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Abstract. Classification and regression trees are ideally suited for the analysis of com-
plex ecological data. For such data, we require flexible and robust analytical methods,
which can deal with nonlinear relationships, high-order interactions, and missing values.
Despite such difficulties, the methods should be simple to understand and give easily
interpretable results. Trees explain variation of a single response variable by repeatedly
splitting the data into more homogeneous groups, using combinations of explanatory var-
iables that may be categorical and/or numeric. Each group is characterized by a typical
value of the response variable, the number of observations in the group, and the values of
the explanatory variables that define it. The tree is represented graphically, and this aids
exploration and understanding.

Trees can be used for interactive exploration and for description and prediction of
patterns and processes. Advantages of trees include: (1) the flexibility to handle a broad
range of response types, including numeric, categorical, ratings, and survival data; (2)
invariance to monotonic transformations of the explanatory variables; (3) ease and ro-
bustness of construction; (4) ease of interpretation; and (5) the ability to handle missing
values in both response and explanatory variables. Thus, trees complement or represent an
alternative to many traditional statistical techniques, including multiple regression, analysis
of variance, logistic regression, log-linear models, linear discriminant analysis, and survival
models.

We use classification and regression trees to analyze survey data from the Australian
central Great Barrier Reef, comprising abundances of soft coral taxa (Cnidaria: Octocorallia)
and physical and spatial environmental information. Regression tree analyses showed that
dense aggregations, typically formed by three taxa, were restricted to distinct habitat types,
each of which was defined by combinations of 3–4 environmental variables. The habitat
definitions were consistent with known experimental findings on the nutrition of these taxa.
When used separately, physical and spatial variables were similarly strong predictors of
abundances and lost little in comparison with their joint use. The spatial variables are thus
effective surrogates for the physical variables in this extensive reef complex, where infor-
mation on the physical environment is often not available.

Finally, we compare the use of regression trees and linear models for the analysis of
these data and show how linear models fail to find patterns uncovered by the trees.

Key words: analysis of variance; CART; classification tree; coral reef; Great Barrier Reef; habitat
characteristic; Octocorallia; regression tree; soft coral; surrogate.

INTRODUCTION

Ecological data are often complex, unbalanced, and
contain missing values. Relationships between vari-
ables may be strongly nonlinear and involve high-order
interactions. The commonly used exploratory and sta-
tistical modeling techniques often fail to find mean-
ingful ecological patterns from such data. Classifica-
tion and regression trees (Breiman et al. 1984, Clark
and Pregibon 1992, Ripley 1996) are modern statistical
techniques ideally suited for both exploring and mod-
eling such data, but have seldom been used in ecology
(Staub et al. 1992, Baker 1993, Rejwan et al. 1999).

Trees explain variation of a single response variable
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by one or more explanatory variables. The response
variable is usually either categorical (classification
trees) or numeric (regression trees), and the explana-
tory variables can be categorical and/or numeric. The
tree is constructed by repeatedly splitting the data, de-
fined by a simple rule based on a single explanatory
variable. At each split the data is partitioned into two
mutually exclusive groups, each of which is as ho-
mogeneous as possible. The splitting procedure is then
applied to each group separately. The objective is to
partition the response into homogeneous groups, but
also to keep the tree reasonably small. The size of a
tree equals the number of final groups. Splitting is con-
tinued until an overlarge tree is grown, which is then
pruned back to the desired size. Each group is typically
characterized by either the distribution (categorical re-
sponse) or mean value (numeric response) of the re-
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sponse variable, group size, and the values of the ex-
planatory variables that define it.

The way that explanatory variables are used to form
splits depends on their type. For a categorical explan-
atory variable with two levels, only one split is pos-
sible, with each level defining a group. For categorical
variables with .2 levels, any combinations of levels
can be used to form a split, and for k levels, there are
2k21 2 1 possible splits. For numeric explanatory var-
iables, a split is defined by values less than, and greater
than, some chosen value. Thus, only the rank order of
numeric variables determines a split, and for u unique
values there are u 2 1 possible splits. From all possible
splits of all explanatory variables, we select the one
that maximizes the homogeneity of the two resulting
groups. Homogeneity can be defined in many ways,
with the choice depending on the type of response var-
iable.

Trees are represented graphically, with the root node,
which represents the undivided data, at the top, and the
branches and leaves (each leaf represents one of the
final groups) beneath. Additional information can be
displayed on the tree, e.g., summary statistics of nodes,
or distributional plots.

We will show how trees can deal with complex eco-
logical data sets using soft coral (Cnidaria: Octocor-
allia) survey data from the Australian central Great
Barrier Reef. This, together with a detailed exposition
of trees, follows this introduction. First, we describe
the soft coral survey data, and ecological issues that
we investigate with trees. We then illustrate the basics
of classification and regression trees with two analyses
of a soft coral species. A more detailed discussion of
trees follows, and includes: (1) exploration, descrip-
tion, and prediction of data; (2) technical aspects of
growing trees with different splitting criteria; (3) prun-
ing trees to size by cross-validation; and (4) data trans-
formations, missing values, and tree diagnostics. Tree
analyses of the soft coral data then address the follow-
ing ecological issues: (1) relationships between phys-
ical and spatial environmental variables, (2) habitat
characteristics associated with aggregations of three
soft coral taxa, and (3) comparison of physical and
spatial variables as predictors of soft coral abundance.
Finally, we compare the performance of trees to equiv-
alent linear model analyses.

THE SOFT CORAL STUDY

Soft corals (class Anthozoa, Octocorallia: Order Al-
cyonacea) occur in high abundances on many types of
coral reefs. They can numerically dominate reefs in
turbid nearshore regions, as well as in clear water reefs
away from coastal influences (Dinesen 1983, Fabricius
1997). Abundances of soft corals are strongly related
to their physical environment (Fabricius and De’ath
1997), but their role in reef communities is not well
understood.

We analyze three groups of taxa: (1) Efflatounaria

(family Xeniidae) comprises three species (Gohar
1939, Versefeldt 1977) which are not reliably distin-
guished; (2) Sinularia spp. (family Alcyoniidae; Ver-
sefeldt 1980) comprises five ill-defined species with
very similar morphology and distribution, and includes
S. capitalis and S. polydactyla; and (3) the distinct
species Sinularia flexibilis (Versefeldt 1980).

Efflatounaria is locally dominant in clear offshore
waters, whereas Sinularia spp. and S. flexibilis are high-
ly abundant and conspicuous nearshore taxa. They can
form dense aggregations, to the extent of monopolizing
space and excluding the reef-building hard corals on
the scale of thousands of square meters (Fabricius
1998).

