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Abstract

Bayesian inference is an important statistical tool that is increasingly being used by

ecologists. In a Bayesian analysis, information available before a study is conducted is

summarized in a quantitative model or hypothesis: the prior probability distribution.

Bayes� Theorem uses the prior probability distribution and the likelihood of the data to

generate a posterior probability distribution. Posterior probability distributions are an

epistemological alternative to P-values and provide a direct measure of the degree of

belief that can be placed on models, hypotheses, or parameter estimates. Moreover,

Bayesian information-theoretic methods provide robust measures of the probability of

alternative models, and multiple models can be averaged into a single model that reflects

uncertainty in model construction and selection. These methods are demonstrated

through a simple worked example. Ecologists are using Bayesian inference in studies that

range from predicting single-species population dynamics to understanding ecosystem

processes. Not all ecologists, however, appreciate the philosophical underpinnings of

Bayesian inference. In particular, Bayesians and frequentists differ in their definition of

probability and in their treatment of model parameters as random variables or estimates

of true values. These assumptions must be addressed explicitly before deciding whether

or not to use Bayesian methods to analyse ecological data.
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�In the whole round of statistical investigation few

principles are so much theoretically neglected at present

and yet so largely and unconsciously appealed to as that

theorem in probability by which our past experience is

made a basis for future conduct…. [T]he extent to

which it really lies at the basis of most state, municipal

and individual actions is too often disregarded.�
Karl Pearson (1907, p. 365)

I N T R O D U C T I O N

Bayesian inference is an alternative method of statistical

inference that is frequently being used to evaluate ecological

models and hypotheses. Bayesian inference differs from

classical, frequentist inference in four ways:

1 Frequentist inference estimates the probability of the data

having occurred given a particular hypothesis (P(Y|H))

whereas Bayesian inference provides a quantitative

measure of the probability of a hypothesis being true in

light of the available data (P(H|Y));

2 Their definitions of probability differ: frequentist infer-

ence defines probability in terms of long-run (infinite)

relative frequencies of events, whereas Bayesian inference

defines probability as a individual’s degree of belief in the

likelihood of an event.

3 Bayesian inference uses prior knowledge along with the

sample data whereas frequentist inference uses only the

sample data;

4 Bayesian inference treats model parameters as random

variables whereas frequentist inference considers them to

be estimates of fixed, �true� quantities.

The last three distinctions are epistemic, and one should

consider them carefully in choosing whether to use Bayesian

or frequentist methods.

This review has three parts. First, I summarize differences

between Bayesian and frequentist methods of inference.

This section provides the background necessary to decide

whether to use Bayesian or frequentist methods. Second, I

review briefly the range of ecological problems to which

Bayesian inference has been applied. Third, I contrast
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frequentist and Bayesian inference in a simple ecological

example, using generalized linear models to model species

richness across a latitudinal gradient.

S C I E N T I F I C I N F E R E N C E

We are all familiar with �the� scientific method of testing

statistical null hypotheses (Popper 1959). In brief, we ask

what is the probability that we would have obtained our set

of data (an independent, random sample of a larger

population), or a more extreme set of data, if the null hypothesis

was true. Generically, we write this as P(Y|H0), where Y is

the data and H0 is the null hypothesis.1 Technically, the

hypothesis is a model with (known or unknown) parameters.

For example, if we are interested in testing if species

richness varies with latitude, we compute the probability of

obtaining a set of sample data given the null hypothesis of a

regression model in which the slope (or unknown param-

eter) b1 equals zero. Our data provide an estimate of the

mean and variance of the parameter b1 in our sampled

population, and we compute the probability of obtaining

these estimates if b1 equals zero.

If this probability – called the P-value – is �small�, we reject

the null hypothesis. How small a P-value must be for the null

hypothesis to be rejected is a matter of convention: the

standard cut-off value is the Neyman–Pearson acceptable

probability of committing a Type-I statistical error: a ¼ 0.05

(Hubbard & Byarri 2003). It bears repeating that this method

of hypothesis testing allows only for falsification or rejection

of hypotheses (Popper 1959). The common conclusion drawn

from obtaining a small P-value that the alternative hypothesis

is true with probability equal to (1)P) is incorrect.2 Similarly, a

large P-value does not provide evidence in favour of the null

hypothesis (Howson & Urbach 1993).

