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Abstract This study proposes a within-subject variance-

covariance (VC) structure to take into account repeated

measurements and heteroscedasticity in a context of

growth modeling. The VC structure integrates a variance

function and a continuous autoregressive covariance

structure. It was tested on a nonlinear growth model

parameterized with data from permanent sample plots.

Using a stand-level approach, basal area growth was

independently modeled for red spruce (Picea rubens Sarg.)

and balsam fir [Abies balsamea (L.) Mill.] in mixed stands.

For both species, the implementation of the VC structure

significantly improved the maximum likelihood of the

model. In both cases, it efficiently accounted for hetero-

scedasticity and autocorrelation, since the normalized

residuals no longer exhibited departures from the

assumptions of independent error terms with homogeneous

variances. Moreover, compared with traditional nonlinear

least squares (NLS) models, models parameterized with

this VC structure may generate more accurate predictions

when prior information is available. This case study dem-

onstrates that the implementation of a VC structure may

provide parameter estimates that are consistent with

asymptotically unbiased variances in a context of nonlinear

growth modeling using a stand-level approach. Since the

variances are no longer biased, the hypothesis tests per-

formed on the estimates are valid when the number of

observations is large.

Keywords Nonlinear modeling � Variance modeling �
Covariance structure � Predictions � Red spruce (Picea

rubens Sarg.) � Balsam fir [Abies balsamea (L.) Mill.]

Introduction

Historically, growth and yield models have been used

either to synchronize inventory data or to provide growth

forecasts. When using a stand-level approach, growth and

yield models parameterized with permanent sample plot

data aim at predicting future stand characteristics, such as

basal area, stocking or stand volume (cf. Vanclay 1994,

Sect. 2). However, from a statistical standpoint, repeated

measurements taken on the same subject, for instance a

plot, invalidate the basic assumption of independent error

terms, which is at the basis of the traditional least squares

methods (Steel et al. 1997, Sect. 7.10). Moreover, the
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variances of the error terms often tend to increase along

with increasing predicted values. The resulting heterosce-

dasticity represents a violation of another basic assumption

of these traditional methods (Steel et al. 1997, Sect. 7.10).

In cases of departures from the assumptions of independent

error terms with homogeneous variances, the ordinary least

squares (OLS) and the nonlinear least squares (NLS)

methods still provide an unbiased estimator for the vector

of parameters (Sullivan and Clutter 1972; Gregoire et al.

1995). However, the estimated variances of the parameter

estimates are both biased and inconsistent (LeMay 1990).

Although some statistical tools are now available, many

growth and yield models are still parameterized without

considering these two statistical issues (e.g. Dhôte and

Hervé 2000; Pretzsch et al. 2002; Fortin et al. 2003;

Deleuze et al. 2004). As outlined in Gregoire et al. (1995),

this is probably due to the complexity of error modeling

and the traditional assumption that OLS and NLS estima-

tors are unbiased. However, the biased variances resulting

from such regressions hinder the selection of the appro-

priate explanatory variables (Gregoire et al. 1995). Some-

how, the parameterization of a growth model with

permanent sample plot data should take into account

repeated measurements and heteroscedasticity in order to

obtain unbiased statistical inferences.

Many authors have already addressed the matter of

repeated measurements in growth and yield modeling by

using either random effects and/or direct error modeling

(e.g. Sullivan and Clutter 1972; Gregoire 1987; Goelz and

Burk 1992; Gregoire et al. 1995; Beaumont et al. 1999;

Fang and Bailey 2001; Hall and Bailey 2001; Nothdurft

et al. 2006). Direct error modeling means estimating the

covariances among the error terms, whereas random-

effects specification assumes that the total model variance

can be splitted into several variance components. Basically,

both methods consist in parameterizing the variance-

covariance (VC) matrix of the error terms. To limit the

number of covariance parameters to be estimated, the

design of the variance-covariance structure is typically

assumed to be the same across the individuals (Vonesh and

Carter 1992). Many VC structures have already been

documented, e.g. compound symmetric, first-order autore-

gressive, and the moving average structures in direct error

modeling (cf. Littell et al. 1996, p. 93; Pinheiro and Bates

2000, Sect. 5.3.3), or diagonally blocked, multiple of an

identity, and general positive-definite in random-effects

specification (Pinheiro and Bates 2000, Sect. 4.2.2). With

permanent sample plot data, the main concern is often to

choose a covariance structure that fits unequally spaced and

unbalanced repeated measurements, which are common

with this type of data. Gregoire et al. (1995) clearly

demonstrated that it is possible to do so through a contin-

uous-time autoregressive structure. However, this structure

alone does not account for heterogeneous variances. In-

deed, a transformation can be performed on the dependent

variable to overcome the problem of heteroscedasticity

(Steel et al. 1997, Sect. 9.16). Nevertheless, conversion

problems arise when the resulting estimates and their

inferences have to be retransformed to the original scale

(Duan 1983). A weighted regression could also be per-

formed as an alternative to transformations. However,

choosing the appropriate weight requires some subjectivity

and modeling the variance seems to be preferable, espe-

cially if the purpose of the model is to generate predictions

and uncertainty assessments (Gregoire and Dyer 1989;

Parresol 1993). In fact, unequally spaced repeated mea-

surements and heteroscedasticity are common in forest

growth modeling but rarely simultaneously considered in

the common VC structures.

