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Summary

 

1.

 

Ecologists use statistical models for both explanation and prediction, and need techniques that
are flexible enough to express typical features of their data, such as nonlinearities and interactions.

 

2.

 

This study provides a working guide to boosted regression trees (BRT), an ensemble method for
fitting statistical models that differs fundamentally from conventional techniques that aim to fit a
single parsimonious model. Boosted regression trees combine the strengths of two algorithms:
regression trees (models that relate a response to their predictors by recursive binary splits) and
boosting (an adaptive method for combining many simple models to give improved predictive
performance). The final BRT model can be understood as an additive regression model in which
individual terms are simple trees, fitted in a forward, stagewise fashion.

 

3.

 

Boosted regression trees incorporate important advantages of  tree-based methods, handling
different types of predictor variables and accommodating missing data. They have no need for prior
data transformation or elimination of  outliers, can fit complex nonlinear relationships, and auto-
matically handle interaction effects between predictors. Fitting multiple trees in BRT overcomes the
biggest drawback of single tree models: their relatively poor predictive performance. Although BRT
models are complex, they can be summarized in ways that give powerful ecological insight, and
their predictive performance is superior to most traditional modelling methods.

 

4.

 

The unique features of BRT raise a number of practical issues in model fitting. We demonstrate
the practicalities and advantages of using BRT through a distributional analysis of the short-finned
eel (

 

Anguilla australis

 

 Richardson), a native freshwater fish of New Zealand. We use a data set of
over 13 000 sites to illustrate effects of several settings, and then fit and interpret a model using a
subset of the data. We provide code and a tutorial to enable the wider use of BRT by ecologists.
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Introduction

 

Ecologists frequently use models to detect and describe patterns,
or to predict to new situations. In particular, regression models
are often used as tools for quantifying the relationship between
one variable and others upon which it depends. Whether
analysing the body weight of birds in relation to their age, sex and
guild; the abundance of squirrels as it varies with temperature,
food and shelter; or vegetation type in relation to aspect,
rainfall and soil nutrients, models can be used to identify
variables with the most explanatory power, indicate optimal
conditions and predict to new cases.

The past 20 years have seen a growing sophistication in the
types of statistical model applied in ecology, with impetus

from substantial advances in both statistics and computing.
Early linear regression models were attractively straightfor-
ward, but too simplistic for many real-life situations. In the
1980s and 1990s, generalized linear models (GLM; McCullagh
& Nelder 1989) and generalized additive models (GAM; Hastie
& Tibshirani 1990) increased our capacity to analyse data with
non-normally distributed errors (presence–absence and count
data), and to model nonlinear relationships. These models are
now widely used in ecology, for example for analysis of
morphological relationships (Clarke & Johnston 1999) and
population trends (Fewster 

 

et al

 

. 2000), and for predicting the
distributions of species (Buckland & Elston 1993).

Over the same period, computer scientists developed a
wide variety of algorithms particularly suited to prediction,
including neural nets, ensembles of trees and support vector
machines. These machine learning (ML) methods are used
less frequently than regression methods in ecology, perhaps
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partly because they are considered less interpretable and
therefore less open to scrutiny. It may also be that ecologists
are less familiar with the modelling paradigm of ML, which
differs from that of statistics. Statistical approaches to model
fitting start by assuming an appropriate data model, and
parameters for this model are then estimated from the data.
By contrast, ML avoids starting with a data model and rather
uses an algorithm to learn the relationship between the
response and its predictors (Breiman 2001). The statistical
approach focuses on questions such as what model will be
postulated (e.g. are the effects additive, or are there interactions?),
how the response is distributed, and whether observations are
independent. By contrast, the ML approach assumes that the
data-generating process (in the case of ecology, nature) is
complex and unknown, and tries to learn the response by
observing inputs and responses and finding dominant patterns.
This places the emphasis on a model’s ability to predict well,
and focuses on what is being predicted and how prediction
success should be measured.

In this paper we discuss a relatively new technique, boosted
regression trees (BRT), which draws on insights and tech-
niques from both statistical and ML traditions. The BRT
approach differs fundamentally from traditional regression
methods that produce a single ‘best’ model, instead using the
technique of boosting to combine large numbers of relatively
simple tree models adaptively, to optimize predictive per-
formance (e.g. Elith 

 

et al

 

. 2006; Leathwick 

 

et al

 

. 2006, 2008).
The boosting approach used in BRT places its origins within
ML (Schapire 2003), but subsequent developments in the
statistical community reinterpret it as an advanced form of
regression (Friedman, Hastie & Tibshirani 2000).

Despite clear evidence of strong predictive performance
and reliable identification of relevant variables and interactions,
BRT has been rarely used in ecology (although see Moisen

 

et al

 

. 2006; De’ath 2007). In this paper we aim to facilitate the
wider use of BRT by ecologists, demonstrating its use in an
analysis of relationships between frequency of capture of
short-finned eels (

 

Anguilla australis

 

 Richardson), and a set of
predictors describing river environments in New Zealand. We
first explain what BRT models are, and then show how to develop,
explore and interpret an optimal model. Supporting software
and a tutorial are provided as Supplementary material.