Additionally, we use Asterospicularia laurae (family
Asterospiculariidae; Utinomi 1951) as an example of
an uncommon species. It is one of the few soft corals
that are reliably identified to species level in the field.

Zonations along the gradients of depth and distance
to land have been extensively used to explain patterns
in abundances of individual taxa on the Great Barrier
Reef (Done 1982, Dinesen 1983). However, spatial var-
iables are only proxies for a range of physical envi-
ronmental variables, with which they are highly cor-
related. The relationships between spatial and physical
variables are often complex. Hence the question of
which physical variables determine the distribution of
a taxon often remains unresolved—a question we at-
tempt to address in this study.

Data comprising abundances of 38 genera of soft
coral, four physical and five spatial variables (Table 1),
were collected during surveys of 374 sites at 92 lo-
cations on 32 reefs within the Australian central Great
Barrier Reef (Table 1 and Fig. 1). Each site was visually
surveyed by one experienced observer (K. Fabricius),
by scuba diving over typically 300–500 m (ø 900–
2000 m2), for 15–20 min, within each of five defined
depth ranges. The distribution of sites was highly un-
balanced with respect to their defining characteristics
(Table 2).

EXAMPLES OF CLASSIFICATION

AND REGRESSION TREES

A regression tree example

As an illustrative example, we use the ratings of
abundances (row 1 of Table 1) of Asterospicularia lau-
rae as the numeric response variable (Fig. 2a). The
species is uncommon, occurring on 15% of sites (mean
rating 5 0.241, n 5 373) with ,1% of sites having a
rating .2. The explanatory variables used in the model
are cross-shelf position, location, and depth; all of
which appear in the tree. Splits minimize the sums of
squares (SS) within groups. The first split is based on
shelf position, with inner- and mid-shelf reefs in the
left branch, and outer-shelf reefs in the right branch.
The left node is strongly homogeneous, and is not sub-
sequently divided, forming a leaf with mean rating of
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TABLE 1. Description of the variables used in the soft coral study. The character of variables
is denoted by B 5 biotic, P 5 physical, or S 5 spatial; and the type by N 5 numeric or C
5 categorical.

Variable Character Type Values

Abundances of soft
corals (38 taxa)

Sediment
Visibility
Wave action
Slope angle
Cross-shelf position

B

P
P
P
P
S

N

C
N
C
N
C

0 (absent), 1 (few), 2 (uncommon), 3 (com-
mon), 4 (abundant), 5 (dominant)

0 (none), 1 (thin), 2 (moderate), 3 (thick)
1–33 m
0 (none), 1 (moderate), 2 (strong)
0–908 in 58 increments
Inner, mid-, or outer shelf

Reef type
Within-reef location
Depth zone
Reef identity

S
S
S
S

C
C
C
C

Fringing around islands or platform
Front, back, channel, flank
0–1, 1–3, 3–8, 8–13, 13–18 m
32 levels

Note: Four of the 38 soft coral taxa were analyzed in terms of the physical and spatial
variables.

FIG. 1. Schematic representation of cross-shelf position (inner, mid, and outer), reef type (platform or fringing), and types
of site location on the reef (front, back, flank, and channel). Fringing reefs form around islands, whereas platform reefs rise
from the sea floor. In the survey area fringing reefs occurred only on the inner shelf. Fronts of reefs face the prevailing wind,
and backs are on the leeward side, the two being joined by flanks. Channel sites occur on fringing reefs between closely
located islands and typically have high currents.

0.038. For regression trees, the proportion of the total
sum of squares explained by each split is important
information, and could be displayed on the tree. How-
ever, we can also represent this graphically by the rel-
ative lengths of the vertical lines associated with each
split (Fig. 2a); a practice we use for all trees in this
paper. Continuing with the right branch comprising all
outer reefs, it is now divided into back and flank reef
locations to the left and front locations to the right;
there are no channel sites on outer-shelf reefs. The
splitting process is repeated, separating front-reef sites
of depths above and below 3 m, which completes the
tree with four leaves, and 49.2% of the total sum of
squares is explained. The bar charts at each leaf show
the distribution of observed ratings (0–3). They show
A. laurae to be relatively common on the fronts of
outer-shelf reefs, particularly at depths $3 m, but vir-
tually absent from inner- and mid-shelf reefs.

A classification tree example

For the example in Fig. 2b, the response variable is
the presence–absence of A. laurae. In this case, the tree
is identical in structure to the regression tree, but the
splits have relatively different strengths, as represented
by their vertical lengths. Splits are based on the pro-
portions of presences and absences in the groups. The
leaves of the tree are characterized by their dominant
category (present or absent), and the proportion of sites
of that category; e.g., for the leftmost leaf, A. laurae
is absent on 97% of inner and mid-shelf reefs (n 5
263). When the response has more than two categories,
leaves are characterized by their dominant category and
the proportions in each category. A classification tree,
treating the ratings of A. laurae as four distinct cate-
gories (not shown), gave identical leaves to the pres-
ence–absence tree, but had a stronger split for depth.
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TABLE 2. Spatial distribution of the survey sites in terms of cross-shelf position (inner, mid, and outer), reef type (fringing
or platform), reef location (Ch 5 channel, Bck 5 back, Flnk 5 flank, and Frnt 5 front), and depth (m).

Shelf position and reef type

Depth
(m)

Inner-fringing

Ch Bck Flnk Frnt

Inner-platform

Bck Frnt

Mid-platform

Bck Flnk Frnt

Outer-platform

Bck Flnk Frnt

0–1
1–3
3–8
8–13

13–18

5
19
18

3
4

7
17
20
12

7

1
3
2
0
0

4
8

12
8
6

3
3
3
4
1

3
4
4
5
3

2
9
9
6
3

1
2
2
2
1

3
8

10
9
7

6
13
16
14
11

0
1
1
1
1

2
7

10
12
15

Notes: Due to the varying structure of reefs and survey constraints, the distribution of sites with respect to these four
spatial characteristics is highly unbalanced. In particular: (1) fringing reefs, and thus channel sites, occur only on the inner
shelf, (2) flanks are underrepresented, (3) depths of 1–8 m are overrepresented on inner fringing reefs, and (4) depths of .8
m are overrepresented on outer reefs.

