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mobiles but is close to values for large trucks. If there
is interest in extending the predictions to vehicles of
such weights, we should try to decide if 2.73 miles per
gallon is a reasonable value for a vehicle weighing
21,697 Ibs. (There is, of course, a problem in that most
trucks use diesel fuel, whereas all but one of the auto-
mobiles in the original data were gasoline powered.)
The value of 2.73 miles per gallon is less than is to be
expected from a truck of approximately 21,000 lbs., and
hence a value lower than 36.576 GPM is more reason-
able. Therefore, it also seems reasonable to conclude
that, even though the no-intercept model is preferred
with the range of the data (based on both statistical and
physical evidence), the intercept model may provide
more reasonable predictions at higher vehicle weights.

[Received November 1980. Revised August 1982. ]
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A Note on Screening Regression Equations

DAVID A. FREEDMAN*

Consider developing a regression model in a context
where substantive theory is weak. To focus on an ex-
treme case, suppose that in fact there is no relationship
between the dependent variable and the explanatory
variables. Even so, if there are many explanatory vari-
ables, the R? will be high. If explanatory variables with
small ¢ statistics are dropped and the equation refitted,
the R? will stay high and the overall F will become
highly significant. This is demonstrated by simulation
and by asymptotic calculation.

KEY WORDS: Regression; Screening; R?; F; Multiple
testing.

1. INTRODUCTION

When regression equations are used in empirical
work, the ratio of data points to parameters is often
low; furthermore, variables with small coefficients are
often dropped and the equations refitted without them.
Some examples are discussed in Freedman (1981) and
Freedman, Rothenberg, and Sutch (1982,1983). Such
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practices can distort the significance levels of con-
ventional statistical tests. The existence of this effect is
well known, but its magnitude may come as a surprise,
even to a hardened statistician. The object of the
present note is to quantify this effect, both through
simulation (Section 2) and through asymptotic calcu-
lation (Section 3). For another discussion, see Rencher
and Pun (1980).

To help draw the conclusion explicitly, suppose an
investigator seeks to predict a variable Y in terms of
some large and indefinite list of explanatory variables
X, X;,. ... If the number of variables is comparable to
the number of data points, and if the variables are only
imperfectly correlated among themselves, then a very
modest search procedure will produce an equation with
a relatively small number of explanatory variables, most
of which come in with significant coefficients, and a
highly significant R?. This will be so even if Y is totally
unrelated to the X'’s.

To sum up, in a world with a large number of un-
related variables and no clear a priori specifications,
uncritical use of standard methods will lead to models
that appear to have a lot of explanatory power. That is
the main—and negative—message of the present note.
Therefore, only the null hypothesis is considered here,
and only the case where the number of variables is of
the same order as the number of data points.

The present note is in the same spirit as the pretest
literature. An early reference is Olshen (1973). Howev-
er, there is a real difference in implementation: Olshen
conditions on an F test being significant; the present
note screens out the insignificant variables and refits the



equation. Thus, Olshen has only one equation to deal
with; the present note has two. The results of this note
can also be differentiated from the theory of pretest
estimators described in, for example, Judge and Bock
(1978). To use the latter estimators, the investigator
must decide a priori which coefficients may be set to
zero; here, this decision is made on the basis of the data.

2. A SIMULATION

A matrix was created with 100 rows (data points) and
51 columns (variables). All the entries in this matrix
were independent observations drawn from the stan-
dard normal distribution. In short, this matrix was pure
noise. The 51st column was taken as the dependent
variable Y in a regression equation; the first 50 columns
were taken as the independent variables X, ..., Xy,
By construction, then, Y was independent of the X’s.
Ideally, R? should have been insignificant, by the stan-
dard Ftest. Likewise, the regression coefficients should
have been insignificant, by the standard ¢ test.

These data were analyzed in two successive multiple
regressions. In the first pass, Y was run on all 50 of the
X'’s, with the following results:

® R?*=.50, P =.53;

® 15 coefficients out of 50 were significant at the 25
percent level;

® 1 coefficient out of 50 was significant at the 5 per-
cent level.

Only the 21 variables whose coefficients were signifi-
cant at the 25 percent level were allowed to enter the
equation on the second pass. The results were as fol-
lows:

® R*=36,P=5x10"*

® 14 coefficients out of 15 were significant at the 25
percent level;

® 6 coefficients out of 15 were significant at the 5
percent level.