 

EXPLANATION

 

 

 

OF

 

 

 

BOOSTED

 

 

 

REGRESSION

 

 

 

TREES

 

BRT is one of  several techniques that aim to improve the
performance of a single model by fitting many models and
combining them for prediction. BRT uses two algorithms:
regression trees are from the classification and regression
tree (decision tree) group of  models, and boosting builds and
combines a collection of models. We deal with each of these
components in turn.

 

DECIS ION

 

 

 

TREES

 

Modern decision trees are described statistically by Breiman

 

et al

 

. (1984) and Hastie, Tibshirani & Friedman (2001), and

for ecological applications by De’ath & Fabricius (2000).
Tree-based models partition the predictor space into rectangles,
using a series of rules to identify regions having the most
homogeneous responses to predictors. They then fit a constant
to each region (Fig. 1), with classification trees fitting the
most probable class as the constant, and regression trees
fitting the mean response for observations in that region,
assuming normally distributed errors. For example, in Fig. 1
the two predictor variables 

 

X

 

1

 

 and 

 

X

 

2

 

 could be temperature
and rainfall, and the response 

 

Y

 

, the mean adult weight of a
species. Regions 

 

Y

 

1

 

, 

 

Y

 

2, etc.

 

 are terminal nodes or leaves, and 

 

t

 

1

 

,

 

t

 

2, etc.

 

 are split points. Predictors and split points are chosen to
minimize prediction errors. Growing a tree involves recursive
binary splits: a binary split is repeatedly applied to its own
output until some stopping criterion is reached. An effective
strategy for fitting a single decision tree is to grow a large tree,
then prune it by collapsing the weakest links identified
through cross-validation (CV) (Hastie 

 

et al

 

. 2001).
Decision trees are popular because they represent information

in a way that is intuitive and easy to visualize, and have several
other advantageous properties. Preparation of  candidate
predictors is simplified because predictor variables can be of
any type (numeric, binary, categorical, etc.), model outcomes
are unaffected by monotone transformations and differing
scales of  measurement among predictors, and irrelevant
predictors are seldom selected. Trees are insensitive to outliers,
and can accommodate missing data in predictor variables by

Fig. 1. A single decision tree (upper panel), with a response Y, two
predictor variables, X1 and X2 and split points t1, t2, etc. The bottom
panel shows its prediction surface (after Hastie et al. 2001)
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using surrogates (Breiman 

 

et al

 

. 1984). The hierarchical struc-
ture of a tree means that the response to one input variable
depends on values of inputs higher in the tree, so interactions
between predictors are automatically modelled. Despite these
benefits, trees are not usually as accurate as other methods,
such as GLM and GAM. They have difficulty in modelling
smooth functions, even ones as simple as a straight-line
response at 45

 

°

 

 to two input axes. Also, the tree structure
depends on the sample of data, and small changes in training
data can result in very different series of splits (Hastie 

 

et al

 

.
2001). These factors detract from the advantages of trees,
introducing uncertainty into their interpretation and limiting
their predictive performance.

 

BOOSTING

 

Boosting is a method for improving model accuracy, based on
the idea that it is easier to find and average many rough rules
of thumb, than to find a single, highly accurate prediction rule
(Schapire 2003). Related techniques – including bagging,
stacking and model averaging – also build, then merge results
from multiple models, but boosting is unique because it is
sequential: it is a forward, stagewise procedure. In boosting,
models (e.g. decision trees) are fitted iteratively to the training
data, using appropriate methods gradually to increase
emphasis on observations modelled poorly by the existing
collection of trees. Boosting algorithms vary in how they
quantify lack of fit and select settings for the next iteration.
The original boosting algorithms such as AdaBoost (Freund
& Schapire 1996) were developed for two-class classification
problems. They apply weights to the observations, emphasizing
poorly modelled ones, so the ML literature tends to discuss
boosting in terms of changing weights.

Here, though, we focus on regression trees (including logistic
regression trees), and the intuition is different. For regression
problems, boosting is a form of ‘functional gradient descent’.
Consider a loss function – in this case, a measure (such as
deviance) that represents the loss in predictive performance
due to a suboptimal model. Boosting is a numerical optimization
technique for minimizing the loss function by adding, at each
step, a new tree that best reduces (steps down the gradient of)
the loss function.For BRT, the first regression tree is the one
that, for the selected tree size, maximally reduces the loss func-
tion. For each following step, the focus is on the residuals: on
variation in the response that is not so far explained by the model.
[Technical aside: For ordinary regression and squared-error loss,
standard residuals are used. For more general loss, the analogue
of the residual vector is the vector of negative gradients. Deviance
is used as the loss function in the software we use. The negative
gradient of  the deviance in a logistic regression BRT model
or a Poisson BRT model is the residual 

 

y

 

 – 

 

p

 

, where 

 

y

 

 is the
response and 

 

p

 

 the fitted probability or fitted Poisson mean.
These are fitted by a tree, and the fitted values are added to the
current logit(

 

p

 

) or log(

 

p

 