FIG. 2. (a) Regression tree analysis of the abundance of the soft coral species Asterospicularia laurae rated on a 0–5
scale; only values 0–3 were observed. The explanatory variables were shelf position (inner, mid, and outer), site location
(back, flank, front, and channel), and depth (m). Each of the three splits (nonterminal nodes) is labeled with the variable and
its values that determine the split. For each of the four leaves (terminal nodes), the distribution of the observed values of
A. laurae is shown in a histogram. Each node is labeled with the mean rating and number of observations in the group (italic,
in parentheses). A. laurae is least abundant on inner- and mid-reefs (mean rating 5 0.038) and most abundant on front outer-
reefs at depths $3 m (1.49). The tree explained 49.2% of the total SS, and the vertical depth of each split is proportional to
the variation explained. (b) Classification tree on the presence–absence of A. laurae. Each leaf is labeled (classified) according
to whether A. laurae is predominantly present or absent, the percentage of observations in that class, and the number of
observations in the group (italic, in parentheses). The misclassification rate of the model was 9%, compared to 15% for the
null model (guessing with the majority, in this case the 85% of absences).

The proportion of total SS explained by the tree is
useful for summarizing regression trees, but, for clas-
sification trees, misclassification rates are used. For the
whole tree, 34 out of 373 cases were misclassified,
giving an error rate of 9.1%. This compares with 50%
for ‘‘blind guessing,’’ and 15% when we use the ‘‘go
with the majority rule,’’ in this case predict A. laurae
to be absent on all sites.

TREES: WHAT THEY CAN DO AND HOW THEY DO IT

Exploration, description, and prediction of data

It is useful to think of statistical analyses as explo-
ration and modeling of data, with the former often pre-
ceding the latter. Exploration comprises both graphical
and numerical techniques, and trees, which have both
of these characteristics, are an effective way to explore
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complex relationships in data. Modeling often has one
of two objectives: (1) description, in the sense that a
model represents the systematic structure of the data
as simply as possible, and (2) prediction, in that a mod-
el accurately predicts unobserved data. Trees can be
used for both description and prediction.

Modeling requires the selection of one or more likely
models from a range of possible alternatives, e.g., se-
lecting which variables to include in a linear regression
model. The methods available for model selection are
numerous (Ripley 1996, Anderson and Burnham 1998),
and depend on whether the objective is description or
prediction.

Descriptive models can be selected by the two fol-
lowing methods:

1) Iterative comparison of nested models using hy-
pothesis tests; e.g., forward, backward, and stepwise
regression. Though a widely used method, the use of
hypothesis tests for model selection has been increas-
ingly questioned (Berger and Sellke 1987, Draper
1995, Stewart-Oaten 1996, Johnson 1999). For ex-
ample, linear regression models selected by iterative
hypothesis tests consistently include too many explan-
atory variables (Draper 1995).

2) Selection of the model with lowest true error
(Breiman et al. 1984); also known as prediction error
(Efron and Tibshirani 1993, Ripley 1996). For least
squares regression, the prediction error of a model is
defined as the expected squared error for new predic-
tions, and for classification as the probability of mis-
classifying new observations. Obtaining realistic esti-
mates of prediction error can be difficult. For example,
the mean square error of least squares models (the re-
substitution estimate of prediction error) gives over-
optimistic estimates of error; an optimism that increas-
es with model complexity. To counter this problem, we
can either: (a) add a penalty for complexity; selection
criteria such as Akaike’s Information Criteria (AIC)
(Sakamoto et al. 1986) and Bayes Information Criteria
(BIC) (Schwarz 1978) adopt this approach; or (b) ob-
tain more accurate estimates of the prediction error;
cross-validation (Ripley 1996) and bootstrapping (Ef-
ron and Tibshirani 1993) are widely used for this ap-
proach.

Predictive models are selected on their accuracy of
predictions for new data. Although we can select a
single best model, predictive accuracy can be improved
by averaging weighted predictions over several models,
with the weights being the plausibility of the individual
models (Draper 1995, Ripley 1996). Cross-validation
(Breiman et al. 1984, Ripley 1996) is a widely used
technique for selecting predictive models.

Growing trees and splitting criteria

The homogeneity of nodes is defined by impurity, a
measure which takes the value zero for completely ho-
mogeneous nodes, and increases as homogeneity de-
creases. Thus maximizing the homogeneity of the

groups is equivalent to minimizing their impurity.
Many measures of impurity (splitting criteria) exist,
and enable us to analyze many types of responses.
There are five commonly used measures (Breiman et
al. 1984); three for classification trees and two for re-
gression trees.

For classification trees, impurity is defined in terms
the proportions, c, of responses in each category. The
three common criteria (indices) are:

1) The information (entropy) index takes the form
2S c ln(c), where S indicates summation over cate-
gories. This index is identical to the Shannon-Weiner
diversity index, and forms groups by minimizing the
within-group diversity.

2) The Gini index takes the form 1 2 S c2. At each
split, the Gini index tends to split off the largest cat-
egory into a separate group, whereas the information
index tends to form groups comprising more than one
category in the early splits.

3) The twoing index can be used for more than two
categories. It defines two ‘‘super categories’’ at each
split, for which the impurity is defined by the Gini
index. It can also be used for ordered categories.

For regression trees, the two common forms of im-
purity are:

1) Sums of squares about the group means. This is
equivalent to least squares linear models.

2) Sums of absolute deviations about the median.
This gives a robust tree (Breiman et al. 1984). However,
for ecological data dominated by zeros, this criterion
can be ineffective, especially when the explanatory var-
iables are categorical. In such cases all possible splits
may result in groups with zero medians, and no splits
will be formed.

Although the above measures are most commonly
used, others include: (1) rank statistics, which result in
invariance of the tree to any monotonic transformation
of the response variable (Segal 1988), and (2) survival
statistics for censored data (Segal 1988; T. Therneau,
unpublished manuscript).

Trees can also be formulated as statistical models,
akin to linear, generalized linear and generalized ad-
ditive models (Clark and Pregibon 1992). In this ap-
proach, splits are based on an explicit statistical model,
the deviance of which defines the dissimilarity mea-
sure. For classification trees, they use a multinomial
model, equivalent to the information index, with the
deviance defined by the multinomial log-likelihood.
For regression trees, Clark and Pregibon (1992) use the
Gaussian model, and the deviance for a node is simply
the sums of squares about the mean. Summing over all
leaves gives the overall deviance for the tree.

Pruning trees

A natural way of using a splitting criterion to grow
a tree is to continue splitting until the improvement
due to additional splits is less than a prespecified cutoff,
and then take this as the best tree. The foundational
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work of Breiman et al. (1984) points out two weak-
nesses of this approach. First, if the stopping rule is
based on too small an improvement, then an overlarge
tree will result. Second, if the criterion is too large,
then splits based on interactions between explanatory
variables will not be discovered unless at least one of
the associated main effects is large enough to generate
a split.