This study proposes a VC structure to take into account

both problems in a context of growth modeling. This

structure was tested on a nonlinear model. Basal area

growth following a partial cutting was modeled with a von

Bertalanffy–Richards equation (cf. Richards 1959). The

model was parameterized with permanent sample plot data

for two species in mixed stands: red spruce (Picea rubens

Sarg.) and balsam fir [Abies balsamea (L.) Mill.]. The

discussion focused on the effectiveness of the tested

structure as well as its potential and limitations. The von

Bertalanffy–Richards equation has been largely discussed

in previous studies (e.g. Pienaar and Turnbull 1973).

Statistical developments

Statistical theory

According to the previously described context, a statistical

nonlinear growth model parameterized with permanent

sample plot data can be expressed as follows:

yij ¼ f ðxij;bÞ þ eij for i¼ ð1;2; . . . ;qÞ; j¼ ð1;2; . . . ;miÞ
ð1Þ

ei� ¼ ðei;1; ei;2; :::; ei;mi
ÞT ei� � Nmi

ð0;ViÞ

where yij is the dependent variable evaluated at measure-

ment j of plot i, xij is vector of explanatory variables also

evaluated at measurement j of plot i; b is a column vector

of unknown parameters, ei� is a column vector of mi

within-plot error terms associated with plot i, and T de-

notes a matrix transposition. The elements of ei� are as-

sumed to be normally distributed with mean 0 and

variance-covariance Vi.

Since many measurements were taken on the same plot,

a serial correlation can reasonably be expected between the
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errors associated with the ith plot. Many structures already

exist for modeling the within-subject covariance structure

as previously mentioned. Among them, the time-continu-

ous autoregressive structure is a generalization of the first-

order autoregressive structure (Littell et al. 1996, p. 127;

Pinheiro and Bates 2000, p. 236):

Covðeij; eij0 Þ ¼ r2q tij�tij0j j ð2Þ

where r2 is the residual variance, q is the correlation

between two measurements spaced one unit of time apart,

and |tij – tij’| is the absolute distance in time units between

measurements j and j¢ of plot i. The more distant from each

other the measurements, the less correlated they are. The

common first-order autoregressive structure is obtained by

using the order of the measurements instead of time in

Eq. (2).

The time-continuous autoregressive structure and its

derivatives have been largely used in forest growth and

yield modeling (e.g. Goelz and Burk 1992; Gregoire

et al. 1995; Beaumont et al. 1999; Nigh et al. 2002).

Being continuous in time, covariance structure (Eq. 2) no

longer requires the measurements to be equally spaced

and balanced. Its efficiency with permament sample plot

data has already been demonstrated in Gregoire et al.

(1995). However, due to the assumption of homogeneous

variances through parameter r2, this structure does not

account for heteroscedasticity under its current form. To

take heteroscedasticity into account, the variance can be

modeled through a function involving either the predicted

values or some explanatory variables (Parresol 1993;

Davidian and Giltinan 1995, Sect. 2.2.3; Littell et al.

1996, Sect. 8.2.4; Pinheiro and Bates 2000, Sect. 5.2).

Variance modeling can be seen as a weighted regression

whose weight is parameterized instead of being arbi-

trarily fixed. The power-of-the-mean function is a well-

known example of a variance function based on pre-

dicted values:

VarðeijÞ ¼ r2 f ðxij; bÞ
�
�

�
�
2h ð3Þ

where r2 is the residual variance, f ðxij; bÞ is the predicted

value for measurement j of plot i, and h is a parameter to be

estimated. The power-of-the-mean variance function

(Eq. 3) is a generalization of the constant coefficient of

variation model, for which h = 1, and the Poisson-like

variance structure, for which h = 0.5 (Davidian and

Giltinan 1995, p. 23). To take into account unequally

spaced repeated measurements and heteroscedasticity, the

continuous-time autoregressive covariance structure

(Eq. 2) and the variance function (Eq. 3) can be merged.

The general form of the resulting function expresses the

within-plot covariance:

Covðeij; eij0 Þ ¼ vijj0 ¼ r2 f ðxij; bÞ
� �h

f ðxij0 ; bÞ
� �h

q tij�tij0j j ð4Þ

where r2; b; h; and q are assumed to be constant across the

plots.

When j = j¢, Eq. (4) reduces to the original variance

function (Eq. 3). From (Eq. 4), the VC matrix of within-

plot error terms (Vi) is obtained as follows:

Vi ¼

vi;1;1 vi;1;2 ::: vi;1;mi

vi;2;1 vi;2;2 ::: vi;2;mi

::: ::: ::: :::
vi;mi;1 vi;m1;2 ::: vi;mi;mi

2

6
6
4

3

7
7
5
: ð5Þ

Assuming a generalization of VC structure (Eq. 5) to all

the plots, the overall VC matrix of the error terms (V)

encompasses q diagonal blocks, with each block Vi being

the VC matrix of plot i. Usually, the plots are assumed to

be independent from each other and the off-block elements

within V are set to 0, such that

V ¼

V1 0 ::: 0
0 V2 ::: 0
::: ::: ::: :::
0 0 ::: Vq

2

6
6
4

3

7
7
5
: ð6Þ

Estimation method and model diagnostics

Estimation methods for models with parameterized VC

matrices are mostly based on a likelihood approach (Gal-

lant 1987, Sect. 5.5; Davidian and Giltinan 1995, p. 36;

Littell et al. 1996, p. 498; Pinheiro and Bates 2000,

Sect. 2.2). To optimize the likelihood function with respect

to the generalized VC structure, a generalized least squares

(GLS) regression can be performed (Davidian and Giltinan

1995, Sect. 2.3.4). The generalized least squares algorithm

consists in generating a preliminary OLS or NLS estimator

for the vector of parameters. This is done by calibrating the

model with no VC structure. Then, the resulting parameter

estimates are kept constant in order to estimate the VC

parameters. Model parameters are estimated again by

keeping the VC parameter estimates constant, and so forth

until the convergence of the likelihood function on a

maximum. At convergence, a GLS estimator is obtained.