).] For example, at the second step, a
tree is fitted to the residuals of the first tree, and that second
tree could contain quite different variables and split points
compared with the first. The model is then updated to contain

two trees (two terms), and the residuals from this two-term
model are calculated, and so on. The process is stagewise (not
stepwise), meaning that existing trees are left unchanged as
the model is enlarged. Only the fitted value for each observa-
tion is re-estimated at each step to reflect the contribution of
the newly added tree. The final BRT model is a linear combi-
nation of many trees (usually hundreds to thousands) that can
be thought of as a regression model where each term is a tree.
We illustrate the way in which the trees combine and contrib-
ute to the final fitted model in a later section, ‘How multiple
trees produce curvilinear functions’. The model-building
process performs best if  it moves slowly down the gradient, so
the contribution of each tree is usually shrunk by a learning
rate that is substantially less than one. Fitted values in the
final model are computed as the sum of all trees multiplied by
the learning rate, and are much more stable and accurate than
those from a single decision tree model.

Similarly to GLM, BRT models can be fitted to a variety of
response types (Gaussian, Poisson, binomial, etc.) by specifying
the error distribution and the link. Ridgeway (2006) provides
mathematical details for available distributions in the soft-
ware we use here, including calculations for deviance (the loss
function), initial values, gradients, and the constants predicted
in each terminal node. Some loss functions are more robust to
noisy data than others (Hastie 

 

et al

 

. 2001). For example, binomial
data can be modelled in BRTs with several loss functions:
exponential loss makes them similar to boosted classification
trees such as AdaBoost, but binomial deviance is more
robust, and likely to perform better in data where classes may
be mislabelled (e.g. false negative observations).

From a user’s point of  view, important features of  BRT
as applied in this paper are as follows. First, the process is
stochastic – it includes a random or probabilistic component.
The stochasticity improves predictive performance, reducing
the variance of the final model, by using only a random subset
of data to fit each new tree (Friedman 2002). This means that,
unless a random seed is set initially, final models will be
subtly different each time they are run. Second, the sequential
model-fitting process builds on trees fitted previously, and
increasingly focuses on the hardest observations to predict.
This distinguishes the process from one where a single large
tree is fitted to the data set. However, if  the perfect fit was a
single tree, in a boosted model it would probably be fitted by
a sum of identical shrunken versions of itself. Third, values
must be provided for two important parameters. The learning
rate (

 

lr

 

), also known as the shrinkage parameter, determines
the contribution of each tree to the growing model, and the
tree complexity (

 

tc

 

) controls whether interactions are fitted: a

 

tc

 

 of  1 (single decision stump; two terminal nodes) fits an
additive model, a 

 

tc

 

 of  two fits a model with up to two-way
interactions, and so on. These two parameters then determine
the number of trees (

 

nt

 

) required for optimal prediction. Finally,
prediction from a BRT model is straightforward, but inter-
pretation requires tools for identifying which variables and
interactions are important, and for visualizing fitted functions.
In the following sections, we use a case study to show how to
manage these features of BRT in a typical ecological setting.
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THE

 

 

 

CASE

 

 

 

STUDY

 

We demonstrate use of  BRT with data describing the dis-
tribution of, and environments occupied by, the short-finned
eel (

 

Anguilla australis

 

) in New Zealand. We aim to produce a
model that not only identifies major environmental determinants
of 

 

A. australis

 

 distribution, but also can be used to predict and
map its occurrence in unsampled rivers. The model will be a
form of  logistic regression that models the probability
that a species occurs, 

 

y

 

 

 

=

 

 1, at a location with covariates

 

X

 

, 

 

P

 

(

 

y

 

 

 

=

 

 1 |

 

 

 

X

 

). This probability will be modelled via a
logit : logit 

 

P

 

(

 

y

 

 

 

=

 

 1 |

 

 

 

X

 

) 

 

=

 

 

 

f

 

(

 

X

 

).

 

Anguilla australis

 

 is a freshwater eel native to south-eastern
Australia, New Zealand and western Pacific islands. Within
New Zealand it is a common freshwater species, frequenting
lowland lakes, swamps, and sluggish streams and rivers in
pastoral areas, and forming a valuable traditional and com-
mercial fishery. Short-finned eels take 10–20 years to mature,
then migrate – perhaps in response to rainfall or flow triggers
– to the sea to spawn. The eels spawn at considerable depth,
then larvae are brought back to the coast on ocean currents
and metamorphose into glass eels. After entering freshwater,
they become pigmented and migrate upstream. They tend
not to penetrate as far upstream as long-finned eels (

 

Anguilla
dieffenbachii

 

), probably because there is little suitable habitat
further inland rather than because they are unable to do so
(McDowall 1993).

The data set, developed for research and conservation
planning in New Zealand, is described in detail by Leathwick

 

et al

 

. 2008). Briefly, species data were records of  species
caught from 13 369 sites spanning the major environmental
gradients in New Zealand’s rivers. 

 

Anguilla australis

 

 was
caught at 20% of sites. Because this is a much larger data set
than is often available in ecology, here we subsample the

13 369 sites, usually partitioning off 1000 records for modelling
and keeping the remainder for independent evaluation.

