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MODELING COUNT DATA OF RARE SPECIES: 
SOME STATISTICAL ISSUES 

Ross B. CUNNINGHAM1 AND DAVID B. LINDENMAYER 

Centre for Resource and Environmental Studies, The Australian National University, Canberra, A.C.T., 0200, Australia 

Abstract. Most species abundance data show that a small number of species contribute 
the vast majority of individuals to a community. Thus, most taxa in a community are 
uncommon or rare. Yet such species will frequently be of ecological, conservation, or 
management interest. Data for uncommon or rare species will be presence/absence data or 
counts of abundance that contain a greater number of zero observations than would be 
predicted using standard, unimodal statistical distributions. Such data are generally referred 
to as zero-inflated data and require specialized methods for statistical analysis. Statistical 
approaches to modeling zero-inflated data include nonstandard mixture models; two-part, 
conditional models; and birth process models. In this paper, we briefly summarize two of 
these methods and illustrate the two-part, conditional approach to the problem of modeling 
count data with extra zeros. An advantage of this approach includes separate fits and separate 
interpretations of both components of count data; that is to say, the presence/absence 
component and the abundance component (given presence) can be analyzed separately. 
This can be valuable not only for simplicity, but also such a two-step method may assist 
ecological understanding in cases where the basis for species presence might be separated 
from the underlying reasons affecting the population size of that species at those sites where 
it is present. 

We present two case studies of the application of the two-part conditional model for 
modeling count data with extra zeros. One deals with modeling relationships between counts 
of the rare and endangered arboreal marsupial, Leadbeater's possum (Gymnobelideus lead- 
beateri) and habitat variables in the wet eucalypt forests of southeastern Australia. The 
other is an analysis of data obtained from a monitoring study of seabird nesting from the 
Coral Sea off northeastern Australia. Finally, we briefly discuss some inferential and prac- 
tical issues in developing designs and models for presence/absence data (which is the first 
component in the two-part conditional approach) when observed occurrences are low (e.g., 
<5%). 

Key words: count data; habitat analysis; Leadbeater's possum; monitoring; over dispersion; 
rare species; sea birds; statistical modeling; zero-inflated data. 

INTRODUCTION 

Species occurrence can be broadly described by three 
key qualitative factors: abundance of a species within 
a community (common or rare), habitat specificity 
(common or specialized), and geographic range (wide- 
spread or restricted). The full factorial expansion of 
these factors gives eight combinations (Table 1). Seven 
of these describe the various types of rarity as defined 
by Rabinowitz et al. (1986). Note that species in cell 
1 (the top row) are widespread and common and do 
not qualify as rare species. 

Many of the forms of rarity in Table 1 indicate that 
in most cases, a "rare species" will typically not be 

numerically abundant in the majority of communities 
in which it is a member. This proposition has some 

congruence with the ideas of Preston (1962) and Mac- 
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Arthur and Wilson (1967) both of whom show that 
within almost all ecological communities, a few species 
are common and the vast majority are uncommon or 
rare. This phenomenon has been known in ecology for 
a long time (see Williams 1944, reviewed by Gaston 
1994). Yet, rare and uncommon species will often be 
those of substantial management and conservation in- 
terest (Meffe and Carroll 1997, Fagan et al. 2002, 
Hartley and Kunin 2003), in part because they may be 

among the most extinction-prone taxa. in an assem- 

blage. 
Frequency data arising from studies of the abundance 

of rare phenomena will often have special nonstandard 
features. For example, a common characteristic of 
count data of rare species is that there are many more 
zeros than would be expected on the basis of the non- 
zero data (see Fig. 1 for an example). Indeed, depend- 
ing on the scale and type of a given field study, this 
could be true of all classifications in Table 1 except 
those in cell 1 (i.e., common and widespread taxa that 
would not be considered rare). Data with many zeros 
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TABLE 1. Table of species distributions and patterns of abundance classified by abundance, habitat specificity, and geographic 
range (modified from concepts outlined in Cody [1986], Rabinowitz et al. [1986], and New [2000]). 