Most subalgorithms for the optimization of model and VC

parameters are tedious. We will not describe them here.

Readers can refer to Gallant (1987, Sect. 1.4) for further

details about the algorithms used for estimating model

parameters. The maximization of the likelihood function

with respect to VC parameters is usually performed with

the expectation–maximization and/or the Newton–Raphson

algorithms (cf. Lindstrom and Bates 1988; Wolfinger et al.

1994). These algorithms can be coded in any matrix
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languages, such as IML in SAS system (SAS Institute Inc.

2002). The gnls function available in the S-PLUS or R

software also performs such regressions (cf. Pinheiro and

Bates 2000, Sect. 8.3.3; Pinheiro et al. 2004).

Once the VC parameters are estimated, the inversion of

V provides the marginal contribution of each observation

to the likelihood of the model. The inversed matrix V, i.e.

V– 1, is required to obtain the maximum likelihood esti-

mator of b and its VC matrix (Davidian and Giltinan 1995,

Sect. 2.3.5):

b̂ ¼ ðXTV̂
�1

XÞ�1XTV̂
�1

y ð7aÞ

varðb̂� bÞ ¼ X̂ ¼ ðXTV̂
�1

XÞ�1 ð7bÞ

where X is the Jacobian matrix, i.e. a matrix of model

partial derivatives with respect to b; y is a column vector

whose elements are yij;X is the VC matrix of the parameter

estimates, and the circumflex denotes the maximum like-

lihood estimator. A robust estimator of X can also be ob-

tained through sandwich estimators (Hall and Bailey 2001;

McCulloch and Searle 2001, p. 212).

In fact, matrix V can be seen as a generalization for

statistical models working with the assumptions of additive

and normally distributed error terms. Under the assump-

tions of independent errors and homoscedasticity, matrix V

is set to r2I, with I being the identity matrix. A parame-

terization with V = r2I reduces to a OLS or NLS regres-

sion according to the context.

Once the GLS estimator is obtained, the adequacy of the

VC structure can be assessed with normalized residuals. A

Cholesky decomposition of matrix V is performed to cal-

culate the vector of normalized residuals (rnorm) as follows

(Pinheiro and Bates 2000, p. 239):

rnorm ¼ ðĈ
�1ÞTðy� ŷÞ ð8Þ

where ŷ is a column vector, whose elements are the pre-

dicted values f ðxij; b̂Þ; and Ĉ is the upper triangle of the

Cholesky decomposition of V̂: Normalized residuals can be

seen as standardized residuals for models with parameter-

ized VC matrix. Actually, the normalized residuals as

shown in (Eq. 8) are not only weighted by their own

variances, but also by their covariances. Consequently, if

matrix V is properly parameterized, the normalized resid-

uals should be independently and normally distributed with

mean 0 and variance 1. Variance homogeneity is easily

checked by plotting the normalized residuals against pre-

dicted values. Some statistical tests are also available (cf.

Carroll and Rupert 1988, Sect. 3.4.3). The assumption of

independent errors can be verified by calculating the

empirical Pearson correlations among the normalized

residuals. Then, the hypothesis that correlations are null is

tested analytically with confidence intervals (cf. SAS

Institute 2002). The semi-variogram technique also pro-

vides a measure of similarity among the within-plot nor-

malized residuals (Gregoire et al. 1995).

In addition to diagnostic plots, likelihood ratio tests

(LRT) can be performed to compare nested models that

were fitted using the maximum likelihood method. A first

model is considered nested in a second one if this second

model is identical to the first except for the inclusion of a

new explanatory variable or a new VC parameter. The

statistic, which is computed as 2 logðL2=L1Þ with L being

the likelihood of the model, follows a v2 distribution with

k2 – k1 degrees of freedom, with k being the number of

parameters. LRT are useful for assessing the significance of

VC parameters (e.g. Fang and Bailey 2001; Hall and Bailey

2001). A significant probability associated with the statistic

indicates that the additional parameter significantly im-

proves the maximum likelihood of the model. Note that

LRT based on restricted maximum likelihood values

(REML) are valid only if the fixed-effects specification is

the same for both models (Pinheiro and Bates 2000, p. 83).

Models parameterized with the same data can also be

compared with the Akaike Information Criterion (AIC) and

the Bayesian Information Criterion (BIC) (Littell et al. 1996,

Sect. 3.2.2; Pinheiro and Bates 2000, Sect. 2.4.1). Both sta-

tistics are based on log-likelihood values penalized for the

number of parameters. AIC and BIC can be considered as

‘‘parsimony’’ criteria: the smaller the value of the statistics,

the better the model in terms of fit and simplicity. Since the

penalty for parameters is greater in the BIC, this criterion

tends to be more conservative than the AIC.