The explanatory variables were a set of  11 functionally
relevant environmental predictors (Table 1) that summarize
conditions over several spatial scales: local (segment and
reach) scale, upstream catchment scale, and downstream to
the sea. Most were available as GIS data for the full river
system of New Zealand, enabling prediction to all rivers. The
exception was one variable describing local substrate
conditions (LocSed) that had records at only 82% sites. The
12th variable was categorical, and described fishing method
(Table 1). Given these records and covariates, the logistic
regression will be modelling the joint probability of occurrence
and capture of 

 

A. australis

 

.

 

SOFTWARE

 

 

 

AND

 

 

 

MODELLING

 

All models were fitted in 

 



 

 (R Development Core Team 2006)
version 2.3-1, using gbm package version 1·5–7 (Ridgeway 2006)
plus custom code written by J.L. and J.E. Our code is available
with a tutorial (Supplementary material). There is also a
growing range of alternative implementations for boosted
trees, but we do not address those here. The following two
sections explain how to fit, evaluate and interpret a BRT model,
highlighting features that make BRT particularly useful in
ecology. For all settings other than those mentioned, we used
the defaults in gbm.

 

OPTIMIZ ING

 

 

 

THE

 

 

 

MODEL

 

 

 

WITH

 

 

 

ECOLOGICAL

 

 

 

DATA

 

Model development in BRT is best understood in the context
of other model-fitting practices. For all prediction problems,
overfitting models to training data reduces their generality,
so regularization methods are used to constrain the fitting

Table 1. Environmental variables used to model fish occurrence

Variable Description Mean and range

Reach scale predictor
LocSed Weighted average of proportional cover of bed sediment: 1 = mud, 

2 = sand, 3 = fine gravel; 4 = coarse gravel; 5 = cobble; 6 = boulder;
7 = bedrock 3·77, 1–7

Segment scale predictors
SegSumT Summer air temperature (°C) 16·3, 8·9–19·8
SegTSeas Winter air temperature (°C), normalized with respect to SegJanT 0·36, –4·2–4·1
SegLowFlow Segment low flow (m3 s–1), fourth root transformed 1·092, 1·0–4·09

Downstream predictors
DSDist Distance to coast (km) 74, 0·03–433·4
DSDam Presence of known downstream obstructions, mostly dams 0·18, 0 or 1
DSMaxSlope Maximum downstream slope (°) 3·1, 0–29·7

Upstream/catchment scale predictors
USAvgT Average temperature in catchment (°C) compared with segment, 

normalized with respect to SegJanT –0·38, –7·7–2·2
USRainDays Days per month with rain >25 mm 1·22, 0·21–3·30
USSlope Average slope in the upstream catchment (°) 14·3, 0–41·0
USNative Area with indigenous forest (proportion) 0·57, 0–1

Fishing method
Method Fishing method in five classes: electric, net, spot, trap, mixture NA
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procedure so that it balances model fit and predictive
performance (Hastie 

 

et al

 

. 2001). Regularization is particularly
important for BRT because its sequential model fitting allows
trees to be added until the data are completely overfitted. For
most modelling methods, model simplification is achieved by
controlling the number of terms. The number of terms is defined
by the number of  predictor variables and the complexity of
fitted functions, and is often determined using stepwise
procedures (for a critique of these see Whittingham 

 

et al

 

.
2006) or by building several models and comparing them with
information theoretical measures such as Akaike’s information
criterion (Burnham & Anderson 2002). Controlling the number
of terms implies a prior belief  that parsimonious models
(fewer terms) provide better prediction. Alternatively, more
terms can be fitted and their contributions downweighted
using shrinkage (Friedman 2001). In conventional regression,
this is applied as global shrinkage (direct, proportional
shrinkage on the full model) using ridge or lasso methods
(Hastie 

 

et al

 

. 2001; Reineking & Schröder 2006). Shrinkage in
BRT is similar, but is incremental, and is applied to each new
tree as it is fitted. Analytically, BRT regularization involves
jointly optimizing the number of trees (

 

nt

 

), learning rate (

 

lr

 

),
and tree complexity (

 

tc

 

). We focus on trade-offs between these
elements in the following sections, after explaining the role of
stochasticity.

 

BOOSTING

 

 

 

WITH

 

 

 

STOCHASTICITY

 

Introducing some randomness into a boosted model usually
improves accuracy and speed and reduces overfitting
(Friedman 2002), but it does introduce variance in fitted values
and predictions between runs (Appendix S1, see Supplementary
material). In gbm, stochasticity is controlled through a ‘bag
fraction’ that specifies the proportion of data to be selected at
each step. The default bag fraction is 0·5, meaning that, at
each iteration, 50% of the data are drawn at random, without
replacement, from the full training set. Optimal bag fractions
can be established by comparing predictive performance and
model-to-model variability under different bag fractions. In
our experience, stochasticity improves model performance,
and fractions in the range 0·5–0·75 have given best results for
presence–absence responses. From here on we use a bag
fraction of 0·5, but with new data it is worth exploration.

