
tions (see previous section), the new methods presented
here allow predictions for unmeasured species to become
increasingly precise as phylogenetic information becomes
more and more detailed. Consider the question, What is
the predicted metabolic rate of a 2-g bird? If the hypo-
thetical species is specified no more precisely than “a bird,”
then the independent-contrasts equations for all 254 spe-
cies would have to be used (and the final one listed in
table 1 would be recommended). If it were specified to be
a passerine bird, then an equation for the 101 passerine
species alone could be used.

If the hypothetical species were specified to be a member
of a particular passerine subclade, then the method illus-
trated in figure 3 could be used, with the species rooted
at the base of the subclade. Alternatively, one could re-
compute the independent-contrasts equation using only
the data for members of that subclade. The latter proce-
dure would be recommended if evidence suggested het-
erogeneity in the mass-corrected metabolic rate of different
passerine subclades. In general, however, deciding which
species to include in a comparative study will often involve
trade-offs among sample size, range of the independent
variable, and the desire to avoid including apples with
citrus (e.g., see discussions in Garland and Adolph 1994;
Garland et al. 1997).

If the hypothetical species were specified as the close
relative of a particular measured species, then the most
precise predictions could be made, in terms of both the
point estimate and the width of the prediction intervals.
As in most inferential procedures, the more information
we have, and the more accurate it is, the better we can
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do. Note also that the phylogenetically informed predic-
tion intervals (e.g., fig. 3D, 3E) can be narrower than those
from conventional analyses (fig. 3B), leading to greatly
enhanced statistical power to detect whether a particular
species or population deviates from an expectation (e.g.,
fig. 4). Thus, what phylogeny taketh away (cf. fig. 3C to
fig. 3B), phylogeny giveth back, at least with proper sta-
tistical methods.

Paleontologists often estimate body sizes of extinct
forms from knowledge of the sizes of one or a few bones
(Damuth and MacFadden 1990). With our procedures, the
extinct form could be specified in one of three general
phylogenetic positions: as a tip on a branch that terminates
at some point before the present, as an internal node on
the phylogenetic tree, or as a point somewhere along a
given branch. The rerooting procedure is used in all three
cases. Importantly, the latter two cases involve predictions
for hypothetical ancestors that were directly on the line of
descent to particular extant species. Previous methods for
ancestor reconstruction have been limited to estimation
of values at nodes (review in Garland et al. 1999).
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APPENDIX A

Independent-Contrasts Approach

Before deriving statistical properties for the expectation of y given x, it is necessary to review Felsenstein’s (1985)
original IC method. Let x; and x; denote values of a trait at two adjacent nodes (or tips) i and j, and let y; and y;
denote the values of a second trait that is assumed to depend on x. With Ax; = x; — x; and Ay; = y; — y; denoting the
(nonstandardized) contrasts, the regression model of independent contrasts is

Ay, = B,Ax; + VW, + v, (A1)
where 3, is the slope of the regression, v; and 4/ are the corrected branch lengths below nodes i and j, and ¢, is a
normal random variable with mean 0 and variance o>, The corrected branch length ¢ takes account of the uncertainty
in values estimated for ancestral species. Specifically, v is calculated recursively from v} = v} + (v,2)/(v}, + v}), where
v, is the uncorrected branch length and v, and v, are the corrected branch lengths above species i on the phylogenetic

tree. In this particular formulation, the branch lengths for both x and y are assumed to be the same (Garland et al.
1992; Diaz-Uriarte and Garland 1996). In general, however, the branch lengths for x and y need not be the same,
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which in equation (Al) is equivalent to transforming Ay, by multiplying by the ratio (\/v:. + v;)/(\/u,-' + uj ), where v,
and u; are branch lengths for x and y, respectively. This would be done following any other branch-length
transformations.

The estimator of 3,, Z?l, is calculated using regression through the origin (Garland et al. 1992), standardizing contrasts

by 1/\v, + v}

s sVl
Bi=—" : (A2)

2 [(Axv')/ (\/”T”J)]z

contrasts

The estimator of the variance of ¢; is

2

A 1 Ay, — E?le--
ot = A/ M ] A3
N - Zco%sts A\ 1}2 + 1];, ( )
for a phylogenetic tree with N tips (Neter et al. 1989, pp. 167-168). The 1 — 2« confidence interval for [3] is
~ o
By £ tyn-s (A4)

sl

contrasts

The estimate and the confidence interval for the value of y, at tip t depend on the mean E{y,|x} and variance
Viy,|x} of the distribution of y, given x, The confidence interval is calculated presuming that tip ¢ is rooted directly
to the base of the tree with branch length equal to the sum of branch lengths leading to tip #. Formulae for E{y,|x}
and V{y,|x,} are derived below.

For nodes (and tips) other than the basal node, the regression model for independent contrasts can be written

)’7' = Bl(xi - xw) + }/w + U/iei) (AS)

where x,, and y, denote the values of x and y at the node immediately preceding node i and ¢, is a normal random
variable with mean 0 and variance 0. The regression model of equation (A5) is formally identical to the model of
equation (Al).