Predictions

Once parameterized, the purpose of a model is usually to

provide predictions. A general prediction theorem is pre-

sented in Valliant et al. (2000, Sect. 2.2). First, let us de-

fine the indices r and s as the unobserved and the observed

part of their respective matrices or vectors:

V ¼ Vss Vsr

Vrs Vrr

� �

ð9aÞ

X ¼ Xs

Xr

� �

ð9bÞ

y ¼ ys

yr

� �

ð9cÞ

ŷ ¼ ŷs

ŷr

� �

: ð9dÞ

The elements of the observed part of the response vector,

i.e. ys, are actually previous observations for some
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particular plots, which can be used to obtain plot-specific

responses. Henceforth, we will refer to these previous

observations as ‘‘prior information’’. Let ~yr be the

empirical best predictor of the unknown part of the

response vector, i.e. yr. This vector can be obtained as

follows:

~yr ¼ ŷr þ V̂rsV̂
�1

ss ðys � ŷsÞ ð10Þ

where the last term represents the improvement when prior

information is available. The prediction error associated

with vector ~yr has a variance that originates from two

different sources of variability: the variability due to the

error terms, which is defined in V, and the variability due to

the parameter estimates, which is encompassed in X: A

third source of variability, which is the variability due to

VC parameter estimates, has not been integrated into the

calculation of prediction variances yet. The error variance

of the empirical best predictor is

varð~yr � yrÞ ¼ V̂rr� V̂rsV̂
�1

ss V̂sr

þðXr� V̂rsV̂
�1

ss XsÞX̂ðXr � V̂rsV̂
�1

ss XsÞT ð11Þ

where the last term represents the variance due to the

parameter estimates, whereas the first two originate from

the variance of the error terms. With the variance (Eq. 11),

confidence intervals can be calculated around vector ~yr:

Equations (10) and (11) do not only apply to models

with VC structures, but also to models with mixed effects.

In fact, both approaches result in a parameterized matrix V,

which is then used to enhance the prediction. Note that the

predicted values ŷ must be based on the fixed-effects

parameters only when the theorem is used with a mixed

model. In both cases, the best empirical predictor ~yr and

the variance varð~yr � yrÞ respectively reduce to ŷr and Vrr

when there is no prior information available for a particular

plot.

The case study

The study site and the database

The 16-km2 Lake Édouard Experimental Forest (LEEF)

(46�45¢N, 72�56¢W) is located in the Laurentian section

(L.4a) of the Great Lakes–St Lawrence River Region (cf.

Rowe 1972). Created in 1918 for monitoring purposes, the

LEEF has been part of La Mauricie National Park, Quebec,

Canada, since 1970. Its climate is cool and humid. The

nearby Shawinigan locality has a 1971–2000 mean annual

temperature of 4.5�C (Environment Canada 2002). January

is the coldest month with an average daily temperature of

–13.2�C. The warmest month is July with an average of

19.6�C. The mean annual precipitation is 1,069 mm and

the mean annual snowfall averages 249 cm. The LEEF

average elevation is about 350 m above sea level. The

topography is a succession of low-altitude hills interspaced

with large areas of flat land (Heimburger 1941; Robitaille

and Saucier 1998). The predominant soil type is a glacial

till. The ecological features of the Laurentian section are

similar to those of the well-known Acadian Forest Region

(Rowe 1972). The spruce-fir-hardwood type described in

Westveld (1953) is the most abundant forest type within

the LEEF (Heimburger 1941; Ray 1956). It is usually lo-

cated on lower slopes and well-drained flat lands (Heim-

burger 1941; Ray 1956; Grondin et al. 1996; Gosselin et al.

2001). Red spruce, balsam fir, yellow birch (Betula alle-

ghaniensis Britton), and white birch (Betula papyrifera

Marsh.) are the dominant species. Minor but common

species are white spruce [Picea glauca (Moench) Voss.],

eastern hemlock [Tsuga canadensis (L.) Carr.], eastern

white pine (Pinus strobus L.), white cedar (Thuja occi-

dentalis L.), red maple (Acer rubrum L.) and sugar maple

(Acer saccharum Marsh.). Between 1950 and 1957, an

experimental diameter-limit cutting was conducted at the

LEEF. The treatment aimed (1) to avoid over-cutting the

softwoods, (2) to favour spruce over fir, and (3) to reduce

the cutting cycle from 40 to 20–30 years (Hatcher 1959).

To meet the management goals, the diameter limits were

set at 20 cm (8 in) for balsam fir and 41 cm (16 in) for red

spruce and yellow birch at a stump height of 30 cm (12 in)

(Ray 1956). Harvested volumes were estimated to 30–35%

of the total volume of all stems larger than 8.9 cm (3.5 in)

in diameter at breast height (dbh) (Ray 1956; Hatcher

1959).

The growth following this partial cutting was monitored

with previously established permanent sample plots. These

405-m2 (0.1-acre) plots had been systematically distributed

all over the LEEF territory using a 201-m (660-ft) grid

design. Within each plot, all the trees greater than 1.3 cm

(0.5 in) in dbh had been tallied by 2.5-cm (1-in) diameter

class. After the 1950–1957 partial cutting, successive

measurements were done in 1956–1957, 1967, 1994–1996,

and 2001–2004. Due to particular constraints, the last three

measurements were partial, i.e. some plots were not visited

or the data were unavailable.

A subsample of these permanent sample plots was used

as a parameterization data set in order to model the basal

area growth following the 1950–1957 cutting. The plots

were selected among those for which we had at least one

measurement since 1994 (203 plots). To limit the ecolo-

gical variability as much as possible, the study focused on

the spruce-fir-hardwood forest type for which the largest

number of plots was available. The data set included 96

plots for a total of 239 measurements. Some characteristics
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of the selected plots are summarized in Table 1 for the first

measurement following cutting. The basal area develop-

ment after logging is also shown for both species in Fig. 1.

The model

In southern Quebec, partial cutting is mostly regulated by

merchantable basal area growth. Merchantable basal area is

here defined as the basal area of all trees greater than

8.9 cm in diameter at breast height (dbh, 1.3 m). This

variable was selected as the dependent variable for the

modeling. Merchantable basal area was first plotted against

time since logging to obtain a general trend of the data

(Fig. 1), which supported the choice of a von Bertalanffy–

Richards equation (cf. Richards 1959) as model. Expressed

as a function of time since logging, the integral form of the

equation is defined as follows:

yij ¼ Aið1� eBitijÞCi þ eij ð12Þ

where yij is the merchantable basal area at the measurement

j of plot i (m2 �ha–1), tij is the time since logging at mea-

surement j of plot i (year), Ai, Bi, and Ci are the general

parameters of the function, and eij is the error term.