Abundance of 
species within Habitat Geographic 
a community specificity range Description 

Common common widespread widespread, occurs in a wide range of habitats 
and is abundant in those habitats (and there- 
fore cannot be considered rare) 

Common common restricted/localized highly localized distribution but occurs across 
a range of habitats and is abundant in places 
where it occurs 

Common rare/specialized widespread widespread, but occurs in few habitats, and is 
common in places where it occurs 

Common rare/specialized restricted/localized highly localized distribution and occurs in few 
habitats, but is common in places where it 
occurs 

Rare common widespread widespread and occurs across a range of habi- 
tats but is scarce in places where it occurs 

Rare common restricted/localized highly localized distribution, occurs across a 
range of habitats but is scarce in places 
where it occurs 

Rare rare/specialized widespread widespread, but occurs in few habitats, and is 
scarce in places where it occurs 

Rare rare/specialized restricted/localized highly localized distribution, occurs in few 
habitats, and is scarce in places where it oc- 
curs 

pose statistical challenges because key distributional 
assumptions (e.g., normality, homoscedasticity, and 
others) are not fulfilled for standard statistical analyses. 

Zero counts can arise in ecological data for two rea- 
sons; either they are inevitable, (known as structural 
or necessary zeros), which arise when presence is not 
tenable (an example might be the occurrence of the 
Lion [Panthera leo] in Australia), or they are random 
or accidental zeros, which arise due to sampling (e.g., 
see Green and Young 1993), where conditions are po- 
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FIG. 1. Frequency graph of the abundance of Leadbeater's 
possum from 151 field survey sites, each measuring 3 ha in 
size (see Lindenmayer et al. [1991] for further details). 

tentially suitable but absence is observed. There are 

many possible reasons why absence may be observed 

ranging from non-detection when present, to absent due 
to several unidentifiable factors, even though all iden- 
tifiable factors would suggest presence. A simple ex- 
ample might be that of a target species being removed 

by a predator (Elton 1927, Kavanagh 1988). In most 

applications, there is usually insufficient knowledge to 

distinguish the two types of zeros. 
Statistical modeling provides a powerful framework 

for modeling presence and/or abundance in terms of a 
set of possible set of explanators or covariates (Mor- 
rison et al. 1992, Welsh et al. 1996, Burgman and Lin- 

denmayer 1998). Such models are commonly used to 

identify important environmental variables that may 
explain patterns of distribution and abundance, to pro- 
vide a concise description of the data, to allow the study 
of individual cases, and provide a means for construct- 

ing valid prediction intervals for new cases (Guisan 
and Zimmerman 2000). In recent years, there has been 
considerable activity by statistical scientists and others 
to develop methodologies for modeling count data with 

many zeros (Lambert 1992, Ridout and Demetrio 1992, 
Heilbron 1994, Welsh et al. 1996, Faddy 1998; M. S. 
Ridout, C. G. B. Demetrio, and J. Hinde, unpublished 
manuscript). These methods are not known or only 
poorly known by the majority of ecologists. Given this, 
in this paper we: 

1) Briefly outline some of the current approaches to 

modeling count data with extra zeros. A more detailed 
review of that approach is given by Ridout et al. (M. 
S. Ridout, C. G. B. Demetrio, and J. Hinde, unpublished 
manuscript). 

u I I I I I I I i 
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2) Provide two illustrations of the use of one of these 
methods-the two-part approach: 

a) a statistical model for count data of Leadbea- 
ter's possum (Gymnobelideus leadbeateri), a species 
with restricted distribution, which has limited habitat 

specificity, but can be relatively common where it 
does occur. 

b) an analysis of data arising from a long-term 
monitoring program of seabird populations (partic- 
ularly Frigatebirds [Fregata minor and F. ariel] and 
the Red-footed Booby [Sula sula]) in the Coral Sea 
off north-eastern Australia. 
3) Discuss some statistical estimation and inference 

issues that arise when studying rare species and outline 
some of the practical problems when attempting to 
model data which exhibit a very low frequency of oc- 
currence. 