The results from the second pass are misleading in-
deed, for they appear to demonstrate a definite rela-

tionship between Y and the X’s, that is, between noise
and noise. Graphical methods cannot help here; in ef-
fect, Y and the selected X’s follow a jointly normal
distribution conditioned on having significant ¢ statis-
tics. The simulation was done 10 times; the results are
shown in Table 1. The 25 percent level was selected to
represent an ‘“‘exploratory’’ analysis; 5 percent for ‘“‘con-
firmatory.” The simulation was done in SAS on the UC
Berkeley IBM 4341 by Mr. Thomas Permutt, on April
16, 1982.

3. SOME ASYMPTOTICS

An asymptotic calculation is helpful to explain the
results of the simulation experiment. The Y and the X’s
are independent; condition X to be constant. There is
no reason to treat the intercept separately since the Y'’s
and X’s all have expectation zero. Finally, suppose X
has orthonormal columns. The resulting model is

Y =XB te, (1)

where Y is an n X 1 random vector, X is a constant
n X p matrix with orthonormal columns, where n Zp,
while B isa p X 1 vector of parameters, and eisann X 1
vector of independent normals, having mean 0 and
common variance o*. In particular, the rank of X is p.
All probabilities are computed assuming the null hy-
pothesis that 8 =0. Suppose

n— o and p — « so that p/n — p, where 0 <p <1.(2)

Let R? be the square of the conventional multiple cor-
relation coefficient, and F, the conventional F statistic
for testing the null hypothesis g = 0. Under these condi-
tions, the next proposition shows that R will be essen-
tially the ratio of the number p of variables to the num-
ber n of data points: the proof is deferred.
Proposition. Assume (1) and (2). Then

R?—p and F,— 1 in probability. 3)

Now consider redoing the regression after dropping
the columns of X that fail to achieve significance at level
a. Here, 0 <a <1 is fixed. Let g, , be the number of

Table 1. Simulation Results

First Pass Second Pass
Repetition R? F P® #25%° #5%° R? F P x10* #p°® #25% #5%
1 .50 .98 .53 15 1 .36 3.13 5 15 14 6
2 .46 .84 .73 9 0 15 1.85 700 9 6 2
3 .52 1.07 .40 16 4 .36 2.93 7 16 16 9
4 45 .83 75 7 1 14 2.13 500 7 5 4
5 57 1.35 15 17 2 .44 3.82 2 17 17 9
6 .46 .84 .73 12 1 .22 2.06 300 12 11 2
7 41 .70 .89 4 0 A2 3.33 100 4 3 1
8 42 .72 .88 12 1 27 2.66 40 12 1 3
9 .39 .64 .94 8 0 .20 2.90 60 8 8 4
10 .63 1.69 .03 16 4 .48 4.80 .008 16 16 9

p is the significance level of the F test, scaled up by 10* in the second pass.

b425% is the number of variables whose coefficients are significant at the 25% level; only such variables are entered at the second pass; #p is the number of such variables, that is, the

number of variables in the second-pass regression, repeated for ease of reference.
°#5% is the number of variables whose coefficients are significant at the 5% level.
NOTE: The regressions are run without intercepts.
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remaining columns. Let Rf‘a be the square of the con-
ventional multiple correlation in this second regression,
and let F, , be the F statistic. These are to be computed
by the standard formulas, that is, without any adjust-
ment for the prehminary screening.

To estimate R . and F, ., the following will be help-
ful. Let Z be standard normal and d(z)=P{|Z| >z}
Analytically,

P(z) = \/% fexp(—% uz) du.

Choose \ so that ®(A\) = a. Thus, \ is the cutoff for a
two-tailed z test at level a. Let

gz)= Z*<1.
112>z}

For 0 =z <, integration by parts shows

g(z)=®(z) + \/—%zexp(—% zz). (@)
Clearly,
E{Z?||Z| > z} = g(2)/®(2). ®)

Then, as intuition demands,

E{Z}||Z|>z}=1+ \/% exp(—% 22)/<I>(z)> 1.(6)

Let Z, be Z conditional on |Z | > \. Put z =\ in (5)
and recall that ®(\) = a:

g\\)/a=E{Z*||Z| >\ =E{Z,}>1. (7)
Using (6) and further integration by parts.

var{Z?| |Z| >z} =2+ v(2), (8)
where

2 1
v(z) = \/; w(z) exp(—i 22)/43(2)2 9)
and
1
w(iz)=(2*+2) ®(z) - \/% z? exp(—i zz>.
In particular, v is continuous. Intuition suggests that v

be positive. This fact will not be needed here, but it is
true: see Diaconis and Freedman (1982, (3.15)—(3.16)).