Parameters may either be constant or vary according to

some explanatory variables common to the measurements

of plot i. Parameter Ai sets the asymptote of the equation,

whereas parameters Bi and Ci change the rate of growth as

well as the inflection point.

Equation (12) must be modified to suit the partial

cutting context. Actually, immediately after logging, i.e.

at tij = 0, the residual merchantable basal area is likely

to be different from 0. For the purpose of this study, an

additional parameter was included in the model so that

the intercept would be different from 0. Basically, two

alternatives exist. This additional parameter makes it

possible to move the curve either along the time axis (x-

axis) or along the merchantable basal area axis (y-axis).

In this case study, the first option was preferred, because

it seemed more consistent from a biological point of

view. The displacement along the time axis means that

the residual merchantable basal area reduces to a dis-

placement of general yield curves driven by some

explanatory variables. In other words, this approach as-

sumes (1) that species development on a particular site

follows a family of yield curves and (2) that some post-

harvest features related to the species actually indicate

how developed the species is. The alternative, i.e. the

translation along the y-axis, did not offer such biological

consistency.

The translation along the x-axis was implemented by

specifying an additional parameter (Di) in the model:

yij ¼ Aið1� eBiðtijþDiÞÞCi þ eij: ð13Þ

Previous works successfully related shifts of general yield

curves to advance regeneration characteristics a few years

after logging (Riopel 1999; Fortin et al. 2003).

After a few preliminary trials, the general parameters of

Eq. (13) were set to

Ai ¼ eb1þb2DIRi;1 ð14aÞ

Bi ¼ b3 ð14bÞ

Ci ¼ b4 ð14cÞ

Di ¼ b5mqd250i;1 � ti;1 þ 1 ð14dÞ

where DIRi,1 is a density index ratio evaluated at first

measurement of plot i, mdq250i,1 is the mean quadratic

diameter of the 250 largest stems per hectare at the first

measurement of plot i (cm), and ti,1 is the time after logging

for the first measurement of plot i. This latter variable acts

upon the shift of the curve as a correction factor when the

first measurement does not correspond to the first growing

season following the diameter-limit cutting. This correction

Table 1 Summary of the 1956–1957 measurement for the 96 per-

manent sample plots of the spruce-fir-hardwood forest type

Species and

characteristics

Minimum Mean Maximum Standard

deviation

Red spruce

Merchantable basal

areaa (m2�ha–1)

0.0 3.5 9.0 2.0

Merchantable densitya

(stems�ha–1)

0 236 1062 162

mdq250b (cm) 3.4 15.6 26.7 4.8

Density index ratioc 0.01 0.31 0.78 0.16

Balsam fir

Merchantable basal

areaa (m2�ha–1)

0.2 2.2 7.1 1.6

Merchantable densitya

(stems�ha–1)

25 216 767 155

mdq250b (cm) 3.6 13.1 23.4 4.3

Density index ratioc 0.02 0.21 0.57 0.12

All species

Merchantable basal

areaa (m2�ha–1)

3.9 12.4 31.2 4.9

Merchantable densitya

(stems�ha–1)

222 664 1408 276

Time since logging 1 3 6 1.9

a Merchantable: all trees greater than 8.9 cm (3.5 in) in diameter at

breast height (dbh)
b mdq250: mean quadratic diameter of the 250 largest stems per

hectare
c Density index ratio (DIR): as defined in Eq. (15)
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factor was necessary because the cutting was carried out

from 1950 to 1957 depending on the plot, whereas the first

measurement was done in 1956–1957. As a result, this first

measurement does not match the immediate post-harvest

conditions for 54 out of 96 plots.

The selection of these explanatory variables is based on

information criteria (AIC and BIC). Other trials with ad-

ditionnal covariates did not improve the fit of the model.

As specified in Eq. (14a, d) the model assumes that the

family of yield curves is driven by the density index ratio,

whereas the shift along the x-axis is related to the mean

quadratic diameter of the 250 largest stems.

The density index ratio (DIR) we used in this case

study was computed as a ratio between the stand density

index (SDI) calculated for the selected species and the

all-species SDI. For convenience, Reineke’s (1933) rule

was used for calculating the different SDI, although there

might be some variations at the species level (Pretzsch

and Biber 2005). From this rule, the variable DIRi,1 is

obtained as follows:

DIRi;1 ¼
DSPi;1

DSTi;1

mqdspi;1

mqdsti;1

 !1:605

ð15Þ

where DSP and DST, are respectively, the species and the

all-species densities (stems�ha–1), and mdqsp and mdqst are

respectively the species and the all-species mean quadratic

diameter (cm), with all these variables evaluated at the first

measurements of plot i. This ratio is thought to be closely

related to the site occupancy for a particular species.

Equation (13) with its parameters as defined in (Eq. 14a,

b, c, d) was independently parameterized for red spruce and

balsam fir. To take into account repeated measurements

and heteroscedasticity, VC structure (Eq. 5) was included

in the regression. Likelihood ratio tests (LRT) were per-

formed to check the significance of VC parameters. Nor-

malized residuals were also plotted to ensure the structure

was adequate. Moreover, GLS predictions were compared

with NLS predictions in order to illustrate the consistency

and the reliability of the approach. Plot-specific responses

Fig. 1 Observed merchantable

basal areas for both species

(each dot represents a

measurement, each line joins

the measurements of a specific

plot)
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and their confidence intervals were computed with

Eqs. (10) and (11), using prior information when available.