NUMBER OF TREES VS. LEARNING RATE

The lr is used to shrink the contribution of each tree as it is
added to the model. Decreasing (slowing) lr increases the
number of trees required, and in general a smaller lr (and
larger nt) are preferable, conditional on the number of obser-
vations and time available for computation. The usual
approach is to estimate optimal nt and lr with an independent
test set or with CV, using deviance reduction as the measure
of success. The following analysis demonstrates how per-
formance varies with these parameters using a subsample of
the data set for model fitting, and the remaining data for
independent evaluation.

Using a set of  1000 sites and 12 predictor variables, we
fitted BRT models with varying values for nt (100–20 000)
and lr (0·1–0·0001), and evaluated them on 12 369 excluded
sites. Example code is given in the online tutorial (see
Supplementary material). Results for up to 10 000 trees for a
tc of  1 and 5 are shown in Fig. 2. Our aim here is to find the
combination of parameters (lr, tc and nt) that achieves mini-
mum predictive error (minimum error for predictions to inde-
pendent samples). A value of 0·1 for lr (not plotted) was too
fast for both tc values, and at each addition of trees above the
minimum 100 trees, predictive deviance increased, indicating
that overfitting occurred almost immediately. The fastest
feasible lr (0·05) fitted relatively few trees, did not achieve
minimum error for tc = 1 (see horizontal dashed line) or tc = 5,
and in both cases predicted poorly as more trees were added
(the curves rise steeply after they have reached a minimum,
indicating overfitting). In contrast, the smallest values for lr
approached best predictive performance slowly, and required
thousands of trees to reach minimum error. There was little

Fig. 2. The relationship between number of trees and predictive
deviance for models fitted with five learning rates and two levels of
tree complexity. Deviance was calculated from models fitted to a data
set of 1000 sites, and predicted to a data set of 12 369 sites. The lowest
predictive deviance achieved for each panel is indicated by a dotted
horizontal line; the line for learning rate achieving this minimum is
shown in bold.
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gain in predictive power once more than 500 or so trees were
fitted. However, slower lr values are generally preferable
to faster ones, because they shrink the contribution of each
tree more, and help the final model to reliably estimate the
response. We explain this further in Appendix S1, and as a rule
of thumb recommend fitting models with at least 1000 trees.

TREE COMPLEXITY

Tree complexity – the number of nodes in a tree – also affects
the optimal nt. For a given lr, fitting more complex trees leads
to fewer trees being required for minimum error. So, as tc is
increased, lr must be decreased if  sufficient trees are to be fit-
ted (tc = 5, Fig. 2b). Theoretically, the tc should reflect the
true interaction order in the response being modelled (Fried-
man 2001), but as this is almost always unknown, tc is best set
with independent data.

Sample size influences optimal settings for lr and tc, as
shown in Fig. 3. For this analysis, the full data set was split
into training sets of various sizes (6000, 2000, 1000, 500 and

250 sites), plus an independent test set (7369 sites). BRT
models of 30 000 trees were then fitted over a range of values
for tc (1, 2, 3, 5, 7, 10) and lr (0·1, 0·05, 0·01, 0·005, 0·001,
0·0005). We identified, for each parameter combination, the
nt that achieved minimum prediction error, and summarized
results as averages across tc (Fig. 3a) and lr (Fig. 3b). If  the
minimum was not reached by 30 000 trees, that parameter
combination was excluded.

Predictive performance was influenced most strongly by
sample size and, as expected, large samples gave models with
lower predictive error. Gains from increased tc were greater
with larger data sets, presumably because more data provided
more detailed information about the full range of sites in which
the species occurs, and the complexity in that information
could be modelled better using more complex trees. Decision
stumps (tc 1) were never best (they always had higher predictive
deviance), but for small samples there was no advantage – but
also little penalty – for using large (higher-tc) trees. The
reason for not using the highest tc, though, is that the model
would have to be learnt very slowly to achieve enough trees for
reliable estimates. So, small samples here (e.g. 250 sites) would
be best modelled with simple trees (tc 2 or 3) and a slow
enough lr to allow at least 1000 trees.

As a general guide, lr needs to be decreased as tc increases,
usually inversely: doubling tc should be matched with halving
lr to give approximately the same nt. While the results here
suggest that using higher tc and very slow lr is the best strategy
(for samples >500 sites the curves keep descending), the other
trade-off is computing time. For example, fitting BRT models
on the 1000-site data set on a modern laptop and using our
online code took 0·98 min for tc 1 and lr 0·05 (500 trees), but
3·85 min for tc 1 and lr 0·01 (2500 trees), 2·36 min for tc 5 and
lr 0·01 (850 trees), and 7·49 min for tc 1 and lr 0·005 (4600
trees). Where many species are modelled, or many models are
required for other reasons (e.g. bootstrapping), using the fastest
lr that achieves more than, say, 1000 trees is a good strategy.
We note, too, that for presence–absence data such as these,
optimal settings also vary with prevalence of the species. A
very rare or very common species provides less information to
model given the same total number of sites, and will generally
require slower learning rates.

IDENTIFYING THE OPTIMAL SETTINGS

In many situations, large amounts of data are not available, so
techniques such as CV are used for model development and/
or evaluation. Cross-validation provides a means for testing
the model on withheld portions of data, while still using all
data at some stage to fit the model. Use of CV for selecting
optimal settings is becoming increasingly common (Hastie
et al. 2001), led by the ML focus on predictive success. Here
we demonstrate a CV implementation that first determines
the optimal nt, then fits a final model to all the data. The CV
process is detailed in Fig. 4, and code is available (function
gbm.step) in the Supplementary material.