The values of y; at the tips of the phylogenetic tree can be expressed in terms of the basal value of y (denoted y,)
by recursively working down the phylogenetic tree by the relationships

¥, =0By(x;,— x,) +y,+ \/17;6,-
= B, — x,) + B(x, = x,.) + o, + Ve + Vi e,
: (A6)
= B —x) + .+ X Ve,

lineage

where the subscript 2w denotes the node two below node 7, and the summation is taken over all nodes k in the lineage
between node i and the basal node. Incidentally, this formula demonstrates the need for the independent-contrasts
method. The value of y; depends on the values of ¢, along the lineage from the basal node. For tips that partially share
a lineage, values of y, share some of the same values of ¢;, making them nonindependent.

The estimator of y; as a function of x; at all nodes (and tips) other than the basal node is defined recursively as
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5= Bulx, — x,) + Jus (A7)

where [Af, is given by equation (A2). The estimator of the basal node is derived using the usual independent-contrasts
method (Felsenstein 1985; Garland et al. 1999):

~ Uy T
z = / / > (A8)
v, + v,

where y, and ¥, are the estimates of values of y at nodes 1 and 2 above the basal node, which themselves are obtained
recursively from the preceding nodes by use of the formula

" "

~ vy, Ty

yk = / / ]' (A9)
v, + v;

The value of x at the basal node, x,, is calculated similarly.

For tip t, the random variable y, is normally distributed because it is the sum of normal random variables 3, and
¥, The expectation of y, given x, is

Eflx} = EiBi(x, — x,) + 7.}

EfB,(x, — x,) + 7} (A10)
= Bl(xz - xz) + Y

and its variance is

Vigilxd = VIB\(x, — x,) + 7}

V{Egl('xt - 'xz) + 5/2}

VIBMx, — x)* + Vi3} (A11)

_ (x,— %)’ :

> l(Axij)/(m)ra v +1}'20

contrasts

/7
UIUZ 2

In equation (A11), the expression for V{LA?I} derives from equation (A2). From equation (A8), the value of V{y} is
obtained from

2

/ /

U
v+,

/2

o7
VU,
v,0° + -

/2 _

2
o’ = o
2

v+,

Viy) =

2
v+,
Finally, independence of 231 and y, follows from Fisher’s lemma in a manner analogous to standard linear regression
(Larsen and Marx 1981).

From regression through the origin, [(N — 2)d°]/0? is a x%_, distribution. From equations (A10) and (Al1),

j\/r — [él('xt — xz) + yz]
o\ ey 00+ )

ontrasts [(AXU)/( \U%’UJ/)] ’




360 The American Naturalist

is normally distributed with mean 0 and variance 1. Therefore,

5’: - [él(xt — ‘xz) + yz]

(A12)
2
\/32 G, = x.)? /[ s [(Ax,,j)/(m)] + @)/, + 0))
contrasts
is a Student t,_, distribution, and the 1 — 2« confidence interval for E{y,|x} is
j\/z + Bl(xt - 'xz)
2 2
1 Ay. — B,Ax; Ax; v\,
£ lon- S ||| 2 )|+ . (A13)
, N—2 N - 2 contrasts Uli + 'U;- contrasts | v/i + 1}; 1_}/1 + 1]/2

Equation (A13) leads directly to the confidence interval for the y-intercept of the independent-contrasts regression by
setting x, = 0.

To obtain an estimate and prediction interval of y, for a new species h, first suppose that species h is rooted to the
base of the phylogenetic tree on a branch of length v,. Then the model for the estimator of y, is

)A/h =Bi(x, — x,) + 5’w t € (A14)

where ¢, is a normally distributed random variable with mean 0 and variance o”. Following from the derivation of
equation (A13), the prediction interval for y, is

5’;; + él(xh - x)

2 2
1 Ay, — BAx; Ax; V),
* fon—2 > Y — B, (x), — xz)z/ > ——| |+ : 2, +ou,f. (A15)
4 — / / / /
N 2 contrasts vi =+ Uj contrasts \/vi =+ 1}]_ Ul + 172

To obtain prediction estimates of y, when species h is not rooted to the base of the tree, the tree can be rerooted
as illustrated in figure 2B and the analysis performed as described above. The actual selection of the branch length
v, depends on the application. If v, is known for a particular species, then it can be used in equation (A15). For the
prediction interval for a species whose location on the phylogenetic tree is unknown, the species could be rooted
to the base of the tree, and v, could be given the average base-to-tip distance for all known species in the phylogeny.

PDTREE calculates the estimates of 8, (eq. [A2]), 0* (eq. [A3]), confidence intervals for y; (eq. [A13]), and predictions
¥, for species rooted to the base of the phylogenetic tree (eq. [A15]). PDTREE can also reroot the phylogenetic tree,
thus allowing computation of prediction intervals for hypothetical new species anywhere.