For instance, predictions for the first measurement were

computed with no prior information. The observed pre-

diction error of the first measurement was then used to

enhance the prediction for the second measurement, the

errors on both the first and the second measurements were

used to enhance the prediction for the third one, and so

forth.

Results

Results of the likelihood ratio tests (LRT) and both AIC

and BIC statistics are shown in Table 2. For both species,

the AIC and the BIC clearly indicated that the best model

was the one including VC structure (Eq. 5). LRT demon-

strated the significance of the VC parameters h and q.

Adding variance function (Eq. 3) to a NLS-parameterized

model significantly improved the likelihood of the model.

Moreover, adding covariance structure (Eq. 2) over vari-

ance function (Eq. 3) also resulted in a significant

improvement of the likelihood of the model.

For both species, the normalized residuals did not

exhibit major departures from the assumption of nor-

mally distributed error terms with homogeneous vari-

ances. The observed correlations among the normalized

residuals as well as the 1%-confidence intervals around

the null hypothesis H0 :Corr(eij, eij’) = 0 are illustrated

in Fig. 2 for the three models of both species, i.e. the

NLS model, the model with VF (Eq. 3) only, and the

model with VC structure (Eq. 5). Some confidence

intervals are quite large because there were very few

observations for these particular lag distances. Normal-

ized residuals of both the NLS model and the model with

VF (Eq. 3) only exhibited a few significant correlations

for some lags (Fig. 2a–d). VC structure (Eq. 5) seemed

adequate since no observed correlations were signifi-

cantly different from 0 at 1% after including the VC

structure (Fig. 2e, f).

Parameter estimates of the ‘‘best’’ model, i.e. the model

with VC structure (Eq. 5), are shown in Table 3. All model

parameter estimates were significantly different from 0 at

5%, at least. Also, estimates of b4 were significantly dif-

ferent from 1, meaning that the models could not be sim-

plified by omitting this parameter. For both species, the

estimates of b2 indicated a positive effect of the density

index ratio (DIR) on basal area growth. Increases in species

density index with respect to the all-species density index

resulted in a higher maximum basal area, i.e. a higher

model asymptote. The estimates of b5 also indicated a

positive effect of mean quadratic diameter of the 250

largest stems per hectare (mdq250) on the shift of the yield

curve along the time axis. As expected, the greater the

mean quadratic diameter of the 250 largest stems per

hectare, the greater the displacement of the curve.

The predictive abilities of each model are illustrated in

Fig. 3 for both species. Plot 1 was selected as an example.

Obviously, the NLS confidence intervals are the widest

intervals, since the regression assumes homogeneous

variances (Fig. 3a, b). On the other hand, models with

variance function (Eq. 3) produce confidence intervals

more consistent with the heteroscedastic pattern of the data

(Fig. 3c, d). Note that OLS models and models with vari-

ance function (Eq. 3) lead to similar predicted values. The

relevance of VC structure (Eq. 5) is clearly demonstrated

in Fig. 3e and f. Using the available previous prediction

errors makes it possible to obtain more accurate predictions

and narrower confidence intervals, especially for the fourth

measurement of each species. Note that VC structure

(Eq. 5) can also be used without prior observations. In this

case, it would generate mean predicted values that are

similar to those of the two previous models [OLS and

model with variance function (Eq. 3)].

Discussion

This case study demonstrates that VC structure (Eq. 5) may

adequately account for heteroscedastic and correlated error

Table 2 Comparison of the

goodness of fit for models with

different variance-covariance

(VC) features

LRT likelihood ratio test ; VF
variance function
a k number of parameters

Model VC features ka AIC BIC Log-likelihood LRT Pr > v2

Red spruce

1 None (NLS) 6 1031.04 1051.90 –509.52

2 VF (Eq. 3) only 7 913.40 937.73 –449.70 1 vs 2 <0.0001

3 VC structure (Eq. 5) 8 882.92 910.73 –433.46 2 vs 3 <0.0001

Balsam fir

1 None (NLS) 6 931.95 952.81 –459.97

2 VF (Eq. 3) only 7 799.83 824.17 –392.92 1 vs. 2 <0.0001

3 VC structure (Eq.5) 8 790.15 817.96 –387.08 2 vs. 3 0.0006
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terms in a context of growth modeling using a stand-level

approach. The goodness of fit of the model can be assessed

through the normalized residuals, which are expected to be

normally and independently distributed with homogeneous

variances. For both species, there were no major departures

from these assumptions and, consequently, the GLS esti-

mator provided parameter estimates that were consistent

and asymptotically normal with unbiased variances. If the

number of observations is large, the approach makes it

possible to select the explanatory variables according to

their true significance level, a common problem with NLS

regressions (Gregoire et al. 1995). Moreover, as the esti-

mates and their standard errors are calculated from the

original scale of the dependent variable, there is no need

for a reverse transformation, which facilitates the inter-

pretation of the inferences.