A prerequisite of this method – frequentist statistical

inference – is a concept of probability defined as the relative

frequency of a particular observation (an event or outcome). In

other words, the probability P of an event A (written as

P(A)) equals the number of times that event occurs (nA)

divided by the total number of observed events (n). As n is,

in principle, infinite, the frequency definition of probability

asserts that as n fi ¥, nA/n fi the true (population) value

of P(A). Under standard design criteria (independent,

identically distributed, random samples), the sample data

provide unbiased estimates of P(A). The interpretation of a

frequentist confidence interval follows directly from this

definition of probability. A p% confidence interval calcula-

ted from the sample mean and variance asserts that in n

hypothetical runs of an experiment, the parameter of

interest (e.g. the true population mean l) is expected to

occur in the computed interval in p% of the experimental

runs. Thus, in (1)p)% of the experimental runs, the

computed interval will not include the true value of the

parameter (illustrated clearly in the simulations of Blume &

Royall 2003). Note that in any particular experiment, the

parameter is either in the interval or not, but you never

know which. It is incorrect to interpret a confidence interval

by asserting that you are p% sure that the parameter of

interest lies in the confidence interval.

Bayesian inference, in contrast, asks what is the probab-

ility of our hypothesis (again formulated as a model with

known or unknown parameters) being true conditional on

the sample data. This probability is found by applying Bayes�
Theorem (Bayes 1763):3

PðHjY Þ ¼ f ðY jHÞpðHÞ
PðY Þ : ð1Þ

The quantity P(H|Y ), or the probability of the hypothesis

given the data, is called the posterior probability distribution, or

simply the posterior. The quantity f(Y|H) is the likelihood

(Edwards 1992).4 The quantity p(H) is called the prior

probability distribution, or just the prior, and reflects informa-

tion available about the hypothesis independent of (and

hence prior to) conducting the experiment. The denomin-

1In this expression, Y can represent either the data and all the more

extreme, but unobserved, data, or the value of the calculated test statistic and all

the more extreme, but unobserved, test statistics. Note that this leads to a

procedure in which �a hypothesis which may be true may be rejected

because it has not predicted observable results that have not occurred�
(Jeffreys 1961: 385). See Berger & Berry (1988) for a readable critique of

using unobserved, and perhaps unobtainable, data to test hypotheses about

a given sample.

2In a randomly chosen set of 50 papers published last year (2003) in Ecology,

38 of 50 (76%) authors reporting P-values asserted that their data supported

or confirmed their �hypothesis�. That is, P(HA|Y) was believed to be large.

The prevalence of this conclusion is quite surprising, given the emphasis

placed on rejecting null hypotheses in standard undergraduate and graduate

statistics courses taken by ecologists.

3Bayes� Theorem originally was expressed as a probability of one event B

conditional on another event, A: P(B|A) ¼ P(A|B)P(B)/P(A). In this

form, it is uncontroversial, as it is simply a deduction from the axioms of

probability. It is only the application of Bayes� Theorem to statistical inference,

in which data Y are substituted for event A and the hypothesis of interest H

is substituted for event B, that is controversial. The first use of Bayes�
Theorem for statistical inference normally is attributed to Laplace. See

Barnett (1999) for further discussion.

4Fisher’s likelihood (Fisher 1922) expresses how the probability of the

sample data Yobserved varies with different values of the parameters of the

hypothesis or model (P(Yobserved|H)). This is neither the same as a P-value

(P(Y|H0)) nor the same as the probability of the hypothesis or model for the

given data Y(P(HA|Yobserved)). Likelihood inference (Edwards 1992;

Hilborn & Mangel 1997) interprets the likelihood as expressing different

degrees of support (un-normalized probabilities) for different parameter

values given the data (P(H|Yobserved)). This interpretation is at odds with

both the frequency and subjective definitions of probability, and there is no

consistent axiomatization of the probability calculus that supports this

interpretation of the likelihood (see summary in Barnett 1999: 306 ff).

510 A. M. Ellison

�2004 Blackwell Publishing Ltd/CNRS



ator P(Y) is simply a normalizing constant – the marginal

probability density of the data across all possible hypotheses –

and is equal to �Hf(Y|H)p(H) dH.