APPENDIX B

Generalized Least Squares Approach

Rather than restrict the analysis to a single independent variable, we will consider P independent variables. Thus, let
Xbethe n x Pmatrix with elements x;, wherei = 1, ..., n denotes the species,and k = 1, ..., P denotes the independent
variable. To include a constant (intercept), the first independent variable is given the value of 1 for all species. The
regression problem can be written
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Y=XB+e (B

where the vectors Y= [y, 5, ..., 3], € =[e) €, ..., €,], and B=[B,,0,, ..., B:]". Following Martins and Hansen
(1997), let 0°C be the variance-covariance matrix of €; 6>C = E{ee’}. (Note that Martins and Hansen [1997] denote
our matrix ¢2C as V.) The i — j™ element of C is the sum of branch segment lengths that species i and species j share
in common. The total branch lengths from root to tips are not constrained to be the same for all species.

As described in the text, let D be an n x n matrix such that DCD’ = 1. Obtaining D involves singular value
decomposition of C, which is performed by statistical packages such as MatLab with the SVD() function. Transforming
variables as Z = DY, U = DX, and « = De converts the GLS problem given by equation (B1) into a standard least
squares problem given by equation (4). Statistical inference can be performed for Z and then back-transformed to Y.
Below is a set of standard formulae (Judge et al. 1985; Neter et al. 1989): estimate of 3, 8:

g=(U'U)(UZ)=(XC'X) (XC'Y) (B2)
unbiased estimate of variance o2, 6%
&* = (Z — UBY(Z — UB)/(n — P) = (Y = XBYC™\(Y — XB)/(n — P); (B3)
variance-covariance matrix of 8, V{B}:
ViB} = o*(U'U0) ' =o*(X'C'X) (B4)
estimated variance-covariance matrix of 3, s*{3}:
B} = *(U'U) ' = (X'C'X) (B5)
estimates of mean responses of Y, Y:

Y= D (DXR); (B6)

estimated variance-covariance matrix of mean responses of Y, s*{Y}:

s*{Y} = D 's*{Z}(D ') = Xs*{B)X.. (B7)
Note that with the variance-covariance of mean responses, sz{if}, it is possible to calculate the joint confidence intervals
for the mean responses Y.

These formulae are exact under the assumption of Brownian motion evolution and can be used for statistical
inference in the usual least squares regression fashion. Thus, n0*/a” follows a x* distribution with n — P degrees of
freedom. Similarly, (8, — 8,)/s{B,} and (y — y,)/s{y} follow t-distributions with # — P degrees of freedom. Even though
these expression are exact only under Brownian motion evolution, by the Central Limit Theorem they are asymptotically
correct for large sample sizes when error terms are nonnormal, provided the errors are identically distributed and
have covariance structure given by C. The general expression for the (nonestimated) variance-covariance matrix,
0*(X'C™'X)™", can be used to analyze cases in which C is unknown; this is the case discussed broadly by Martins and
Hansen (1997, pp. 659-662) and explains the difference between their discussion and the estimation procedure presented
here. Note also that the estimates and standard errors for b, and b, given in figure 2 of Martins and Hansen (1997)
are incorrect because of a computational error (T. F. Hansen, personal communication).

It is instructive to compare these results with those obtained from independent contrasts in appendix A. For the

case of only one independent variable, the following identities hold: estimate of variance ¢°, o
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& =(Z—-UBRN(Z—UB)n—2)

~ 2
1 Ay. — B, Ax..
P p— (_ix’l . (BS)
N_ 2contrasts \/’U/IT’[);
estimated unconditional variances of Y, diag(sz{if}):
diag(sz{if}) = diag(Xs*{B}X’) = o*diag[X(X'C'X)'X)]
2
= ¢ [(x, - xz)z/ 2 (Axij)/(\/v'i + v;) + (W), + v))]|. (B9)
This last expression leads to the further identity that
rc) = (B10)
v, T v,

where 1 is an # x 1 vector of ones. These expressions show the clear relationships between weightings in terms of
v, in the IC approach and weightings in terms of C in the GLS approach.

Prediction intervals for a new species h can either be calculated by rerooting the tree, as described for the IC method,
or by explicitly calculating the conditional mean and variance of the error term ¢, for the new species. For new species
h, the value of y, is given by

Vi =B T Bix, T € (B11)
where ¢, is normally distributed with mean p and variance ¢° ¢,. Both p and ¢, depend on the error terms obtained
for all related species on the phylogenetic tree (here, “related” means that the amount of shared branch length is >0).
In particular, if ¢;, gives the sum of branch lengths shared by species i and h, and C,, is the n x 1 vector of values of
¢;, for all species i other than h, then p = C,C'(X — %), and ¢, = ¢,, — C,,C"'C,, (Box et al. 1994, pp. 282-285; see

i

also Martins and Hansen 1997, p. 661). The computations used in appendix B are not performed by PDTREE, but

they can be performed using such software packages as MatLab (MathWorks 1996).
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