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JAMES S. CLARK1

Department of Biology and Nicholas School of the Environment, Duke University, Durham, North Carolina 27708 USA

Abstract. Estimates of uncertainty are the basis for inference of population risk. Un-
certainty is estimated from models fitted to data that typically include a deterministic model
(e.g., population growth) and stochastic elements, which should accommodate errors in
sampling and any sources of variability that affect observations. Prediction from fitted
models (of, say, demography) to new variables (say, population growth) requires propa-
gation of these stochastic elements. Ecological models ignore most forms of variability,
because they make statistical models complex, and they pose computational challenges.
Variability associated with space, time, and among individuals that is not accommodated
by demographic models can make parameter estimates and growth rate predictions unre-
alistic.

I adapt a hierarchical approach to the problem of estimating population growth rates
and their uncertainties when individuals vary and that variability cannot be assigned to
specific causes. In contrast to an overfitted model that would assign a different parameter
value to each individual, hierarchical models accommodate individual differences, but as-
sume that those differences derive from an underlying distribution—they belong to a ‘‘pop-
ulation.’’ The hierarchical model can be implemented in classical (frequentist) and Bayesian
frameworks (I demonstrate both) and analyzed using Markov chain Monte Carlo simulation.
Results show that population growth models that rely on standard propagation of estimation
error but ignore variability among individuals can misrepresent uncertainties in ways that
erode credibility.

Key words: Bayesian; demography; hierarchical Bayes; matrix models; population growth; un-
certainty.

INTRODUCTION

The need to understand population risk challenges
ecologists to accurately estimate variability (Andre-
wartha and Birch 1954, Strong 1986, Turchin 1995).
Time series of population abundance can provide rather
direct evidence of growth rate (e.g., Ogden 1993) and
of factors that affect it (Elton 1927, Sinclair et al. 1993,
Bjornstad et al. 1999). They require reliable, repeated
censuses, which are often unavailable for species hav-
ing broad, diffuse distributions. Observation errors are
difficult to incorporate in the classical time series mod-
els (Carpenter et al. 1994, Hilborn and Mangel 1997,
Calder et al. 2003) and are often ignored. There are
few time series of sufficient duration to confidently
evaluate influences (Turchin 1995).

Demographic models represent a second approach
that provides insight into population growth (Caswell
1989, Easterling et al. 2000). Populations too sparse to
census comprehensively can often be studied from de-
mography of sample individuals. Even where time se-
ries of total abundance exist, demographic data may

Manuscript received 3 December 2001; revised 16 April 2002;
accepted 1 May 2002; final version received 21 June 2002. Cor-
responding Editor: O. N. Bjørnstad. For reprints of this Special
Feature, see footnote 1, p. 1349.

1 E-mail: jimclark@duke.edu

still be needed to understand the basis for population
change (Kieth and Windberg 1978, Krebs et al. 2001).

The demographic approach entails statistical chal-
lenges that concern how individual- and group-level
variability affects growth rate. By contrast with time
series of density, population growth rate typically is
not estimated directly from data. Rather, the demo-
graphic rates are estimated, and the growth rate is cal-
culated using Lotka’s equation or a transition matrix.
Probability statements thus require not only a means
for estimating uncertainty at different scales, but also
for propagating demographic uncertainty to growth rate
uncertainty. Fig. 1 shows propagated error distributions
using standard methods (e.g., Lande 1988) for the
growth rates of Northern Spotted Owl (NSO) estimated
from 11 data sets. In cases where there is information
on the variables that influence demography, they can
be used as covariates. In the case of NSO, a recent
study made use of 10 years of demographic and en-
vironmental data to assess how variability in fecundity
and survivorship for three life history stages affect pop-
ulation growth (Franklin et al. 2000). More commonly,
the factors that might impact demographic rates are
unknown, data are unavailable, or both. In the typical
case, demographic rates are fixed constants that apply
to all individuals within an age or stage class, and
‘‘uncertainty’’ is limited to estimation error.
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FIG. 1. Eleven normal densities defined by
means and standard errors (Eqs. 2, 3) from stud-
ies of the Northern Spotted Owl. The densities
are: (1) Lande (1988); (2) Franklin (1992) males
and (3) females; (4) McKelvey et al. (1993); (5)
Anderson and Burnham (1990) northwest Cal-
ifornia; (6) H. J. Andrews, (7, 8) southwest
Oregon, and (9) northwest Washington; (10)
U.S. Fish and Wildlife (1990) northwest Cali-
fornia, and (11) southwest Oregon.

In view of the long-standing attention to ‘‘scaling’’
in ecology, the paucity of formal multilevel analysis is
surprising. In public health sciences, the practice of
inferring individual risk solely on the basis of group-
level (‘‘environmental’’) variables is interestingly
termed the ‘‘ecological fallacy’’ (Schwartz 1994, Diez-
Roux 1998), highlighting the fact that group-level at-
tributes may poorly characterize, mask, or even mis-
represent the factors that affect individuals. The term
‘‘fallacy’’ concerns inference at one level based on data
collected at another. On the one hand, individual risk
is constrained by environmental context, such as local
availability of resources. On the other hand, risk is
often linked to individual behavior. ‘‘Contextual’’ or
‘‘multilevel’’ analyses address how individual-level re-
sponses can change with context. Within classical sta-
tistics, multilevel analyses are difficult. There is no
standard framework that can accommodate the diver-
sity of model structures that vary from one study to
the next.