Bayesian inference is predicated on a different concept of

probability: subjective probability or an individual’s degree of

belief that a particular event will occur (Howson & Urbach

1993; Barnett 1999). Estimates of degrees of belief may vary

from individual to individual, but in all cases are conditional

on past experience. Because Bayesian inference has been

criticized for its subjectivity and reliance on personal belief,

much effort has been dedicated to generating �objective�
measures of degrees of belief (Jeffreys 1961). Most recently,

Berger (2003) has proposed a reconciliation of frequentist

and Bayesian significance testing, but his approach has been

criticized for failure to use the foundation of Bayesian

inference: subjective probability (see published comments

following Berger 2003). Software used for calculating

posterior probability distributions using Bayes� Theorem

can accept either informative (�subjective�) or non-inform-

ative (�objective�) priors and the calculations proceed inde-

pendent of one’s definition of probability. The interpretation

of the results, however, does require a definition of

probability. A Bayesian posterior is an expression of a

degree of belief whereas a frequentist P-value or confidence

interval is an expectation of a long-run frequency. In

contrast to a frequentist confidence interval, a Bayesian

credibility interval is interpreted correctly as one’s belief that

there is a p% probability that the parameter of interest lies

within the interval.

Bayesian and frequentist inference also differ in their use

of prior knowledge. Frequentist testing of statistical null

hypotheses assumes that there is no relevant information,

such as other observations or experiments, available from

past experiences. Computing a P-value is always a de novo

exercise that begins with the null hypothesis, even if it has

been falsified repeatedly in many previous studies. Frequ-

entists view this lack of consideration of prior information

positively, as it leads to an unbiased assessment of the sample

data conditional on the hypothesis.

Bayesians counter that the traditional P-value actually is

interpreted subjectively, even if the frequency definition of

probability precludes such an interpretation. Further, there

is no objective criterion for setting the critical level for

rejection of an hypothesis (why not use 0.1 or 0.001 instead

of 0.05), and the P-value is based not only on the sample

data but also on more extreme data that is not and may

never be observed (Jeffreys 1961; Berger & Berry 1988). We

almost always have some reasons for conducting a particular

experiment, developing a particular hypothesis, or using a

particular model to analyse our data. Does it make sense to

ignore available data or observations and jump off the

shoulders of the giants that have worked before us? Efron

(1978, 1986) and Dennis (1996, 2004) provide good

overviews of the arguments for and against subjectivity

and objectivity in Bayesian and frequentist inference; see

Berger (2003) for an attempt at finding the middle ground.

Bayes� Theorem is also iterative. An investigator may start

with little or no information with which to construct the

prior, but the posterior derived from the first experiment

can then be used as a prior for the next experiment. The

iterative nature of Bayesian inference is a central ingredient

in the successful implementation of adaptive management

(Walters & Holling 1990; Dorazio & Johnson 2003).

Lastly, Bayesian inference treats model parameters as

random variables. Thus, not only are the data considered to

be samples from a random variable, but also the parameters

to be estimated are treated as random variables. This is a

very different assumption from that of frequentist (and

likelihood) inference, which treats parameters as true, fixed

(if unknown) quantities (Fisher 1922; Edwards 1992). The

studies by Strong et al. (1999) and de Valpine & Hastings

(2002) are the only examples I have found where ecologists

explicitly rejected a Bayesian method because it considered

the parameters to be random variables and not a reflection

of a fixed reality. In general, ecologists should consider

carefully their epistemological stance when choosing among

statistical methods.

H O W D O E C O L O G I S T S U S E B A Y E S I A N I N F E R E N C E ?

Ecologists have long known of and used Bayes� Theorem.

Shortly after Pearson (1907) showed that an approximation

of the hypergeometric series could be used to estimate

posterior distributions for the condition of multiple events

and full prior distributions, Pearl (1917) applied it to

estimate the probable error of allelic frequencies in

Mendelian populations (see also Karlin 1968; Pollak

1974). This method was elaborated in the 1970s and

1980s to determine the probability of paternity when

multiple fertilizations are possible, such as in plants and

fruit flies (Levine et al. 1980; Adams et al. 1992). It

continues to be used in population genetic studies,

including estimating the probability of introgression into

wild populations of genes from genetically modified crops

(Cummings et al. 2002).