We use a data set of 1000 sites to develop and test a model
via CV, also evaluating it on the withheld 12 369 sites. Our

Fig. 3. Predictive deviance as a function of data set size and (a) tree
complexity; (b) learning rate. Models were run on data sets of 250–
6000 sites, and minimum predictive deviance was estimated on an
excluded data set of 7369 sites. No result indicates that no model of
those up to 30 000 trees achieved a minimum predictive deviance with
that parameter combination.
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selected settings are lr of  0·005, tc of  5 and bag fraction of 0·5;
note that all 1000 sites can be used despite missing data for
LocSed at 222 sites. As trees are added, there is an initial steep
decline in prediction error followed by a more gradual
approach to the minimum (Fig. 5, solid circles). With a slow
enough lr, the CV estimates of nt are reliable and close to
those from independent data (Fig. 5).

SIMPLIFYING THE PREDICTOR SET

Variable selection in BRT is achieved because the model largely
ignores non-informative predictors when fitting trees. This works
reasonably well because measures of relative influence quantify
the importance of  predictors, and irrelevant ones have a
minimal effect on prediction. However, unimportant variables
can be dropped using methods analogous to backward selec-
tion in regression (Miller 1990); these are sometimes referred
to as recursive feature elimination. Such simplification is
most useful for small data sets where redundant predictors
may degrade performance by increasing variance. It is also
useful if users are uncomfortable with inclusion of unimportant
variables in the model. We detail our methods for simplifica-
tion in Appendix S2 (see Supplementary material).

UNDERSTANDING AND INTERPRETING THE MODEL

A recognized advantage of individual decision trees is their
simplicity, but boosting produces a model with hundreds to
thousands of trees, presenting a challenge for understanding
the final model. Nevertheless, BRT does not have to be treated
like a black box, and we show here how the models can be
summarized, evaluated and interpreted similarly to conven-
tional regression models.

RELATIVE IMPORTANCE OF PREDICTOR VARIABLES

Formulae developed by Friedman (2001) and implemented in
the gbm library estimate the relative influence of predictor
variables. The measures are based on the number of times a
variable is selected for splitting, weighted by the squared

improvement to the model as a result of each split, and aver-
aged over all trees (Friedman & Meulman 2003). The relative
influence (or contribution) of each variable is scaled so that
the sum adds to 100, with higher numbers indicating stronger
influence on the response.

For the A. australis model developed on 1000 sites through
CV, the six most important variables described the importance
of  various reach, segment, upstream and downstream
conditions, and fishing method (Table 2).

PARTIAL DEPENDENCE PLOTS

Visualization of fitted functions in a BRT model is easily
achieved using partial dependence functions that show the

Fig. 4. Cross-validation method for identify-
ing the optimal number of trees in a boosted
regression tree model.

Fig. 5. Cross-validation (CV) model-fitting example. Data set of
1000 observations, with estimates of predictive deviance from the CV
(mean as solid circles and SE) and an independent estimate based on
12 369 excluded sites (open circles). Initial number of trees = 50, step
size = 50. With a learning rate of 0·005 and a tree complexity of 5, the
step procedure identified the optimal number of trees as 1050,
whereas with independent data the minimum was 950.
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effect of a variable on the response after accounting for the
average effects of all other variables in the model. While these
graphs are not a perfect representation of the effects of each
variable, particularly if  there are strong interactions in the
data or predictors are strongly correlated, they provide a
useful basis for interpretation (Friedman 2001; Friedman &
Meulman 2003). The partial responses for A. australis for the
six most influential variables (Fig. 6) indicate a species occurring
in warm, lowland rivers that have gentle downstream slopes
and substantial clearing of upstream native vegetation. They

demonstrate that short-finned eels often occur close to the
coast, but are able to penetrate some distance inland, and prefer
reaches with fine sediments. The species is most commonly
caught using electric fishing, with lower success from nets,
spotlighting and traps.

IDENTIFYING IMPORTANT INTERACTIONS

Even if a decision tree has several nodes, it may not be modelling
interactions between predictors because they will be fitted
only if  supported by the data. In the absence of interactions,
in a multinode tree the same response would be fitted to each
side of splits below the first node. In effect, tc controls the
maximum level of interaction that can be quantified, but no
information is provided automatically on the nature and
magnitude of fitted interaction effects. To quantify these, we
use a function that creates, for each possible pair of predictors, a
temporary grid of  variables representing combinations of
values at fixed intervals along each of their ranges. We then
form predictions on the linear predictor scale for this grid, while
setting values for all other variables to their respective means.
We use a linear model to relate these temporary predictions to
the two marginal predictors, fitting the latter as factors. The
residual variance in this linear model indicates the relative
strength of interaction fitted by BRT, with a residual variance
of zero indicating that no interaction effects are fitted. Code
and examples are available in the Supplementary material.