The parameterization of a VC matrix of the error terms

(V) is a solution to departures from the assumptions of

homogeneous variances and independent error terms. The

approach proposed in this study is not the only way to

Fig. 2 Observed correlations

among the within-plot

normalized residuals and 1%-

confidence intervals around the

null hypothesis H0 :Corr(eij, eij’)

= 0 (the triangles indicate the

observed correlations)

Table 3 Parameter estimates

for model (Eq. 13)

parameterized with VC

structure (Eq. 5) (asymptotic

standard errors are shown

between parentheses)

a mdq250: mean quadratic

diameter of the 250 largest

stems per hectare

*Significant at 5%;**significant

at 1%

Parameter estimates Red spruce Balsam fir

b1 3.703 (0.556)** 1.092 (0.152)**

b2 (Density index ratio effect) 0.4463 (0.1752)* 1.451 (0.364)**

b3 –7.429 · 10–3 (3.249 · 10–3)* –4.874 · 10–2 (1.874 · 10–2)**

b4 2.376 (0.281)** 2.788 (0.382)**

b5 (mdq250a effect) 3.348 (0.274)** 2.199 (0.660)**

h (Variance parameter) 0.804 1.275

q (Correlation parameter) 0.944 0.900

r2 (Residual variance) 0.158 0.135
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parameterize this matrix. In fact, some simultaneously

parameterized equations (cf. Gallant 1987, Sect. 6) and

mixed-effects (both random and fixed) models (cf. Pinheiro

and Bates 2000, Sect. 5.1.2) are additional statistical tools

that make parameterization possible. In forestry, the hier-

archical approach based on mixed models has been largely

promoted in growth modeling (Gregoire et al. 1995; Fang

and Bailey 2001; Fang et al. 2001; Hall and Bailey 2001).

Basically, the hierarchical approach consists in specifying

random effects associated with each level of grouping

within the data set. The random effects of a given level are

considered nested in the next level of grouping and the

different levels are assumed to be independent. In the

context of permanent sample plot data, inclusion of random

effects in a growth model relies on the assumption that

some unobserved influences act upon plot i in a constant

fashion over time (Gregoire 1987). This constant influence

is usually associated with fixed-effects parameters and is

expressed as an error varying at the plot level. Many

examples of multilevel mixed models can be found in

Pinheiro and Bates (2000, Sect. 2.1.2).

In practice, a positive correlation can persist even after

including random effects (e.g. Gregoire et al. 1995; Garber

and Maguire 2003). In such cases, a continuous-time

autoregressive covariance structure added to random ef-

fects gives better results (Gregoire et al. 1995; Fang and

Bailey 2001; Garber and Maguire 2003). This study dem-

onstrates that a VC structure alone may be sufficient to

address the matters of heteroscedasticity and repeated

measurements. In fact, the addition of random effects on

the parameters of model (Eq. 13) was tested with and

without VC structure (Eq. 5) and the resulting models

exhibited lower likelihood values, nonsignificant LRT, as

well as higher AIC and BIC statistics. These results were

not surprising since there was no evidence of constant

trends due to some unobserved plot factors among the

empirical correlations shown in Fig. 2. In this case study,

models with VC structure (Eq. 5) only were better models

than those with random effects.

Actually, the two ways of parameterizing the VC matrix,

i.e. VC structures and random effects, are not so different

from each other. Even if random effects are referred to as

Fig. 3 Predictions and their

5%-confidence intervals for the

different models of each species
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between-subject errors, their inclusion in a mixed model

indirectly leads to the specification of a VC structure for

the within-subject error terms (Littell et al. 1996,

Sect. 3.2.2; Pinheiro and Bates 2000, Sect. 5.1.2). For

linear models, Littell et al. (1996, p. 93) demonstrated that

a random effect on the intercept and a compound symmetry

VC structure yield exactly the same parameterization, with

the same results and inferences. In practice, random effects

and VC structures may interfere with each other in the

model specification and the resulting VC matrix may be

overparameterized (Pinheiro and Bates 2000, p. 204). Even

if the likelihood converges on a maximum value, the model

might not be the best one. For the lowest level of grouping,

it is strongly recommended that this more complex model

be compared with simpler models parameterized either

with a VC structure only or random effects only. The

comparison might reveal that a VC structure only is better

than random effects or random effects with a VC structure.

As outlined by Littell et al. (1996, p. 93), the contribution

of the subject may be negligible in some repeated measures

experiments.

Even if a model exhibits the lowest AIC and BIC sta-

tistics, there is no certainty that its VC parameterization

adequately accounts for heteroscedasticity and correlated

error terms. The only way to know whether the correction

is appropriate is to plot the observed variances and corre-

lations among the normalized residuals. Indeed, the lower

the AIC and BIC statistics, the more likely the assumptions

of independent error terms and homogeneous variances are

to be expected. However, the selection of the final model

should not be based on these statistics only. Moreover, the

choice of the VC parameterization should take into account

other factors besides the information criteria, such as the

interpretability of the VC parameters (Pinheiro and Bates

2000, p. 409).

Gregoire (1987) interpreted plot random effects as

influences due to variables mostly of an ecological nature,

such as drainage and soil fertility. In this case study, the

lack of constant correlations among the normalized resid-

uals can be explained by the low variability of the eco-

logical conditions, since all the plots belong to the same

ecological group. Actually, random effects due to ecolog-

ical variables are likely to be embedded in the effects of

mortality and recruitment, which are thought to be far more

important at the stand level. Except for the density index

ratio (DIR), which can partially account for these effects,

there is no variable that directly controls mortality and

recruitment at the stand level. The main effect of having no

control on these components is the disruption of the

correlation between two measurements as the distance

between them increases. As time goes on, basal area

underestimations are likely to be offset by recruitment

whereas mortality may compensate for overestimations.

The continuous autoregressive covariance structure in VC

structure (Eq. 5) clearly fits the disruption of correlation

along with time.