Conditional probabilities calculated using Bayes� Theorem

also were used extensively in dynamic models of foraging

behaviour (Oster & Heinrich 1976; Clark & Mangel 1984;

Valone & Brown 1989) and predator avoidance (Anderson

& Hodum 1993). These models explicitly considered that

foraging animals used previous experience to modify future

foraging activities and take full advantage of the iterative

nature of Bayes� Theorem. Although early work on so-called

�Bayesian foragers� used only the expected value (e.g. the

mean) of the foragers� probability distributions in their

models, current Bayesian models of foraging behaviour use
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the full posterior probability distributions (Olsson &

Holmgren 1999; van Gils et al. 2003).

The application of Bayesian inference to ecological

questions has blossomed since the publication in 1996 of

a series of papers on Bayesian inference for ecological

research and environmental decision making (Dixon &

Ellison 1996). Bayesian methods have been used most

widely in population and community ecology (Table 1), in

which there are many competing models to explain

ecological phenomena (Hilborn & Mangel 1997), the

parameter values of the models have high levels of

uncertainty, and the reporting of this uncertainty (as

standard errors or confidence intervals) is common.

Bayesian inference is used extensively to model dynamics

of single species, forecast population dispersal, growth, and

extinction, and predict changes in meta-population structure

on fragmented landscapes (Table 1). Foraging dynamics and

predator–prey interactions continue to benefit from Baye-

sian methods, but they are used rarely in studies of

competition; there has been a parallel 20-year decline in

studies that estimate niche breadth and associated compe-

tition coefficients (Chase & Liebold 2003). Among

community ecologists, Bayesian inference has been used

most frequently for estimating species occurrences and

species richness from geographically or logistically con-

strained samples, or in response to expected environmental

change (He et al. 2003). A promising new avenue for

research is the use of Bayesian methods to reconstruct

palaeocommunity structure and to place estimates of

uncertainty on those reconstructions (Toivonen et al. 2001;

Platt et al. 2002). In marked contrast, ecosystem studies have

applied Bayesian inference only rarely (but see Carpenter

et al. 1996; Cottingham & Carpenter 1998).

Bayesian inference is central component of formal

decision analysis (Berger 1985), and has been used to assess

environmental impacts (Reckhow 1990), to decide among

alternative management regimes (Raftery et al. 1995; Layton

& Levine 2003), and to structure adaptive management

programs (Dorazio & Johnson 2003). Nonetheless, despite

its utility for expressing uncertainty of predictions made by

conservation biologists (Wade 2001) and environmental

managers (Ellison 1996), Bayesian methods have not been

adopted broadly by these groups. I suspect this is due to

computational difficulties, lack of user-friendly software,

and the requirements for precise quantification of manage-

ment options and their associated utilities or outcomes.

A W O R K E D E X A M P L E

In this section, I use a simple example to contrast three

aspects of Bayesian and frequentist inference: parameter

estimation and hypothesis testing; model selection; and

model averaging. Although a single example is useful to

illustrate some general principles of statistical inference, it is

unlikely to be satisfying to many readers. Particular models

of interest to any individual are unlikely to be included in the

example, and there is the danger that the example will be

reified to represent all the positive or negative characteristics

Table 1 Ecological studies using Bayesian inference published since 1996 in the major ecological journals (American Naturalist; Journal of

Ecology; Ecology; Ecological Monographs; Journal of Animal Ecology; Oikos; Journal of Applied Ecology; Oecologia; Ecological Applications; Conservation Biology;

Ecology Letters)

Topic

Number of papers

(1996–2003) Examples

Dynamics of single species

Population dynamics and estimating extinction risks 10 (Forcada 2000; Drechsler et al. 2003)

Parameter estimation for demographic models 7 (Barrowman et al. 2003; Calder et al. 2003)

Estimating gene frequencies 5 (Cummings et al. 2002; Bolker et al. 2003)

Stock assessment 4 (Pascual & Hilborn 1995; Cooper et al. 2003)

Metapopulation dynamics 3 (O’Hara et al. 2002; Ter Braak & Etienne 2003)

Dispersal models 2 (Clark et al. 1999; Clark et al. 2003a)

Bayesian model averaging 1 (Wintle et al. 2003)

Dynamics of interacting species

Foraging dynamics 8 (van Gils et al. 2003; Koops & Abrahams 2003)

Predator–prey interactions 5 (Anholt et al. 2000; Schmidt et al. 2001)

Competition and coexistence 3 (Damgaard 1998; Clark et al. 2003b)

Multispecies community ecology

Detection probability and estimation of species richness 12 (Fleishman et al. 2003; Shen et al. 2003)