Breiman et al. (1984) introduce three basic ideas to
solve the problem of finding the best tree. The first idea
is tree pruning: rather than stop growth in progress,
they grow an over-large tree and then seek ways to cut
it back. This can be computationally infeasible, since
the number of sub-trees is usually very large. To over-
come this problem, their second idea is to find a se-
quence of nested trees of decreasing size, each of which
is the best of all trees of its size. For this they use the
resubstitution estimate of error, R(T), which can be ei-
ther the overall misclassification rate or the total re-
sidual SS, dependent on the type of tree. They show
that, for any number a ($0) there is a unique smallest
tree that minimizes R(T) 1 azT z, where zT z is tree size
(number of leaves). By allowing a to increase from 0
to large, we obtain the desired sequence of nested trees
of decreasing size, beginning with the initial overlarge
tree and ending with the root tree with no splits at all.
Since each tree in this sequence is the best of its size,
choosing the best tree is reduced to the task of choosing
the best size, a much simpler task than comparing all
possible subtrees. R(T) is not suitable for this choice
because it will always be minimized by the largest tree
(just as adding more explanatory variables reduces the
residual SS of a regression). Thus, to complete the pro-
cess, we require better estimates of error, and the third
idea of Breiman et al. (1984) is to obtain ‘‘honest’’
estimates of error by cross-validation, as described in
Selecting tree size by cross-validation. This can be
computationally demanding, but is now feasible since
we only have to consider one tree of each size, i.e., the
trees of the nested sequence.

Selecting tree size by cross-validation

We have noted that descriptive models can be based
on: (1) iterative comparisons between models, (2) mod-
el fit with a penalty for complexity, or (3) accurate
estimates of prediction error. Selection of trees by ei-
ther iterative comparisons or penalized complexity is
ineffective (Clark and Pregibon 1992, Venables and
Ripley 1999), and thus we require a method that ac-
curately estimates prediction error.

Breiman et al. (1984) use cross-validation to obtain
honest estimates of true (prediction) error for trees of
a given size. For the sequence of trees, these estimates
of error can be plotted against tree size, and the size
with the minimum error selected. A single tree selected
by cross-validation can be used for description and/or
prediction. It should be interpreted as the tree which

has the smallest estimated error and is the best esti-
mated predictive single tree.

Cross-validation can be implemented in two ways.
First, if enough data are available, we select a random
subset of the data, typically comprising one-half to two-
thirds of all data, and, using only this data, build the
sequence of nested trees. For each tree, predict the
response of the remaining data, and calculate the error
from the predictions and the observed values. The tree
with the smallest predicted error is then selected. One
drawback of this technique is that there are often in-
sufficient data to build good trees using only a subset
of the data. The second way is to use V-fold cross-
validation as follows: (1) divide the data into a number,
V, of mutually exclusive subsets (typically V 5 10) of
approximately equal size; (2) drop out each subset in
turn, build a tree using data from the remaining subsets,
and use it to predict the responses for the omitted sub-
set; (3) calculate the estimated error for each subset
(e.g., for a sums of squares regression tree, the error
is the sum of squared differences of the observations
and predictions), and sum over all subsets; (4) repeat
steps (2)–(3) for each size of tree; and (5) select the
tree with the smallest estimated error rate. The subsets
can be chosen randomly, but stratification into groups
according to the value of the response variable gives
smaller and more accurate estimates of the true error
rate (Breiman et al. 1984).

When we have subsampling in the data, e.g., when
we make repeated observations on the sampling units,
then subsamples within units are usually correlated. V-
fold cross-validation needs to be modified for such
data, otherwise: (1) predictions of error rates are over-
optimistic (Fig. 3), due to the fact that we would be
using observations within a sampling unit to predict
other values of the same unit; and (2) tree sizes tend
to be overestimated (Fig. 3). We can overcome this
problem by selecting only whole sampling units in our
subsets, and thus units are predicted from other units.
If the number of sampling units is large, each subset
will contain several complete units, but if the number
is #V, then each subset will comprise a single complete
unit. Bootstrap procedures (Efron and Tibshirani 1993)
have been modified in this way, but to our knowledge,
cross-validation procedures have not.

For the nested sequence of trees, the difference be-
tween resubstitution and cross-validated estimates of
error often increases with tree size (Fig. 3), with the
latter often rapidly dropping to a minimum followed
by a slow increase. If this plateau effect occurs, the
tree size corresponding to the minimum error is im-
precisely estimated.

Breiman et al. (1984) suggested the 1-SE rule where-
by the best tree is taken as the smallest tree such that
its estimated error rate is within one standard error of
the minimum. The standard error of the estimate (Brei-
man et al. 1984) can be calculated for each tree size
(Fig. 3). Use of the 1-SE rule can result in a much
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FIG. 3. Resubstitution (white circles) and cross-validation
relative error (gray circles, unstratified; black circles, strati-
fied by reef) for the regression tree of Asterospicularia laurae
(Fig. 2). The cross-validation relative error plots are for a
single 10-fold cross-validation and include 1-SE estimates for
each tree size. The resubstitution error decreases monotoni-
cally with tree size, as will always be the case, reaching a
minimum of 0.45 for the largest possible tree of size 24. Under
unstratified cross-validation, a tree of size five is selected by
the 1-SE rule, whereas for cross-validation stratified by reef,
a tree of size four is selected. At the bottom of the plot, the
bar chart shows the relative proportions of trees of each size
selected under the 1-SE rule (gray) and minimum (white) rules
from a series of 50 cross-validations. The modal tree (most
likely) under the 1-SE rule has four leaves, and under the
minimum rule a five-leaf tree is marginally more likely than
the four-leaf tree.

smaller tree than suggested by the minimum cross-val-
idated-error, but with minimal increase in the estimated
error rate (at most ,1 SE). Irrespective of whether the
minimum or 1 SE rule is used, inspection of the cross-
validated sequence is necessary to ensure that the se-
quence of trees has been grown large enough. For both
the minimum and 1-SE rule, the size of the selected
tree will vary under repeated cross-validation (Fig. 3),
and it is advisable to run several cross-validations in
order to assess the degree of variation in the sizes of
the best tree, and ensure the chosen tree is not atypical.

If a single tree is required for description, and the
data set is not overlarge, then either of the following
strategies could be used. Each is based on a series of
cross-validations, comprising perhaps 50 sets of 10-
fold cross-validations. For the first strategy: (1) select
the tree size from each cross-validation of the series
according to either the minimum or 1-SE rule; and (2)
from the distribution of selected tree sizes, select the
most frequently occurring (modal) size. For the second,
the estimated errors and their standard errors can be
averaged over the cross-validations. This gives a

smoother cross-validation curve from which the tree
size can be selected according to either rule. We prefer
the latter strategy, but it is difficult to implement for
the available software.