BRIEF OUTLINE OF APPROACHES FOR MODELING 
COUNT DATA WITH EXTRA ZEROS 

In the section below, we consider several approaches 
to the relatively widespread problem of modeling data 
characterized by extra zeros and where extra-Poisson 
variation may be present. The more accessible ap- 
proaches are: (1) use standard unimodal distributions 
for discrete data with extra dispersion; (2) use non- 
standard mixture models to account for the extra zeros; 
and (3) employ two-part models. Another somewhat 
different approach, not presented here, has been de- 
veloped and promoted by Faddy (1997), uses ideas as- 
sociated with birth process models. 

Standard unimodal distributions for discrete data 
with extra dispersion 

The baseline model for count data is the Poisson 
model. Allowing for extra-dispersion (i.e., variance > 

mean) in a standard Poisson model or fitting a negative 
binomial model may be a simple way of dealing with 
data with moderate numbers of extra zeros. These ap- 
proaches are widely known and the Poisson regression 
model is a special case of the generalized linear model 

(McCullagh and Nelder 1989). 
For illustrative purposes, let us assume we are deal- 

ing with counts of a given animal for a number of sites. 
Then from the baseline Poisson model, the predicted 
number of sites with no animals for a total of n sites 
is ne-x(), where X(z) is the Poisson mean for the set of 
covariates z. However, the fit is usually poor because, 
as is usual in studies of rare species, there are typically 
many more observations with no animals than would 
be expected from this model. 

The negative binomial distribution can be derived as 
a standard mixture of Poisson distributions. However 
as it only has only has one mode, as does the Poisson, 
it does not deal with the extra-zero problem even 
though it allows for extra dispersion. Other distribu- 
tions arising as a mixture of Poisson distributions, such 
as the Neyman Type A (see Dobbie and Welsh 2001a, 

b) can have more than one mode, including a mode at 
zero, provide a more elegant solution to the problem. 

Nonstandard mixture models to accountfor the 
extra zeros 

Another approach to the problem is to model the 

response variable as a mixture of a Bernoulli distri- 
bution and a Poisson or negative binomial distribution. 
For the Poisson case, this mixture model, with covar- 
iates, is defined as follows: 

Given a response vector of counts y, i = 1, ... n 
are independent and 

Yi = 0 with probability 1 - a (x) 

Y, - Poisson [X(z)] with probability ir(x) 

so that 

P(Y = Ox, z) = 1 - rr(x) + Tr(x)e-X(z) 

P (x)e- (z) (z)r 
P(Y = rlx, z) = 

r! 
r= 1, 2, .... 

Here 7r(x) is the probability that the number of an- 
imals on a site has a Poisson distribution and, given 
that the number of animals on a site has a Poisson 
distribution, X(z) is the mean number of animals on the 
site. Both aT and X may depend on the same, or possibly 
a different, set of covariates x and z, respectively. This 
has become known as the zero-inflated (ZIP) Poisson 
model (Lambert 1992, Welsh et al. 1996). The simplest 
form of the model occurs if the covariates x and z 
coincide. Modification of the standard ZIP by replacing 
the Poisson distribution with a negative binomial dis- 
tribution is relatively straightforward and is discussed 

by Lambert (1992) and Welsh et al. (1996). 
ZIPs may provide insight into processes or mecha- 

nisms that may have generated the zero data i.e., dis- 
tinguish between structural and random zeros. How- 
ever, it will usually be unknown as to whether they 
distinguish the two types correctly. 

Two-part, conditional models 

The previous models are based on single distribu- 
tions, a mixture of distributions or, in the case of ZIPS, 
an extreme form of mixture. Parameters of the resulting 
distributions will usually not be independent of each 
other and so interpretation will be difficult. In the most 
interesting case, that is regression modeling, parame- 
ters of the distribution will typically depend on co- 
variates. This makes interpretation even more compli- 
cated. 

Here, we consider an alternative to the mixture of 
distributions idea. Consider a response that has two 
states: one in which no animals occur and another in 
which animals occur with varying levels of abundance. 
If we are only concerned about modeling state 1 (that 
is, whether any animals occur at a site), then linear 
logistic modeling is commonly applied. Given that an- 
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imals are observed, the number of animals recorded 
can be modeled by a truncated discrete distribution 
such as the Poisson or negative binomial distribution 

(Grogger and Carson 1991). We refer to the complete 
model as the two-part, conditional model. In this case, 
the components are orthogonal and so the model sep- 
arates processes that determine whether or not an an- 
imal is present from the processes determining the 
number of animals, given they are present. In the Pois- 
son case, this is defined as follows: 

Suppose the counts y,, i = 1, ..., n are independent 
and 

y,= 0 with probability 1 - p(x) 

y, - truncated Poisson [X(z)] 

with probability p (x) 
so that 

P(Y = Ox)= 1 - p(x) 

P(Y = rx, z) =p(x)e 
r![1 - e-X(:] 

r = 1,2,.... 