Environmental impact assessment 7 (MacNally et al. 2002; Peterson et al. 2003)

Land-use history and community reconstruction 2 (Toivonen et al. 2001; Platt et al. 2002)

Only two examples are given for each type of study; a full bibliography of these studies can be obtained from the author.
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of both Bayesian and frequentist inference. Similarly,

because of the general lack of familiarity of Bayesian

methods, a single example could result in Bayesian inference

being applied to only a single class of models. Either of

these outcomes would be unfortunate, and it is not my

intent to capture the wide range of models that are

addressable using Bayesian inference (see Box & Tiao

1992; Gelman et al. 1995; Sivia 1996; Hilborn & Mangel

1997; Carlin & Louis 2000; Congdon 2001 for compendia of

examples).

The data: a latitudinal gradient of species richness

Latitudinal and elevational changes in species richness are

well known and intensively studied ecological patterns

(Huston 1994). In this example (data in Table 2), the

response variable is the number of species of ants found in

64-m2 sampling grids at each of 22 bogs and in the forests

surrounding them. The sites span a scant 3� of latitude in

New England, USA (Gotelli & Ellison 2002b). Here, I use a

generalized linear model (McCullagh & Nelder 1989) to

relate a discrete (Poisson) random variable (ant species

richness) to two continuous predictor variables (degrees

north latitude and elevation in metres above sea level) and

one categorical predictor variable (habitat type – forest or

bog).

Classical inference on the ant data

I examined simple additive models (richness S as a func-

tion of habitat type, latitude, elevation) and models that

included all possible interaction terms. The �best� model was

chosen from the set of candidate models by minimizing

Aikaike’s information criterion (AIC; Burnham & Anderson

2002):

AIC ¼ �2 logðLðb̂jdataÞÞ þ 2k: ð2Þ

In eqn 2, Lðb̂jdataÞ is the likelihood of the model (which

has parameters b) conditional on the data (see Footnote 4),

and k is the number of parameters in the model. The model

for which AIC was minimized was a simple additive model

with an intercept (b0) and all three main effects (b1, b2, b3),

but no interaction terms (Table 3):

logðŜiÞ ¼ b̂0 þ b̂1 latitudei þ b̂2 elevationi þ b̂3 habitati :

ð3Þ
The fit of this model to the data is illustrated in Fig. 1 (top).

The maximum likelihood estimates of the parameters, their

standard deviations, and 95% confidence intervals are

presented in the first column of Table 4. The null

hypothesis that b equals zero is rejected for each bi.

A key assumption of this model is that the observations

are independent random samples, and in particular, that the

forest and bog observations at a given site are independent

of each other. This independence is observed in two ways.

First, the deviance residuals are uncorrelated (Fig. 1b),

which supports the statistical criterion for independence.

Second, the bog and forest samples are biologically independ-

ent, as they are separated by hundreds of metres (far greater

than the foraging distance of a single ant colony) and bog

and forest ant assemblages share few species in common

(Gotelli & Ellison 2002a,b).

From the frequentist analysis, the inferences are:

1 The data are improbable given the null hypothesis that

the parameters of the model (i.e. the regression

coefficients b) equal zero. In other words, because

P(data|H0) < 0.05, the null hypothesis is rejected.

2 The model fitting procedure provides maximum likeli-

hood estimates of the parameters. We can use the

standard errors of these estimates to construct confidence

intervals on these parameters (Table 4). The conclusion is

that in repeated sampling (which is unlikely, as collecting

Table 2 Data used for the worked example (from Gotelli &

Ellison 2002b)

Site

Species richness

Latitude ElevationForest Bog

TPB 6 5 41.97 389

HBC 16 6 42.00 8

CKB 18 14 42.03 152

SKP 17 7 42.05 1

CB 9 4 42.05 210

RP 15 8 42.17 78

PK 7 2 42.19 47

OB 12 3 42.23 491

SWR 14 4 42.27 121

ARC 9 8 42.31 95

BH 10 8 42.56 274

QP 10 4 42.57 335

HAW 4 2 42.58 543

WIN 5 7 42.69 323

SPR 7 2 43.33 158

SNA 7 3 44.06 313

PEA 4 3 44.29 468

CHI 6 2 44.33 362

MOL 6 3 44.50 236

COL 8 2 44.55 30

MOO 6 5 44.76 353

CAR 6 5 44.95 133

Ant species richness was sampled in bogs and surrounding forests

at 22 sites in Connecticut, Massachusetts, and Vermont (USA).