In addition to correction for heteroscedasticity and

correlated error terms, a VC structure can be used to im-

prove model predictions. With mixed models, a similar

enhancement is obtained by calculating a best unbiased

linear predictor (BLUP) of random effects (cf. McCulloch

and Searle 2001, Sect. 9), which is basically derived from

the general prediction theorem in Valliant et al. (2000). In

forestry, some studies have already demonstrated the

improvement of the predictions by reinserting a BLUP into

a mixed model (e.g. Fang and Bailey 2001; Hall and Bailey

2001; Nothdurft et al. 2006). Compared with previous

work based on the hierarchical approach, the enhanced

predictions in this case study are not as accurate. In fact,

the accuracy of the predictions depends on the degree and

the structure of correlation between the observations and

the purpose of the model. Nothdurft et al. (2006) obtained

very accurate subject-specific responses using two previous

measurements. However, the variances of the random ef-

fects they specified in their model indicate that the error

terms are highly correlated at the tree level. In this case

study, the more distant in time the measurements, the lower

the correlation between the observations. In these condi-

tions, the best enhancements should be expected for mea-

surements that are very close in time as shown in Fig. 3e, f.

If our data structure had exhibited a higher degree of cor-

relation, the prediction enhancement would have been

greater.

Moreover, growth models are generally used to predict

future forest conditions. Therefore, the future basal area

measurements are unknown and the enhancement can be

done only with prior information, i.e. with the observations

prior to the prediction. This approach is the one we used in

this case study. Indeed, more accurate enhancements would

have been obtained if we had assumed that future mea-

surements were available. Most studies based on mixed

models performed the enhancement using this latter

assumption. The BLUP are calculated with all the available

observations, even observations subsequent to the predic-

tion.

The VC structure proposed in this study does not con-

sider the multivariate aspect of the analysis. Balsam fir and

red spruce models were independently parameterized

whereas they are likely to interact with each other. In fact,

we could expect the error terms to be negatively correlated

between the species. For the sake of the example, we

decided to focus on the VC structure only. The species

interactions can be handled through random effects as

shown in Hall and Clutter (2004).
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Conclusions

Progress in understanding the relationships between growth

and environmental factors is often hindered by the lack of

reliable and consistent statistical models. Most of the

existing growth models ignore the impact of heterosce-

dasticity and unequally spaced repeated measurements on

the reliability of prediction errors. In this study, a VC

structure based on a variance function and a covariance

structure has been proposed to take into account both sta-

tistical issues.

Although the hierarchical approach is strongly recom-

mended in forestry, this case study demonstrates that a VC

structure alone may provide the flexibility for simulta-

neously considering heteroscedasticity and correlated error

terms. As a consequence, we recommend checking the

assumption of constant influences due to the subjects be-

fore using random effects as proposed by the hierarchical

approach. This can be done by comparing the AIC and BIC

statistics for a mixed model and a model parameterized

with a VC structure only. Plotting the normalized residuals

can also give some hints about the appropriate correlation

structure.

In addition to the flexibility it provides, the parameter-

ization of a VC matrix also enhances the predictions. In

forestry, this enhancement has already been demonstrated

with mixed models (e.g. Fang and Bailey 2001; Fang et al.

2001; Hall and Bailey 2001; Nothdurft et al. 2006). In this

study, we demonstrated it is also possible to improve the

predictions through a VC structure.
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(eds) Manuel de foresterie. Les Presses de l’Université Laval,

Sainte-Foy, pp. 133–279

Hall DB, Bailey RL (2001) Modeling and prediction of forest growth

variables based on multilevel nonlinear mixed models. For Sci
47(3):311–321

Hall DB, Clutter M (2004) Multivariate multilevel nonlinear mixed

effects models for timber yield predictions. Biometrics 60:16–24

Hatcher RJ (1959) Partial cutting with diameter limit control in the

Lake Edward Experimental Forest, Quebec 1950 to 1956.

Government of Canada, Department of Northern Affairs and

National Resources, Forestry Branch, Forest Research Division,

Project Q-44

Heimburger CC (1941) Forest site classification and soil investigation

in the Lake Edward Forest Experimental Area. Government of

Canada, Department of Mines and Resources, Lands, Parks and

Forest Branch, Dominion Forest Service, Silvicultural Research

Note No. 66

584 Eur J Forest Res (2007) 126:573–585

123



LeMay VM (1990) MSLS: a linear least squares technique for fitting

a simultaneous system of equations with a generalized error

structure. Can J For Res 20:1830–1839

Lindstrom MJ, Bates DM (1988) Newton-Raphson and EM algo-

rithms for linear mixed-effects models for repeated-measures

data. J Am Stat Assoc 83(404):1014–1022

Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS

system for mixed models. SAS Institute Inc., Cary

McCulloch CE, Searle SR (2001) Generalized, linear, and mixed

models. Wiley, New York

Nigh GD, Krestov PV, Klinka K (2002). Height growth of black

spruce in British Columbia. For Chron 78(2):306–313

Nothdurft A, Kublin E, Lappi J (2006) A non-linear hierarchical

mixed model to describe tree height growth. Eur J For Res

125:281–289

Parresol BR (1993) Modeling multiplicative error variance: an

example predicting tree diameter from stump dimensions in

baldcypress. For Sci 39(4):670–679

Pienaar LV, Turnbull KJ (1973) The Chapman–Richards generaliza-

tion of von Bertalanffy’s growth model for basal area growth and

yield in even-aged stands. For Sci 19(1):2–22

Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-

PLUS. Springer, Heidelberg

Pinheiro JC, Bates DM, DebRoy S, Sarkar D (2004) nlme: Linear and

nonlinear mixed effects models. R package version 3.1–53. The

R Project for statistical computing (on line). Available at http://

www.r-project.org/

Pretzsch H, Biber P (2005) A re-evaluation of Reineke’s rule and

stand density index. For Sci 51(4):304–320
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