Here p(x) is the probability of observing at least one 
animal on a site and, given that there is at least one 
animal, X(z) is the parameter of the truncated Poisson 
distribution which describes the number of animals ob- 
served. 

Note that if we substitute 1 - Tr(x) + -r(x)e-~(z) for 
1 - p(x) in the above formula we have the ZIP param- 
eterization. However, in the regression context, Tr and 
p are different parameters and so the two-part, condi- 
tional model and the ZIP model are not equivalent. 

A major advantage of two-part, conditional models 
over ZIPs is that both model fitting and model inter- 

pretation of the components can be done separately. 
This also leads to computational advantages. These 
models treat both structural and random zeros together. 

CASE STUDIES IN MODELING OF COUNT DATA WITH 

EXTRA ZEROS USING TWO-PART MODELS 

Case study #1. The relationships between the 
abundance of Leadbeater's possum (G. leadbeateri) 

and key habitat variables 

Our first case study highlights an application of two- 
part, conditional modeling for use in analysis of the 
habitat requirements of a rare species. The target taxon 
is Leadbeater's possum (Gymnobelideus leadbeateri), 
which is a rare and endangered species virtually re- 
stricted to the montane ash forests of the Central High- 
lands of Victoria, southeastern Australia (Lindenmayer 
et al. 1991). As the species is of considerable man- 
agement concern because of its occurrence in some of 
the most valuable wood production forest in Australia 
(Lindenmayer 2000), it is important for conservation 
as well as ecological reasons to identify factors which 
explain occurrence and/or local population sizes. G. 
leadbeateri conforms to cell four (in Table 1) in terms 

of the type of rarity it exhibits. The species' distribution 
is highly restricted and virtually confined to the Central 
Highlands of Victoria-an area of 60 X 80 km. Within 
this region, particular structural and floristic conditions 
of wet montane ash eucalypt forests provide suitable 
habitat for G. leadbeateri. Where such suitable habitat 
does occur, it may support sets of loosely linked col- 
onies of two to 12 animals (Lindenmayer 2000). 

As outlined above, the study of species with rarity 
characteristics like G. leadbeateri (Rabinowitz et al. 
1986; see Table 1) will often lead to the collection and 

analysis of data which consists of counts with a high 
frequency at zero (Gaston 1994). Indeed, a histogram 
of counts of G. leadbeateri from 151 survey sites 
showed there are many more zeros than would be ex- 

pected from standard statistical distributions for count 
data (Fig. 1). 

Two-part, conditional Poisson and negative binomial 
models, as well as a Poisson mixture model (ZIP), were 
fitted to the data gathered on G. leadbeateri (Welsh et 
al. 1996). Covariates considered included forest age, 
slope, aspect, tree canopy height, crown cover, a score 
for degree of decorticating bark, basal area of acacia, the 
number of shrubs, and the number of trees with hollows 

(log transformed) (see Lindenmayer et al. 1991 for further 
details). These data are given in the Appendix. 

The selection of significant explanatory covariates 
(P < 0.05) for each model was undertaken by assessing 
the magnitude of the changes in deviance for both com- 

ponents, and the magnitude of the ratio of parameter 
estimates divided by their standard errors. These sta- 
tistics are distributed (approximately) as chi-square and 
Student's t, respectively. Methods for model selection 
are well known (e.g., see Nicholls 1989, 1991) and 
have been described in detail by McCullagh and Nelder 
(1989). 

The two-part conditional Poisson model for data on 
G. leadbeateri restricting the linear predictors to have 
common covariates was: 

Component 1: p = P{at least one animal present) and 

logit (p) = -2.178 + 0.857 lstags (SE 
= 0.251) 

Component 2: X = mean abundance of animals (given 
presence) and log(X) = 0.572 + 0.321 

lstags (SE = 0.103) 

where lstags is the loge(number of trees with hollows 
on the site + 1). 