Proposition. Assume (1) and (2). In probability:
Gn.o/n—ap and R} .~ g(\) and

F,.— 8% /1=gMe (10)

' a 1—ap
In the second regression, the ¢ statistic for testing
whether a coefficient vanishes is asymptotically distrib-

uted as
[ T—ap
HNT—go0p

These results may be interpreted as follows. The
number of variables in the first-pass regression is
p =pn +o(n); the number in the second pass is
gn.« = apn + o(n). That is, as may be expected, a of the
variables are significant at level a. Since g(\) <1, the
R? in the second-pass regression is essentially the frac-
tion g(\) of R? in the first pass. Likewise, g(A) > a, so
the asymptotic value of the F statistic exceeds 1. Since
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the number of degrees of freedom is growing, off-scale
P values will result. Finally, the real level of the ¢ test
may differ appreciably from the nominal level.

Example. Suppose N =100 and p =50, so p=3;
and a=.25 so A=1.15. Then g(A\)=.72, and
E{Z*||Z| >\}=2.9. In a regression with 50 explana-
tory variables and 100 data points, on the null hy-
pothesis R? should be nearly 3.

Next, run the regression again, keeping only the vari-
ables significant at the 25 percent level. The new R’
should be around g (\) = 72 percent of the original R
The new F statistic should be around

g(\) /1-g(Np .
a 1—ap

4.0.

The number of degrees of freedom should be around
apn = 12 in the numerator and 100 — 12 = 88 in the de-
nominator. (However, g, , is still quite variable, its
standard deviation being about 3.) On this basis, a P
value on the order of 10~ may be anticipated.

What about the ¢ tests? Take A’ > \, corresponding to
level a’ < a. The nominal level for the test is a’, but the

real level is
1—ap
Lpfiz) a2 )
121 1-gMp

Since g(N\) > a, it follows that 1 —ap >1—g(\)p. Keep
a=.25,s0 A =1.15; take o’ = 5 percent, so \' = 1.96;

keep p =3. Now
1—ap
N VT = 2.3
1-gMp

and the real level is 9 percent. This concludes the exam-
ple.

Turn now to the proofs. Without loss of generality,
suppose the ith column of X has a 1 in the ith position
and 0’s everywhere else. Then

é,»=Y,‘f0ri=l,‘..,p,

and the sum of squares for error in the first-pass re-
gression corresponding to the model (1) is

> Y.
i=p+1
Thus
p n
R =Y Y,-Z/Z Y?
i=1 i=1

and

_1Z 2
F, 2 !/ — p , ’Zﬂ Y;.
Now (3) follows from the weak law of large numbers. Of
course, E(R?) and var R, are known: see Kendall and
Stuart (1969).

To prove (10), the ¢ statistic for testing B;
where

=0is Y/s,,

S0 = » Y/

n-— p =p+1

Thus, column i of X enters the second regression iff



| Yi/sn| >ty n-p, the cutoff for a two-tailed ¢ test at level
a, with n — p degrees of freedom.

In what follows, suppose without loss of generality
that o= 1. Given s,, the events

Ai = {l Yi | > tu,n—psn}

are conditionally independent, with common condi-
tional probability ®(¢, ,-,5,). Of course, ¢, ,-,— \ and
s,—1; so this conditional probability converges to
®(\) = a. The number g, , of the events A; that occur is
therefore

ap +o(p)=oapn +o(n)

by (2). This can be verified in detail by computing the
conditional expectation and variance.

Next, condition on s, and ¢, , = ¢ and on the identity
of the g columns going into the second regression. By
symmetry, suppose that it is columns 1 through g of X
that enter the second regression. Then

q n
Rl =2 ¥/S
i=1 i=1
and

142/ 1 (0
Froa=22Y!/— 2 Y

q - n=q 4
Now 3, Y =n +o0(n); and in the denominator of
Fn.uv
n n q
S Y,»z _ Z Yi2 _

i=1

i=q+1

2
Y2,
1

It remains only to estimate 3., Y7, to within o(n).
However, these Y;’s are conditionally independent,
with common conditional distribution: they are distrib-
uted as Z given |Z|>z,, where Z is N(0, 1) and
2, =ty np "S- In view of (5), the conditional expectation
of D, Yis

Gn.a 8(2n)/P(zn).

But g, , = apn + o(n) and z,— \. So the last display is,
up to o(n),

apng(N)/a=g(N\)pn.

Likewise, the conditional variance of 37, Y7 is g,

1

{2+ v(z,)} = O(n); the conditional standard deviation
is O(Vn). Thus

%2 Y= g(\a +o0(1),
i=1

L 3 yr-1220p, ()
n_qr—q+1 l_ap

This completes the argument for the convergence in
probability. The assertion about the ¢ statistic is easy to
check, using the last display.

[Received May 1981. Revised May 1982. ]
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