Environmental variables used in the analysis are habitat (forest or

bog), latitude (decimal degrees), and elevation (metres above sea

level).
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this single sample required >3000 person-hours), 95% of

the time the true values of the parameters will fall within

the estimated confidence intervals.

3 The model fit is reasonable. A linear regression of the

observed data on the predicted values illustrates that the

model accounts for 55% of the variance in the data.

Bayesian inference on the ant data

Bayesian inference uses not only the sample data but also

any available prior information. Using Bayes� Theorem to

calculate the posterior probability of the model conditional

on the data requires explicit specification of the prior

probability of the model – i.e. prior probability distributions

for each of the model’s parameters. Thus, we use eqn 1 to

estimate the posterior:

PðbjdataÞ / f ðdatajbÞ � pðbÞ: ð4Þ

The term f(data|b) in eqn 4 is the likelihood of the data

(the same as Lðb̂jdataÞ in eqn 2). As in the classical model,

the likelihood is modelled as a Poisson random variable. The

term p(b) in eqn 4 is the prior. Many investigators choose to

use non-informative normal (Gaussian) priors that reflect

prior �ignorance� (e.g. distributions of each of the parameters

are centred on zero with very large variances so that the

prior is integrable but is essentially uniform over the range

of the data). Alternatively, priors can be gleaned from

the literature or constructed using techniques developed

for eliciting expert opinion (see Wolfson et al. 1996 for

an ecological example). Initially, I used uninformative,

Gaussian priors on each of the bi terms in eqn 3

(bi 	 N(0, 1000)).

The computation of the posterior P(b|data) using Bayes�
Theorem often involves numerical approximations of

solutions of integrals (Gelman et al. 1995; Carlin & Louis

2000), especially when priors and likelihoods are not

�conjugate� (i.e. are of different functional forms: Gelman

et al. 1995), as in this example. Available software most

frequently uses Markov chain Monte Carlo (MCMC)

methods (Gilks et al. 1996). For the ant example, I used

WinBUGS version 1.4 (Spiegelhalter et al. 2003), which

implements MCMC methods using a Gibbs sampler (Chib

& Greenberg 1995). Posterior probability distributions on

the regression parameters b were sampled from normal

distributions. The most credible estimates of the parameters

(Table 4) using the uninformative priors and the simple

additive model (eqn 3) were nearly identical to the maximum

likelihood estimates (Fig. 2).

Diversity patterns of ants have been documented around

the world, and so it is reasonable to use the published

literature to generate more informative priors for the model

parameters. I derived priors for latitudinal gradients in

temperate ants from Gotelli & Arnett (2000):

b1 	 N()0.017, 0.04); for effects of elevation from Gotelli

& Arnett (2000) and Brühl et al. (1999): b2 	 N ()0.002,

0.0003); and for differences between �open� habitats such as

bogs and �closed� habitats such as forests from Jeanne

(1979), Gotelli & Arnett (2000) and Kaspari et al. (2000):

Table 3 Results of model selection for

possible log-linear models relating species

richness (S) to habitat type (H: forest or

bog), latitude (L: decimal degrees), and

elevation (E: metres above sea level)

Model AIC DIC pD

S ¼ H 77.08 237.43 1.98

S ¼ L 83.97 243.29 1.48

S ¼ E 90.33 250.67 1.99

S ¼ H + L 56.29 216.32 2.81

S ¼ H + E 62.65 223.01 2.99

S ¼ L + E 76.37 236.61 2.83

S ¼ H + L + E 48.68 208.76 3.85

S ¼ H + L + E + H · E 50.27 210.17 4.75

S ¼ H + L + E + L · E 50.32 211.16 5.02

S ¼ H + L + E + H · L 50.64 210.39 4.29

S ¼ H + L + E + H · E + L · E 51.90 211.18 5.26

S ¼ H + L + E + H · E + H · L 52.26 210.98 4.86

S ¼ H + L + E + L · E + H · L 53.30 211.38 5.16

S ¼ H + L + E + H · E + L · E + H · L 53.90 217.18 7.93

S ¼ H + L + E + H · E + L · E + H · L + H · L · E 55.76 215.66 7.92

The best fitting model (bold) included all three main effects: log (S)¼11.95)
0.24L)0.001E+0.64H, and had a residual deviance of 40.68 with 40 residual degrees of

freedom. Models fit with S-Plus 6.1 (Insightful Corp., Seattle, WA) using the glm function;