If the objective of the analysis is prediction, then
averaging over a collection of trees gives better per-
formance (Ripley 1996). This can be done using these
steps: (1) run a series of cross-validations, (2) select a
tree from each cross-validation according to the min-
imum rule, (3) for each tree predict for the new data,
and (4) average the predictions over the trees.

Transformations

For a numeric explanatory variable, x, only its rank
order determines a split, i.e., the groups are defined by
x . xs and x , xs, where xs maximizes their homoge-
neity. Trees are thus invariant to monotonic transfor-
mations of numeric explanatory variables. Hence, we
do not have to deal with the difficult issue of the form
of relationship between the response and numeric ex-
planatory variables (e.g., linear–linear, log–log, linear–
polynomial). However, for a strong linear (or smooth)
relationship, regression trees will not perform as well
as linear regression (or non- or semiparametric smooth-
ers). For some splitting criteria, e.g., those based on
ranks, trees are also invariant to monotonic transfor-
mations of the response variable (Breiman et al. 1984,
Segal 1988). For regression trees based on sums of
squares or sums of absolute deviations, residual plots
are useful to check for outliers, and to show how var-
iation of the response is related to mean values of the
groups. Nonconstant variation gives greater weight to
data with higher variation, and therefore it is often
desirable to transform the response variable.

Missing values and surrogate variables

Missing data are a common occurrence in ecological
studies, and for many types of models they can be
problematic (Little and Rubin 1987). Cases with miss-
ing responses, or with missing explanatory variables
are often deleted. This results in loss of information
and possible bias. Alternatively, missing data can be
replaced by some form of imputation, e.g., replacement
by the mean value, but this too can result in bias. Trees
handle missing data in a variety of ways. For regression
trees, cases with missing responses are deleted, but for
classification trees, the missing responses can be treat-
ed as a special category (Clark and Pregibon 1992),
thereby providing information on response bias. If an
explanatory variable used to form a split has missing
values, we can either stop cases with missing values
at the split, and give them the characteristic response
value of all cases that pass through that node; or send
them further down the tree, using an explanatory var-
iable with nonmissing values for these cases. We
choose the variable that best agrees with the original
splitting variable, and quantify its performance by the
percentage agreement in the allocation of cases to the
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FIG. 4. Regression trees relating the distributions of the four physical variables (sediment, visibility, waves, and slope) to
the four spatial variables (shelf position, location, reef type, and depth). The figures are labeled as described in Fig. 2. The
regression trees for sediment and waves were similar, explaining 56.4% and 34.1% of the total SS, respectively. Visibility was
the best-explained physical variable, followed by sediment, and finally, slope and waves. For all four physical variables, the
strongest effects were due to cross-shelf position, followed by depth. The effects of location and reef type were relatively small.

two groups. The use of such variables, known as sur-
rogate variables (Breiman et al. 1984), minimizes the
information loss, which can render the case deletion
approach unworkable when a large proportion of data
are missing.

Alternative splits

The use of alternative splits can be used both as an
exploratory technique, and also to generate alternative

trees. For each split, we can compare the strength of
the split due to the selected variable with the best splits
of each of the remaining explanatory variables. A
strongly competing alternative variable can be substi-
tuted for the original variable, and this can sometimes
simplify a tree by reducing the number of explanatory
variables, or, as we show later, lead to a better tree.
Often, though not always, the best surrogate variable
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FIG. 5. Regression trees explaining the abundances of the soft coral taxa Efflatounaria, Sinularia spp., and Sinularia
flexibilis in terms of the four spatial variables (shelf position, location, reef type, and depth) and four physical variables
(sediment, visibility, waves, and slope). At the bottom of the cross-validation plots (a, d, g), the bar charts show the relative
proportions of trees of each size selected under the 1-SE rule (gray) and minimum rules (white) from a series of 50 cross-
validations. For Efflatounaria (a), a five-leaf tree is most likely by either the 1-SE or the minimum rule. For Sinularia spp.
(d), five to eight-leaf trees have support, and for S. flexibilis (g), five- to nine-leaf trees have support. Cross-validation plots
(a, d, g), representative of the modal choice for each taxa according to the 1-SE rule, are also shown. For all three taxa, a
five-leaf tree was selected (c, f, i). The shaded ellipses enclose nodes pruned from the full trees (b, e, h), each of which
accounted for .99% of the total SS.
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FIG. 5. Continued. For Efflatounaria the pruned nodes represent 33.3% of the total SS and show little structure, as can be
seen from the vertical lengths that are proportional to the SS explained by each split. For Sinularia spp. and for S. flexibilis,
the pruned nodes represent a greater loss of SS explained (42.0% and 45.7% respectively). Also some evidence of further
useful splits is evident in the full trees, for the left and right branches, respectively. The habitats with highest levels of
Efflatounaria were deep sites ($3 m) of moderate slope (, 358) on outer reefs (mean rating 5 2.8). For Sinularia spp.,
moderate visibility (6.5–14 m) sites at moderate depth (,8 m) with at least some sediment were favored, and for S. flexibilis,
channel sites had the highest levels of abundance.

will also give the best alternative split. Inspection of
alternative splits and surrogate variables can lead to a
more complete understanding of dependencies and re-
lationships within the data.

STATISTICAL ANALYSES

All data analyses presented in this paper used S-Plus
statistical software (Statistical Sciences, 1999). The li-
brary of tree routines (RPART: Recursive PARTition-
ing) developed by T. Therneau (unpublished manu-
script) was used for all classification and regression
tree analyses. For all tree analyses, models were se-
lected by cross-validation. For each tree, we ran a series
of 50 10-fold cross-validations and chose the most fre-
quently occurring tree size using the 1-SE rule (see
Selecting tree size by cross-validation above). Typical
cross-validations are shown in the results, each se-
lecting the modal-size tree.

For all tree analyses, reefs were the sampling units,
and hence reef identity was not used in the same way
as other spatial and environmental variables. Reefs
were not included in the models as explanatory vari-
ables, but were used to form the subsets for the cross-
validations (see Selecting tree size by cross-validation
above).