As the parameters for this model are orthogonal, in- 

terpretation of the components of the model can be 
made separately. Thus, where animals occur, abun- 
dance increases by approximately 0.32% for a 1% in- 
crease in the number of trees with hollows and the odds 
of recording at least one animal at a site is increased 

by approximately 0.86% for a 1% increase in the num- 
ber of trees with hollows. 
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Fitting the conditional negative binomial model to 
explore the possibility of extra-Poisson variation gave 
the following results: 

Component 2: X = mean abundance of possums and 
log(X) = 0.485 + 0.344 lstags (SE 

0.181). 

Our estimate of the extra variation parameter was 
0.143, with an estimated standard error of 0.161. Thus 
there was no evidence of extra-Poisson variation so the 
truncated Poisson model was considered appropriate. 

The ZIP model for the data on G. leadbeateri re- 
stricting the linear predictors to have common covar- 
iates only was: 

Component 1: p = P{at least one animal present) and 
logit (r) = -1.912 + 0.772 lstags (SE 
= 0.257) 

Component 2: X = mean abundance of animals and 
log(X) = 0.573 + 0.320 lstags (SE 

0.102). 

The Poisson mean abundance for the state where 
animals occur, increases by 0.32% for a 1% increase 
in the number of trees with hollows, as for the truncated 
model. In addition, the odds of a site being classified 
as state 2 (the Poisson model) increase by 0.77% for 
each 1% change in the number of trees with hollows. 

If the case is considered where the probability of 
absence does not depend on covariates (i.e., logit(Tr) 
= 0.422), then the parameters for the Poisson mean 
model are 0.453 and 0.37, respectively. This differs 
from the values given above where the probability of 
absence depends on the number of trees with hollows. 
Thus, for the ZIP model, the parameters must to be 
interpreted together, and hence interpretation can be 
difficult when the covariates affect Tr and X differently. 
Combining the two components leads to a change in 
abundance, which is not simply proportional to lstags. 

When the covariates are allowed to differ in the two 
components of the model the significant factors include 
lstags, basal area of wattle, slope, degree of decorti- 
cating bark and number of shrubs (Welsh et al. 1996). 
These results were similar to those obtained using the 
ZIP model. 

Our models showed the species was most likely to 
occur on sites with numerous trees with hollows and 
a high basal area of Acacia spp. Trees with hollows 
contain nest sites for the species (Lindenmayer et al. 
1991). Sap produced by Acacia spp. trees is an im- 

portant food source for G. leadbeateri (Lindenmayer 
et al. 1994). Mean abundance of G. leadbeateri was 
highest on areas of flatter topography supporting nu- 
merous trees with hollows, few shrubs and large quan- 
tities of decorticating bark (Welsh et al. 1996). Thus, 
there were some major differences in the explanatory 
variables for the models for presence/absence and mod- 
els for abundance, given presence. 

Case study #2. Monitoring the abundance of the 
Frigatebird nests on North East Herald Cay 

In contrast to the previous case study on G. lead- 
beateri that focused on the application of two-part con- 
ditional modeling to habitat analysis, our second one 
below highlights the use of the same approach, but in 
the context of ecological monitoring as illustrated 
through ongoing work on seabird nesting. 

Australia's Coral Sea Island Territory supports ex- 
tensive seabird rookeries of great ecological signifi- 
cance, with 13 seabird species recorded breeding in the 
area. While some of these species such as the Red- 
footed Booby (Sula sula), Lesser Frigatebird (Fregata 
ariel), Great Frigatebird (Fregata minor), and Red- 
tailed Tropicbird (Phaethon rubricauda) have an ex- 
tensive distribution outside of Australian waters, they 
are uncommon within Australia. The islands and cays 
of the Coral Sea are important in that they contain a 
significant proportion of the region's breeding popu- 
lations (Baker et al. 2004). The species of seabirds 
conform to cell 3 in Table 1. That is, they are wide- 
spread but they have very specialized nesting require- 
ments. However, where they do occur, the numbers of 
birds can be large. 