AICs calculated using the stepAIC function; DICs and the effective number of parameters

(pD) calculated in WinBUGS version 1.4 using 25 000 iterations after a burn-in of 25 000

iterations.
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b3 	 N(0.37, 1). These priors are illustrated in the last

column of Fig. 2, along with the posteriors estimated from

these priors. Because the likelihood (i.e. the information in

the data) had much smaller variance than these informative

priors, the posteriors estimated from the informative priors

differed only slightly from those with uninformative priors.

I also compared all the models listed in Table 3. One

method of choosing among competing Bayesian models is

the deviance information criterion (DIC) (Spiegelhalter et al.

2002):

DIC ¼ DðhÞ þ pD: ð5Þ

In words, DIC equals the posterior mean of the deviance

of all the candidate models DðhÞ plus the effective number

of parameters in the model (pD). The posterior mean of the

deviance DðhÞ itself equals )2 times the log of the

likelihood, and the effective number of parameters in the

model is estimated as the posterior mean of the deviance

minus the deviance of the posterior means ðDðhÞ � Dð�hÞÞ.
In the absence of any prior information, DIC ¼ AIC

(eqn 3), but the inclusion of prior information results in

increases in both DðhÞ and the effective number of

parameters (Spiegelhalter et al. 2002).

As with AIC, the model with the smallest DIC is selected

to be the �best� model. For the ant data set, applying the

DIC to the set of models estimated with uninformative

priors yielded the same result as applying AIC to the maxi-

mum likelihood models: the simple, additive model provided

the best-fit with the fewest effective parameters (Table 3).

From the Bayesian analysis, the inferences are:

1 The additive model is a believable description of how

latitude, elevation, and habitat can be used to predict

species richness of ants in New England, USA.

2 There is a 95% probability that the estimated values of

the model parameters in fact fall within the calculated

credible sets (Table 3).

3 The model provides a good fit to the data. Figure 3

illustrates expected values and associated 95% credible

sets for species richness in each habitat at each sampled

site. For 73% (16 of 22) of the forests and 55% (12 of 22)

of the bogs sampled, the probability is at least 95% that

the model accurately predicts the observed value.

Uncertainty in model selection

There is recognized uncertainty in the parameter estimates

of both classical and Bayesian models. Less often appreci-

ated is the uncertainty involved in selecting a particular

model relative to other plausible models (Chatfield 1995;

Draper 1995). Yet, the incorrect specification or choice of a

statistical model can result in faulty inferences or predic-

tions. Automated tools for model selection such as the

stepAIC function in S (Venables & Ripley 2002), the MARK

software (White & Burnham 1999), or the DIC function in

WinBUGS (Spiegelhalter et al. 2002) may have the unin-

tended consequence of discouraging scientists from thinking

about uncertainty in model selection. Recognizing uncer-

tainty in parameter estimates and predictions of ecological

models (e.g. IPCC 2001) and communicating the uncertainty

in the range of ecological models considered (Wintle et al.

2003) can lead to better understanding by ecologists of the

power and limitations of statistical inference and prediction.

I considered 15 models to �explain� the species richness of

ants in New England (Table 3). This example is relatively

simple, as many complex ecological models include dozens

of factors and the number of candidate models increases

exponentially with the number of predictor variables. In this

example, the same model was selected using AIC and DIC,

but these values differed only by a few percent among
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Figure 1 (a) Observed (points) and maximum likelihood (lines)

estimates of the ant species richness at 22 bog (open circles) and

surrounding forest (closed circles) sites in New England. (b) Paired

deviance residuals of bog and forest habitats at each of the 22 sites.
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several models and it is possible that one of the other

models actually may be the �true� model. One way to

account for uncertainty in model construction and selection

is to create and use an �average� model. The contribution of

each individual model to the averaged model is weighted by

its plausibility or posterior weight of evidence.