ANALYSIS OF THE SOFT CORAL DATA USING TREES

Exploring relationships between physical
and spatial variables

Classification and regression trees were used to an-
alyze the relationships between each of the four phys-
ical variables and the four spatial variables. The re-
sponses of sediment and wave action were analyzed
using both types of tree. For both responses, the clas-
sification and regression trees were highly similar, sug-
gesting the categories were behaving as numerical var-
iables. Only the regression trees are presented in the
results (Fig. 4a and c). The data for visibility and slopes
were fourth-root and square-root transformed, respec-
tively, to stabilize the variance at the leaves. The means
of these variables shown on the trees (Fig. 4b and d)
were back transformed to assist interpretation.

Visibility and sediment levels were best explained
(R2 5 66.7 and 56.4% respectively) by the spatial var-
iables, whereas wave action and slope were less well
explained (R2 5 34.1 and 39.3%) (Fig. 4). This is pos-
sibly due to high temporal variation of waves and high
local variation in slopes. Cross-shelf position, followed
by depth, were consistently the strongest explanatory
variables of the physical variables (Fig. 4).
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TABLE 3. Comparison of regression tree analyses of Effla-
tounaria, Sinularia spp., and S. flexibilis using either phys-
ical and spatial predictors (P 1 S), only physical predictors
(P), or only spatial predictors (S).

Taxa Predictors
Size of

tree Error (%)
Predicted
error (%)

Efflatounaria

Sinularia spp.

P 1 S
S
P
P 1 S
S
P

5
4
6
5
5
5

32
37
40
46
54
48

38
44
46
55
61
58

S. flexibilis P 1 S
S
P

5
5
6

45
49
44

61
63
61

Notes: The trees were selected using the modal tree from
50 cross validations and the 1-SE rule. The error is the per-
centage of unexplained variance, and the predicted error is
estimated error rate of predictions standardized by the total
variance. The use of only physical or only spatial predictors
compared to joint use shows little difference for Sinularia
spp. and S. flexibilis, and a moderate effect for Efflatounaria.

Predicting abundances and habitat characteristics
of taxa

We used regression trees to relate abundances of Ef-
flatounaria, Sinularia spp., and S. flexibilis to the spa-
tial and physical environmental variables. For each of
these taxa, cross-validation using the 1-SE rule selected
a five-leaf tree (Fig. 5a, d, and g). The choice for Ef-
flatounaria was clear from both the cross-validation
plot and the full tree (Fig. 5a and b), with the selected
tree explaining 67.7% of the total SS. For Sinularia
spp. and Sinularia flexibilis the evidence was less clear-
cut, with trees from four to ten leaves receiving support
(Fig. 5d and e). Five-leaf trees were selected for both
taxa, which explained 58.2% of the total SS for Sinu-
laria spp., and 55.4% for Sinularia flexibilis. The fact
that a particular size of tree was not favored over all
others for Sinularia spp. is not a weakness of the cross-
validation procedure, but simply reflects the fact that
several models were almost equally plausible. This sit-
uation also occurs for other types of statistical models,
such as linear models, and neatly illustrates that blind
adherence to any single model selection procedure, be
it 1-SE for trees, or P , 0.05 for linear models, is not
the most informative strategy. Both the cross-validation
and the full tree plots are useful in assessing the cer-
tainty with which a particular model is chosen.

High abundances of all three taxa were restricted to
a narrow set of environmental conditions. Efflatounaria
occurred on only one of 189 inner-reef sites (Fig. 5c)
and was relatively rare on mid-shelf sites (mean rating:
0.38, n 5 74), compared with outer-shelf sites (1.86,
n 5 110). Abundance was highest (2.8, n 5 41) on
outer-shelf sites of $3 m water depth on terraces with
slopes , 358. Sinularia spp. was most abundant (mean
rating 5 2.7, n 5 72) on sites of intermediate visibility
(6.5–14 m), with depths ,8 m, and at least some sed-
iment (Fig. 5f). These are largely inner-shelf sites (Fig.
4b). Sinularia flexibilis (Fig. 5i) was most abundant in
channels (mean rating 5 3.04, n 5 49). These are inner-
shelf sites with gentle slopes (Fig. 4d) and low wave
action (Fig. 4c). It also had high abundances (mean
rating 2.4, n 5 37) at intermediate depths (1–8 m) on
fringing reefs where visibility was $5.5 m.

Surrogates and alternative splits were examined to
better understand the relative effects of physical and
spatial variables. Visibility was a strong surrogate and
alternative split for shelf position and vice versa, in
agreement with Fig. 4b. For example, dropping shelf
from the Efflatounaria model resulted in a five-leaf tree
with the same splits (Fig. 5c), but with visibility re-
placing shelf, and explained only marginally less of the
total SS (65.4 vs. 67.7%). The surrogate and alternative
splits relating other physical and spatial variables were
weaker and less consistent.

Inspection of alternative splits led to a stronger tree
for Sinularia spp.. The initial tree used reef type for
the first split, however, visibility was a strong alter-

native split, and when reef type was dropped from the
model, the resulting tree better explained the data (58.0
vs. 53.5%) for a same-size tree.

The analyses above clearly identified habitats of high
abundance. They also showed how examination of sur-
rogates and alternative splits can lead to a more com-
plete understanding of competing explanatory vari-
ables and better (or simpler) models when explanatory
variables with strong surrogates are dropped from the
models.

Physical or spatial determinants of abundance?

In order to explore the degree to which the groups
of physical and spatial variables separately explained
abundance, the three taxa were also analyzed using
regression trees based on each group of variables sep-
arately. The comparisons (Table 3) show that trees of
size five were selected for most analyses, differing at
most by one from this size. Spatial variables both ex-
plained and predicted Efflatounaria marginally better
than the physical variables, whereas for Sinularia spp.
and S. flexibilis the reverse was true. The degree to
which either of the physical or the spatial data ex-
plained the abundances of all three taxa was on average
only 4% less than the combined physical-spatial data.

The explanatory strength of the physical variables
could be improved by additional physical data (e.g.,
light levels and currents), and by long-term measure-
ments (e.g., waves were poorly estimated due to their
high temporal variability). None were available due to
the large-scale nature of the study. However, the finding
of similar explanatory strength by the two groups of
spatial and physical variables does suggest that the ob-
served physical variables are possibly major determi-
nants of soft coral abundances and that, in the absence
of observations on the physical data, the more easily
available spatial variables could be used as surrogates.
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TABLE 4. Analysis of variance for the abundances of the soft coral species A. laurae.