Given the status of Frigatebirds and other seabirds 
within Australian waters, a long-term monitoring pro- 
gram of nesting success was established (Baker et al. 
2004). One of the areas chosen for study is the Coringa- 
Herald National Nature Reserve on North East Herald 
Island where 11 transects set at 100-m intervals were 
established in 1992. For each transect, quadrats mea- 
suring 10 x 10 m were marked. A total of 415 quadrats 
was established across all habitats, and vegetation 
mapped for all transects and quadrats. The monitoring 
program has been designed to allow detection of 
"shifts" in nesting patterns on the island, and permits 
estimates of change in nest density from year to year 
(see Welsh et al. 2000). 

An essential step in estimating the number of nests 
constructed by different species of seabirds on North 
East Herald Cay in each year is to relate the nest counts 
to other relevant variables such as the number of nests 
in the previous year, the transect identity, and the quad- 
rat number. The data on seabird nests contains a large 
number of quadrats with zero counts and is possibly 
also characterized by extra dispersion (Fig. 2). A two- 
part, conditional model based on the truncated negative 
binomial distribution accounted for both the extra zeros 
and possible extra-Poisson variation was found to be 
compatible with the data. The key covariate was the 
number of nests in the previous year. Welsh et al. (2000) 
provides a detailed account of the complete analysis. 

Given that the seabird nest data were collected in a 
regular spatial pattern, it is possible that counts were 
spatially correlated. In the initial analysis, this problem 
was dealt with in a sequential way by examining re- 
siduals for spatial dependence. Since then, Dobbie and 
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FIG. 2. Frequency graph of the number of Frigatebird (F. 
ariel and F. minor) nests on 236 100-m2 quadrats established 
in the Coringa-Herald Nature Reserve on North East Herald 
Island in the Coral Sea. 

Welsh (2001a) have developed direct methods for mod- 

eling spatially correlated zero-inflated count data using 
the conditional, two-part approach. 

SOME OTHER STATISTICAL ISSUES IN THE DESIGN 

AND ANALYSIS OF STUDIES OF THE OCCURRENCE 

OF RARE SPECIES 

It is well known that when detection probabilities of 
a species are very low, the ability to be able to establish 
the statistical significance of an effect tends to be low. 
That is, there is low statistical power. Fig. 3 (Nicholls 
and Cunningham 1995) shows the effect of increasing 
rarity (i.e., low probability of detection) on the standard 
error of log (relative risk) while maintaining a constant 

sample size. Here relative risk is a measure of the extent 
to which a site having a particular attribute is more (or 
less) likely to have a species present than a site without 
the attribute. 

The effect is that for data on rare species, a change 
in a factor of interest (e.g., a "treatment") may result 
in a large relative change in odds of a given species 
being present, but this may not translate into a statis- 

tically significant effect. This is particularly evident as 
occurrence falls below 5%. Nicholls and Cunningham 
[1995] provide an example in the context of predicting 
the distribution of the koala and give details of these 
calculations. 

In many instances when data are scant, particularly 
in terms of a very low frequency of occurrences (e.g., 
<5%), numerical computation problems arise in model 
estimation and the fitting of data. This arises because, 
on scales appropriate for analysis such as the linear 

logit scale, an attempt is being made to estimate pa- 

rameters that are extremely large and negative, i.e., 
zero, on the natural scale. In essence, there is insuffi- 
cient information for estimation and this is reflected in 
large standard errors and/or computational difficulties. 

DISCUSSION 

Although the various types of rarity have been well 
discussed in ecology (Rabinowitz et al. 1986; see Table 
1), the term "rarity" is used very loosely in the eco- 
logical literature. For example, Gaston (1994) listed 
many studies where the concept of rarity was used but 
its definition was different in almost all cases. From a 
statistical perspective, the problems and definitions of 
rarity and rare species need to be clearly formulated 
and stated so that progress can be made in solving 
relevant problems in ecology. This paper has discussed 
some approaches to modeling data having an excess of 
zeros; data that commonly arise in studies of rare and 
uncommon species. Recent advances in statistical 
methods, as briefly illustrated and discussed in this 
paper, can assist in the modeling of data on rare and 
uncommon species, thus providing a powerful, general 
framework for estimation and inference. Moreover, we 
believe that, depending on the scale and type of field 
study in question and the biology of the taxon in ques- 
tion, the modeling methods outlined in this paper would 
have potentially useful application for a wide range of 
the types of rare species discussed in detail by Rabi- 
nowitz et al. (1986) and outlined in the various cells 
in Table 1. Such flexibility is illustrated in this paper 
by both the differences in type of rarity between G. 
leadbeateri and F. ariel and F. minor and the different 
applications of modeling to data gathered for them- 
habitat analysis (i.e., comparative inference) vs. esti- 
mating population size (i.e., point estimation) 