Table 4 Parameter estimates for the additive model (eqn 3) predicting ant species richness from habitat, elevation, and latitude

Classical model (maximum

likelihood estimate)

Bayesian models

Posterior mode,

non-informative prior

Posterior mode,

informative prior

Averaged model,

non-informative prior

b̂0 11.95 (2.65) [6.81,17.73] 11.49 (1.87) [7.89, 15.32] 12.18 (2.22) [6.89, 16.33] 12.03 (2.65)

b̂1 )0.24 (0.06) [)0.36, )0.11] )0.23 (0.04) [)0.31, )0.14] )0.24 (0.05) [)0.33, )0.12] )0.24 (0.06)

b̂2 )0.001 (0.0003) [)0.002, )0.0004] )0.001 (0.0004) [)0.002, )0.0004] )0.001 (0.0004) [)0.002, )0.0004] )0.001 (0.0004)

b̂3 0.64 (0.06) [0.44, 0.75] 0.64 (0.12) [0.40, 0.88] 0.63 (0.12) [0.40, 0.84] 0.64 (0.12)

Values in parentheses are standard deviations of the parameter estimate; values in brackets are 95% confidence intervals (maximum likelihood

estimates) or credible sets (Bayesian estimates). Bayesian posteriors calculated using WinBUGS version 1.4 using 25 000 iterations after a

burn-in of 25 000 iterations. The last column gives the parameter estimates and standard errors for the averaged model that combines both

the complete additive model (eqn 3) and the additive model without elevation. Model averaging done in S-Plus 6.1 using the bic.glm function.
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Figure 2 Maximum likelihood and Bayesian estimates for the parameters of the additive model: logðŜiÞ ¼ b̂0þ
b̂1 latitudei þ b̂2 elevationi þ b̂3 habitati . The first column of plots illustrates the likelihoods of the parameters. The second column

illustrates Bayesian posteriors (solid lines) using non-informative priors (dotted lines), and the third column illustrates Bayesian posteriors

(solid lines) using informative priors (dotted lines). The maximum likelihood estimate is shown as a solid diamond on the corresponding

Bayesian posterior. In a given row, all plots have the same x-axis scaling to allow for comparisons between inferences. The y-axis scaling

varies within rows, however.
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Frequentist model averaging is a nascent and promising

area of statistical research (Claeskens & Hjort 2003; Hjort &

Claeskens 2003), but it has not developed yet to the extent

that it can be applied to even basic ecological problems. In

contrast, Bayesian model averaging (reviewed by Hoeting

et al. 1999) is an established method for combining models

that has been applied only recently to ecological questions

(Wintle et al. 2003). In the combined or averaged model, the

individual models are weighted by their degree of plausibility.

Normally, all possible individual models are not included in

the averaged model. Rather, only those that meet a defined

selection criterion are used. Madigan & Raftery (1994)

suggested two criteria for inclusion: Occam’s Window,

which excludes models that predict the data �far less well�
(e.g. when the Bayes factor, the ratio of the posterior

probabilities of the candidate model to the best model, is less

than 0.05); and Occam’s Razor, which excludes any complex

model (e.g. more terms, more interactions) that receives less

support from the data than simpler models.

Averaging generalized linear models, such as those used

in the ant example, is relatively straightforward (Hoeting

et al. 1999) and can be accomplished with freely available

software.5 Using the S-function, bic.glm (Volinsky et al.

1997), and assigning equal prior weights to all the models,

two plausible models were included in the averaged model:

the additive model with all three predictors identified as

previously as the �best� model, and an additive model that

included only habitat and latitude (Table 4). The parameter

estimates were similar to the individual models, but the

standard errors were larger, reflecting the uncertainty

inherent in model averaging.

T H E F U T U R E O F B A Y E S I A N E C O L O G Y

Bayesian inference is fast becoming an accepted statistical

tool among ecologists. Bayes� Theorem provides an

intuitively clear alternative method for estimating parame-

ters and expressing the degree of confidence or uncertainty

in those estimates. Bayesian methods allow for the explicit

incorporation of as much or as little existing data or prior

knowledge that is available, and provides a direct measure of

the probability of one or more hypotheses of interest.

The analysis of designed experiments can be approached

either with frequentist or Bayesian methods. Information-

theoretic and likelihood methods for choosing among

multiple candidate models (Burnham & Anderson 2002)

are better understood than Bayesian model selection

methods, but both Bayesian and likelihood approaches

can be used for model-based analyses (Hilborn & Mangel

1997). Finally, deciding whether to use Bayesian or

frequentist inference demands an understanding of their

differing epistemological assumptions. Strong statistical

inference demands that ecologists not only confront models

with data but also confront their own assumptions about

how the world is structured.
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