Source df SS MS F P

Shelf
Reef(Shelf)
Location
Depth
Shelf 3 Location

2
28

3
4
4

37.8
20.8

9.15
0.82

11.5

18.9
0.74
3.05
0.20
2.87

22.8
4.25

17.5
1.17

16.5

,0.001
,0.001
,0.001

0.323
,0.001

Shelf 3 Depth
Location 3 Depth
Shelf 3 Location 3 Depth
Residuals

8
12
13

298

1.98
2.37
5.86

52.0

0.25
0.20
0.45
0.17

1.42
1.13
2.58

0.189
0.333
0.002

Notes: The fixed effects are shelf position, location of site, and depth; and reefs were treated
as random effects. The sums of squares are sequential. The total treatment degrees of freedom
are 46 (i.e., the number of non-empty cells minus 1).

We have noted that only visibility and shelf position
were strong surrogates for each other, and that for many
splits of the three physical-spatial trees, there were no
strong surrogates or alternative splits. Coupled with the
strong explanations given by the physical and spatial
models separately, this suggests that, for other than
visibility and shelf position, the splits determined by
spatial factors are equivalent to complex combinations
of physical factors, and vice versa.

COMPARISON OF TREES AND LINEAR MODELS

Example one: mixed effects analyses of variance

In this example we use A. laurae to show how re-
gression trees can be used to interpret complex analysis
of variance tables. Analysis of variance is widely used
by ecologists, and, in the context of a well-designed
balanced study, is an effective method for determining
which factors affect a numeric response. However, as
the number of explanatory variables and the complexity
of the data increase (e.g., high-order interactions, lack
of balance, empty cells), then analysis of variance and
linear models become less effective. The inclusion of
random effects also greatly adds to the complexity of
the analysis, especially for unbalanced designs.

In the introductory example, we used a regression
tree to explain the abundance of A. laurae (Fig. 2a) in
terms of shelf position (inner, mid, outer), location
(front, back, channel, flank), depth (five levels) and
reefs (32 levels). The data were highly unbalanced
since channel locations only occur on inner reefs, flank
locations were underrepresented and inner reefs were
overrepresented (Table 2). Thus of the 60 possible cells
generated by the three fixed factors, only 47 occurred
in the data. In the mixed effects analysis of variance,
shelf, location, and depth were fixed effects, and reefs
nested in shelf were random effects and used as the
error term for shelf position. Sequential sums of
squares were used (Table 4). The analysis shows strong
effects of shelf, location, and shelf by location; a mod-
erate interaction between shelf, location, and depth; and
strong variation between reefs (Table 4).

Interpretation of the analysis is difficult due to the
significant high-order interaction with many levels and

empty cells. Tabulations of means broken down by
shelf position, location, and depth, showed the strong
shelf and location effects, but failed to clearly identify
the three-way interaction. In comparison, the regres-
sion tree analysis led to a simple interpretation (Fig.
2a). The four-leaf tree explained 49.2% of the total SS

compared to 55.4% explained by the full tree, or equiv-
alently, the analysis of variance with reef effects omit-
ted. The three splits were (1) inner- and mid-shelf reefs
vs. outer-shelf reefs; (2) within outer-shelf reefs, flanks
and back vs. front (there are no channel sites on outer-
shelf reefs); and (3) within front locations on outer-
shelf reefs, shallow (,3 m) vs. moderate to deep ($3
m). Only the sites of split (3) had moderate or high
abundances, with the 37 deep sites having highest
abundances. The full tree (omitted) showed two strong
splits, one moderate split, and an additional 20 minor
splits. Each split represents a one-degree-of-freedom
contrast among the 47 cell means. The 24 leaves of the
full tree indicate there were only 24 unique cell means.

We assessed the information missed by the regres-
sion tree in two ways. First, we analyzed the residuals
from the tree using the same analysis of variance model
as for the full data set. Other than reef effects, no terms
were significant (P . 0.05). Second, we note the var-
iation not explained by the four-leaf tree, but explained
by the full tree (or analysis of variance without reef
effects) was nonsignificant (F20,326 5 1.07, P 5 0.620).
Thus, we conclude the three one-degree-of-freedom
contrasts of the tree adequately explained all fixed ef-
fects of the analysis of variance.

By comparison with the analysis of variance, the
regression tree was far simpler. The splits of the tree
represent an optimum set of one-degree-of-freedom
contrasts, as defined by the splitting process. The ad-
vantages of the tree analysis, in its simplicity and ease
of interpretation are clear; advantages that increase as
the number of explanatory variables and complexity
increase.

Example two: linear regression

In this example, we compare the effectiveness of
regression trees and linear regression models in ex-
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TABLE 5. Linear regression analyses of Efflatounaria.

Source

Model 1

df SS F P

Model 2

df SS F P

Shelf
Depth
Slope
Shelf 3 Depth
Shelf 3 Slope
Depth 3 Slope
Shelf 3 Depth 3 Slope
Residuals

2
4
1
8
2
4
7

343

245.9
22.9

1.8
38.1

4.3
10.8
15.8

127.2

331
15.4

4.9
12.8

5.7
7.3
6.1

,0.001
,0.001

0.028
,0.001

0.004
,0.001
,0.001

2
1
1
2
2
1
2

361

245.9
20.3

4.0
17.6

1.9
9.0
3.6

141.9

312.7
50.9
10.2
44.7

4.8
23.1

9.3

,0.001
,0.001

0.001
,0.001

0.009
,0.001
,0.001

Notes: For Model 1, shelf and depth are three- and five-level factors, respectively, and slope
is numeric. For Model 2, shelf, depth, and slope are three-, two-, and two-level factors, re-
spectively. Models were built by forward inclusion based on Mallow’s Cp, and taking into
account interaction hierarchies. Sequential sums of squares are displayed to assist comparison
with the corresponding regression trees.

TABLE 6. Mean ratings (N; 1 SE) of Efflatounaria abundance from Model 2 (see Table 5).

Position

Slope ,35

Depth ,3 m Depth $3 m

Slope $35

Depth ,3 m Depth $3 m

Inner-shelf
Mid-shelf
Outer-shelf

0 (73; 0)
0.04 (23; 0.04)
0.52 (21; 0.16)

0.01 (103; 0.01)
0.59 (39; 0.13)
2.78 (41; 0.20)

0 (4; 0)
0 (2; 0)
1.38 (8; 0.38)

0 (9; 0)
0.40 (10; 0.27)
1.73 (40; 0.12)

plaining the abundances of Efflatounaria, Sinularia
spp., and S. flexibilis in terms of the physical and spatial
variables. Given the number and type of explanatory
variables in these data, which are not atypical, building
linear models is difficult. We needed to include high-
order interactions in our models, and account for the
hierarchy of interactions. Models were constructed by
forward inclusion, using P , 0.01 to be conservative.
An interaction was considered for inclusion only when
all lower order terms contained by it had been included
in the model. Forward inclusion based on Mallow’s Cp
(Venables and Ripley 1999) was also used (results not
shown) and gave the same final model for Efflatoun-
aria, but slightly more complex models for Sinularia
spp. and S. flexibilis. The effects of reef, which should
be treated as random, were not included due to the
complexity of determining appropriate error terms.