For A. australis, six of the seven most important pairwise
interactions all included the most influential predictor,

Fig. 6. Partial dependence plots for the six most influential variables in the model for short-finned eel. For explanation of variables and their
units see Table 1. Y axes are on the logit scale and are centred to have zero mean over the data distribution. Rug plots at inside top of plots show
distribution of sites across that variable, in deciles.

Table 2. Summary of the relative contributions (%) of predictor
variables for a boosted regression tree model developed with cross-
validation on data from 1000 sites using tree complexity of 5 and
learning rate of 0·005

Predictor Relative contribution (%)

SegSumT 24·7
USNative 11·3
Method 11·1
DSDist 9·7
LocSed 8·0
DSMaxSlope 7·3
USSlope 6·9
USRainDays 6·5
USAvgT 5·7
SegTSeas 5·7
SegLowFlow 2·9
DSDam 0·1
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SegSumT. Once identified, interactions can be visualized with
joint partial dependence plots. The most important interaction
for A. australis is shown in Fig. 7 (top panel), compared to the
response predicted if  interactions were not allowed (tc = 1).
In this case, allowing interactions reinforces the suitability
of environments that combine warm temperatures with low
frequency of floods caused by high-intensity rain events in the
upstream catchment. With interactions modelled, fitted values
for such environments are more than twice those fitted by a
model in which no interaction effects are allowed.

PREDICTIVE PERFORMANCE

BRT models can be used for prediction in the same way as any
regression model, but without additional programming their
complexity requires predictions to be made within the modell-
ing software (in this paper, ) rather than in a GIS. Where
predictions are to be mapped over many (e.g. millions) of
points, scripts can be used to manage the process; examples
are given in the Supplementary material. Prediction to any
given site uses the final model, and consists of  the sum of
predictions from all trees multiplied by the learning rate.
Standard errors can be estimated with bootstrap procedures,
as demonstrated by Leathwick et al. (2006).

Where BRT models are developed with CV, statistics on
predictive performance can be estimated from the subsets of
data excluded from model fitting (see Fig. 4 and Supplementary
material). For the model presented previously, the CV estimate
of prediction error was close to that on independent data,
although slightly overoptimistic (Fig. 5, compare solid and
open circles; Table 3, see estimates on independent data
compared with CV). This is a typical result, although the ability
of CV to estimate true performance varies with data set and
species prevalence. In small data sets, CV estimates of predictive
performance may be erratic, and repeated and/or stratified
cross-validation can help stabilize them (Kohavi 1995).

Predictive performance should not be estimated on training
data, but results are provided in Table 3 to show that BRT
overfits the data, regardless of careful model development
(Table 3; see difference between estimates on training and
independent data). While overfitting is often seen as a problem
in statistical modelling, our experience with BRT is that
prediction to independent data is not compromised – indeed,
it is generally superior to other methods (see e.g. comparisons
with GLM, GAM and multivariate adaptive regression splines,
Elith et al. 2006; Leathwick et al. 2006). The flexibility in
the modelling that allows overfitting also enables an accurate
description of  the relationships in the data, provided that
overfitting is appropriately controlled.

HOW MULTIPLE TREES PRODUCE CURVIL INEAR 
FUNCTIONS

Finally, having explored important features of a BRT model,
we return to the question of how multiple shrunken trees can,
in combination, fit a nonlinear function. In gbm it is possible
to view the structure of each tree in a BRT model, and to plot
the partial response to any variable over any chosen number

Fig. 7. Three-dimensional partial dependence plots for the strongest
interaction in the model for short-finned eel (top), compared with that
in a model without interactions (bottom). All variables except those
graphed are held at their means. For explanation of variables and
their units see Table 1; both plots have the same scaling for each axis.

Table 3. Predictive performance of a BRT model, as evaluated on three different data sets (the model, comprising 1050 trees, is the same as
reported in Table 2)

Independent 
(12 369 sites)

Cross-validation*
(1000 sites)

Train 
(1000 sites)

Percentage deviance explained 28·3 31·3 (0·96) 52·6
Area under the receiver operating characteristic curve 0·858 0·869 (0·015) 0·958

*Mean and SE estimated within model building.
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of shrunken trees (Fig. 8). Our final CV model contained
1050 trees. The first two trees had four out of five variables in
common, with the first split in both trees on the same variable
but at slightly different values (Fig. 8a). The first tree split on
summer temperature at 16·65 °C, showing as a tiny step in the
partial plot constructed only from the first tree (Fig. 8b, top
left). The step is small in comparison with the final amplitude
of the response because the contribution of each tree in the
boosted model is shrunk by the learning rate. Adding infor-
mation from the second tree (Fig. 8a, right) adds a second
step at 16·85 °C (Fig. 8b, top right). Summer temperature
was the most influential variable in this model, and occurred

in 523 of the trees. Gradually, as more trees are included in the
partial plot, the response to summer temperature becomes
more complex and curvilinear (Fig. 8b, bottom row).