The methods outlined in this paper for the study of 
rare and uncommon species are increasingly important 
for two reasons. First, they extend the number of spe- 
cies in an assemblage which can be subject to the same 
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sound, and flexible statistical analyses available for 
taxa characterized by extensive presence and abun- 
dance data. This is valuable because uncommon and 
rare taxa can comprise a substantial proportion of the 
species in most assemblages. In this context, flexible 
statistical analyses may help quantify what makes some 
species rare (e.g., quantifying habitat conditions that 
are themselves rare; as in the case of G. leadbeateri) 
which could make a valuable contribution to biodi- 
versity conservation. Moreover, resource management 
practices are most often concerned with the conser- 
vation and persistence of rare and uncommon species. 
Hence, for example, the methods outlined here may 
assist in the quantification of the effects of an exper- 
imental treatment or environmental impact on rare or 
uncommon species. 

A second reason why the statistical methods outlined 
in this paper may be important is that some approaches 
for modeling zero-inflated data may provide insight 
into ecological processes/mechanisms, which may have 
generated the data. For example, through being able to 
separately model presence-only and conditional abun- 
dance (given presence) components of count data, it 
may (in some circumstances) be possible to identify 
separate factors affecting the size of a colony of a rare 
species, given presence, from those factors affecting 
presence of a species. This was certainly the case for 
G. leadbeateri where several explanatory variables 
were important in accounting for variation in colony 
size once conditions (nest trees) are suitable for the 
presence of the species on a site (Lindenmayer 1996). 
Indeed, recent efforts in forest management have (1) 
established a zoning system to ensure that areas that 
are suitable for the presence of the species are not 
logged (Macfarlane et al. 1998) and, (2) aimed to har- 
vest forests in new and more environmentally sensitive 
ways that recreate forest structural conditions which 
maximize on-site population sizes (D. B. Lindenmayer 
and R. B. Cunningham, unpublished data). These new 
silvicultural methods are targeted toward flat terrain 
where it is more operationally feasible to do them and 
also where our two-part modeling work has shown that 
population sizes of G. leadbeateri will be higher if 
other suitable habitat attributes can be maintained or 
created. 

Both ZIPs and two-part conditional models tend to 
be sensitive to the choice of underlying distribution. 
Gurmu (1997) has suggested some robust, semi-para- 
metric alternatives. Where the nonzero part is not easily 
modeled by a specific probability distribution, a stan- 
dard ordinal regression model (see McCullagh 1980) 
may be a suitable alternative. However, in that case, 
the covariates for the zero and non-zero parts of the 
model must be the same. 

Our final comment relates to the importance of in- 
terdisciplinary work in scientific research. We believe 
the collaborative approach we have taken to our work, 
whereby we have combined expertise in ecology and 

statistics has resulted in outcomes (both in quality and 
quantity) that exceed the sum of what could have been 
achieved individually. Such collaborative approaches 
are increasingly important because both the science of 
ecology and the science of statistics.are extensive and 
complex and are changing rapidly making it impossible 
for any one person to keep abreast of new innovations 
in both fields. Perhaps this is neatly illustrated by the 
early origins of the ZIP regression approaches applied 
in the ecological case studies in this paper. The methods 
were originally developed for problems in economet- 
rics and manufacturing and appeared in a literature read 
by few (if any) ecologists. 
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APPENDIX 

A table showing Leadbeater's possum abundance data and a selection of habitat covariates is presented in ESA's Electronic 
Data Archive: Ecological Archives E086-061-A1. 
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