For Efflatounaria the final model (Model 1) com-
prised two factors, cross-shelf position and depth,
crossed with the numeric variable reef slope, which
resulted in 15 intercept and 14 slope parameters (one
slope parameter was not estimable because one cell had
constant reef slopes). Examination of parameter esti-
mates failed to reveal patterns. One solution to the
problem of interpretation was to group reef slope into
two categories, reduce the number of categories for
depth, and then cross tabulate the mean abundance by
these reduced factors (Model 2 of Table 5, Table 6).
The regression tree (Fig. 5c) was used to choose the
split points: $358 for slope and $3 m for depth. This
reduction was effective, and showed a similar pattern
to the regression tree with high abundance in medium
to deep sites ($3 m) in outer reefs, particularly on flat

sites (,358 slope). Comparing the reduced model
(Model 2) against the full model (Model 1), showed
that the simplification resulted in the loss of significant
information (F17,344 5 2.23, P 5 0.003, Table 5). Model
2, with 11 degrees of freedom (df), explained 68.2%
of the total SS, almost identical to 67.7% for the tree
with only five leaves (equivalent to 4 df). Fitting an
eight-leaf tree, for which there is support under cross-
validation (Fig. 5a), accounted for the depth effect
within mid-shelf reefs (Table 6), and slope effects with-
in mid-shelf reefs in the deep and outer-shelf reefs in
the shallow (not shown). This tree accounted for 71.1%
of the total SS compared to 72.6% for the full model,
the difference being nonsignificant (F21,344 5 0.950, P
5 0.473).

For Sinularia spp. and S. flexibilis the final linear
models were extremely complex, and due to that com-
plexity, uninterpretable. The model for Sinularia spp.
involved six of the eight environmental variables, and
five first-order interactions, and for S. flexibilis five of
the eight environmental variables, and five first-order
and one second-order interaction.

These analyses highlight some difficulties in using
iterative selection (forward, backward, and stepwise
methods) of linear models for complex data. The re-
sulting models will often include many interactions be-
tween quantitative and categorical variables, which
make interpretation difficult. Regression trees can help
in the selection of a simpler regression model as was
case with Efflatounaria. Given the problem of liberal
inclusion of variables, when using iterative selection
based on hypothesis tests (Draper 1995), and the dem-
onstrated performance of regression trees, we suggest



November 2000 3191CLASSIFICATION AND REGRESSION TREES

the latter will often identify descriptive models for
complex ecological data more effectively than linear
regression models.

DISCUSSION AND CONCLUSIONS

We have outlined the fundamentals of classification
and regression trees, and have shown how they can
model complex ecological data. Trees were used to
determine the environmental characteristics associated
with high abundances of three taxa. The analyses in-
dicated that, for these taxa, the ability to establish dense
aggregations and monopolize space was restricted to
clearly defined types of reef habitat.

Efflatounaria occurred mainly in deep clear water
sites on the outer-shelf. These sites are also low in
sediment, and have the lowest wave action of the outer-
shelf. Sinularia spp. occupies mainly shallow inner-
shelf habitats of relatively high visibility, low wave
action, and high sediment levels. Sinularia flexibilis
occurs on channel sites that have the highest visibility
of the inner-shelf, are shallow, and have low wave ac-
tion and moderate sediment levels. These findings are
consistent with previous studies that indicate that nu-
trition plays an important role in determining abun-
dances of soft corals.

The photosynthetic efficiency in zooxanthellate soft
corals is generally low (Fabricius and Klumpp 1995).
This has two important consequences for the distri-
bution of soft coral taxa. Firstly, light levels are only
high enough to saturate photosynthesis either in clear
water, or at shallow depth in turbid water. Secondly,
additional heterotrophic food intake is essential for
supplementing the phototrophic carbon supply, and for
providing nutrients. The two main food sources for soft
corals are suspended particulate matter and dissolved
nutrients. Members of the families Alcyoniidae (which
includes Sinularia) and Nephtheidae are efficient sus-
pension feeders that feed on small suspended partic-
ulate matter (Fabricius et al. 1995a, b, Fabricius and
Domisse 2000). The highest concentrations of sus-
pended particulate matter are found on the inner-shelf,
due to import by rivers and resuspension from the shal-
low sea floor (Revelante and Gilmartin 1982). In con-
trast, members of the family Xeniidae (which includes
Efflatounaria) efficiently take in dissolved nutrients
(Schlichter 1982), concentrations of which can be high
on the outer-shelf due to periodic upwelling of nutrient-
enriched deep water bodies (Wolanski 1994). The hab-
itats of Sinularia are thus rich in suspended particulate
matter for suspension feeding, but also moderately
good for photosynthesis due to their shallow depth.
Conversely, habitats of Efflatounaria are rich in dis-
solved nutrients, good for photosynthesis due to the
clear water of the outer-shelf, and protected from ex-
treme wave action of the outer-shelf by being deep
sites.

Surveys can, of course, only indicate relationships,
not causality, and follow-up experiments have been

established to determine reasons for the observed dis-
tributions of these three taxa, and their ability to es-
tablish dense aggregations.

Classification and regression trees are powerful tools
for analysis of complex ecological data. Their features
include: (1) the ability to use different types of response
variables; (2) the capacity for interactive exploration,
description, and prediction; (3) invariance to transfor-
mations of explanatory variables; (4) easy graphical
interpretation of complex results involving interac-
tions; (5) model selection by cross-validation; and (6)
procedures for handling missing values. In summary,
classification and regression trees are a valuable ad-
dition to the statistical toolbox of every ecologist and
environmental scientist.

SOFTWARE

Classification and regression trees are now available
in some statistical packages. Three sources, which we
have used, are listed here.

1. CART (1998) is specialized classification and re-
gression tree software, and includes many advanced
features of tree construction. It is powerful and easy
to use.

2. S-Plus (Statistical Sciences 1999) is a high-level
statistical programming language, which includes
many tree routines. Though more difficult to use than
CART, it has greater flexibility and enables users to
develop their own applications.

3. SYSTAT (SPSS Inc. 1997) includes classification
and regression tree routines and, though they are quite
limited, they can serve as a useful introduction to the
topic.

Other tree software is available but has not been
examined by the authors.
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