Discussion

BRT is a flexible regression modelling technique that gives
important benefits for modelling ecological data, provided
that care is exercised in model fitting. We have focused on
both explaining the technique and demonstrating how to fit
and evaluate the models, because this information is presented
elsewhere in rather technical language, is rarely given an

Fig. 8. (a) The first two trees in the boosted
regression tree (BRT) model developed on
1000 sites with cross-validation. Variable
names and units and codes for ‘Method’ are
in Table 1. Split values are displayed under
the split, and terminal nodes show percentage
of sites in that node (black) and prediction in
logit space (grey). For all splits on continuous
variables, the lower values for the variable are
to the left; (b) Partial plots from this BRT
model for segment summer air temperature
(SegSumT), using varying numbers of trees
from 1 (top left) to 1050 (bottom right).
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ecological context, and sometimes portrays boosting as a
‘black-box’ procedure. The models developed for A. australis
are consistent with the known ecology of  the species, and
accurately describe a species occurring in warm, lowland
rivers in agricultural landscapes, often close to the coast but
also penetrating inland, and preferring reaches with fine
sediments. The modelled interactions highlight the suitability
of  habitats combining low flood frequencies and warm
temperatures. Further applications of  BRT to these data,
analysing the contrasting distributions of 30 fish species, are
provided by Leathwick et al. 2008).

BRT models are able to select relevant variables, fit accurate
functions and automatically identify and model interactions,
giving sometimes substantial predictive advantage over
methods such as GLM and GAM. A growing body of  liter-
ature quantifies this difference in performance (Elith et al.
2006; Leathwick et al. 2006; Moisen et al. 2006). Efficient
variable selection means that large suites of candidate varia-
bles will be handled better than in GLM or GAM developed
with stepwise selection. Additionally, in contrast to single
decision trees that handle continuous gradients by fitting them in
large steps (Figure 1), boosted trees model a much smoother
gradient, analogous to the fit from a GAM. Admittedly, the
BRT fitted functions can be rather noisy; this is mostly in
regions of the data space that are sparsely sampled, but does
not seem to adversely affect overall performance. Unlike
GAM, BRT can handle sharp discontinuities, an important
feature when modelling the distributions of species that
occupy only a small proportion of the sampled environmental
space. BRT models can be fitted to varying amounts of data,
similar to other regression models, but settings need to be
carefully controlled in smaller samples, particularly where
using stochastic boosting.

Boosting has features that differentiate it from other model
aggregation methods, and brief  comment may help place
BRT into that broader context. One of the most popular
ensemble methods, bootstrap aggregation or bagging, under-
pins methods such as bagged trees and random forests (BT
and RF, Prasad et al. 2006). These averaging techniques also
improve the performance of single tree models by making
many trees and, in the case of RF, randomly selecting a subset
of variables at each node. While BT and RF reduce variance
more than single trees, they cannot achieve any bias reduction,
because each tree is based on a bootstrap sample that will be
distributed in much the same way as the original training set.
As a consequence, the resulting average bias is identical to the
bias of any one tree. By contrast, boosting grows the suite of trees
by sequentially modelling the residuals throughout all parts
of the data space, including those for atypical observations
that depart from the dominant patterns explained by the
initial trees. In this way, it reduces both bias (through forward
stagewise fitting) and variance (through model averaging).
Random forest models are starting to be applied in ecology
(e.g. Prasad et al. 2006), but we know of no comparisons of
RF and BRT with ecological data, and comparisons in other
disciplines have so far been across a restricted set of data char-
acteristics (Segal 2004). One potential advantage of BRT is

that different types of response variable (e.g. binomial, count,
normal) are handled explicitly using appropriate and robust
loss functions. A presence-only implementation of BRT (one
that deals with species records where only presence is recorded,
such as museum data) will soon be available (G. Ward, T. Hastie,
S.C. Barry, J. Elith & J.R. Leathwick, unpublished data).

We acknowledge that exploiting the advantages of BRT
requires some reorientation in thinking. Compared with
conventional regression models, there are no P values to
indicate the relative significance of model coefficients, degrees
of freedom in the model are hard to determine, and the para-
digm is quite different from one focusing on selecting a single
‘best’ model containing few parameters. These aspects can be
viewed either as problems or as opportunities. There is a
vigorous debate in the literature about the use and abuse of
P values in models (Fidler et al. 2004), and a strong case can
be made that alternatives provide more insight and are less
often misunderstood. Model selection in BRT, consistent
with many modern techniques that focus on regularization
through shrinkage (see discussion of ridge regression and
lasso, L1 and L2 penalties by Hastie et al. 2001), provides a
coherent and robust alternative to traditional approaches
such as stepwise variable selection (Whittingham et al. 2006).
Although the lack of a single simple model may be regarded
as disadvantageous from a traditional perspective, we have
demonstrated a range of methods for both interpretation and
prediction, and these provide functional equivalence to many
of the techniques used with conventional regression.

In conclusion, we have found that moving from a background
of using only conventional statistical models to including ML
methods as an analytical option has brought with it con-
siderable advantages. In particular, it has provided familiarity
with alternative notions of  model selection, prompted use
of methods for model tuning and evaluation through CV or
other resampling methods, and extended our ability to ask
questions of both models and predictions in new and inform-
ative ways. Motivated by this, and by the analytical gains we
have made through use of these models, we provide the online
tutorial (Supplementary material) as one starting point for
using BRT for typical ecological analyses.
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