Here, I demonstrate that the estimates and uncer-
tainties in population growth calculated from demo-
graphic data (e.g., Fig. 1) miss the inherent variability
associated with individuals, and I describe a straight-
forward approach to the problem. The statistical mod-
els that treat individuals within a class as identical and
independent of those in other classes and data sets can
produce inflated confidence in growth estimates. They
often assume (and, thus, propagate) only estimation
error, which declines with sample size, regardless of
how well a model ‘‘fits’’ the data.

The method for quantifying uncertainty in popula-
tion growth entails a hierarchical structure for demo-
graphic modeling and propagation. The method is gen-
eral. It is not restricted to particular types of life his-
tories. It can be applied to models based on Lotka’s
equation or on a transition matrix. It does not depend
on the extensive data sets that will rarely be available
for a few species and never for most. It explicitly quan-
tifies both estimation errors and variability that cannot
be assigned to specific sources. It can be implemented
within either a classical (empirical Bayes) or fully
Bayesian framework (I demonstrate both), although
Bayesian methods will typically be most flexible. Be-
cause I rely on simulated data, this demonstration does
not include observation error, although mark-recapture
probabilities (Jolly 1965, Lebreton et al. 1992, Lavine
et al. 2002) and multistage sampling (MacGibbon and

Tomberlin 1989, Stroud 1994) readily submit to this
framework (e.g., Clark et al. 2003). The approach is
not a substitute for extensive knowledge of factors that
affect population growth (Clark et al. 1999, Turchin et
al. 1999, Franklin et al. 2000, Krebs et al. 2001). It
provides a simple framework to allow for stochasticity
that is especially valuable when the sources can be
precisely known.

THE MODEL FRAMEWORK

To illustrate the methodology of the hierarchical ap-
proach, I provide context by starting with the tradi-
tional framework.

A traditional approach to demographic
data modeling

Ecologists model variability in demographic data by
subdividing a population into classes or by parameter-
izing functions that might explain demographic rates.
I use the example of survival, but the same arguments
apply to fecundity. The binomial is used to model sur-
vival, with likelihood

y n2yL(y; u) } u (1 2 u) (1)

where u is the survival probability, having maximum
likelihood estimate (MLE) 5 y/n. This model as-û
sumes that n individuals are subject to risk 1 2 u, and
a random number y survive. An alternative represen-
tation f (y zu) emphasizes that the likelihood is a joint
distribution of data.

If information is available on risk factors, the bi-
nomial likelihood is extended in one of two standard
ways. First, the population might be (further) subdi-
vided on the basis of age, stage, size, location, sex, and
so forth, and each new class might be assigned its own
survival parameter uj. In other words, ‘‘build a bigger
matrix.’’ This subdivision cannot proceed indefinitely;
errors swell with shrinking sample sizes, leaving a hod-
ge-podge of overfitted, uninformative estimates (Van-
dermeer 1978, Moloney 1986). Alternatively, if risk
factors x are quantified, then survival can be related to
risk, e.g., u(x; b), where b are estimated parameters
(e.g., logistic regression). Inference is made about the
collection of uj estimates (for discrete groups) or about
parameters b. Eq. 1 is the default approach when
knowledge or data are limited.

Parameter error estimates come from the notion of
a parameter sampling distribution. A classical analysis
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generally relies on the central limit theorem to assign
probabilities to a statistic , because sampling distri-û
butions are usually asymptotically normal:

21uzy ; N(û, [I(y)] ) (2)

where is the MLE and whereû

2]
I(y) 5 2 ln L(u; y) (3)

2[ ]]u û

is the observed Fisher information, y represents a vec-
tor of the number of survivors, and L is the likelihood
(confidence intervals actually come from distributions
centered on the confidence limits themselves, but, for
normal distributions, the two are equivalent, e.g., Cous-
ins 1995). Fig. 2b, c, and d show sampling distributions
for survival and fecundity parameters for Northern
Spotted Owl based on the model used by Lande (1988,
McKelvey et al. 1993). For a Bayesian approach we
have the posterior

21uzy ; N(u ,[I (y)]p p (4)

where up is the posterior mode and where

2]
I (y) 5 2 ln[L(u; y)p (u)] (5)p 25 6]u up

is the ‘‘generalized’’ observed Fisher Information and
p(u) is the prior distribution of u (e.g., Carlin and Louis
2000).

The variances of these normal distributions (Eqs. 2
and 4) are inversely proportional to sample size n, so
they tend to zero variance as sample size increases. For
the binomial model (Eq. 1), we have classical and (for
a noninformative prior) Bayesian ‘‘standard errors’’:

û(1 2 û)
21/2SE 5 [I(y)] 5 (6)u ! n

u (1 2 u )p p21/2SE 5 [I (y)] 5 (7)u p ! n

respectively (for the noninformative prior, likelihood
and posterior contain the same information). The as-
ymptotic 95% confidence interval is 6 1.96 SEu. Forû
discrete stages, standard errors can be calculated for
each j. If u is assumed to vary continuously with var-û
iable x, then there are asymptotic standard errors for
parameters b.

By contrast with confidence intervals on demograph-
ic parameters, confidence intervals on growth rate l
are calculated. The typical error propagation method
comes from the linear term of a Taylor series:

2m ]l
2var[l] ø SE (8)O uj1 2]uj51 j

(e.g., Stuart and Ord 1994), with asymptotic confidence
interval l 6 1.96 SEl and predictive distributions inû
Fig. 1.

Fig. 2 compares an analysis using standard errors
reported from the literature with one that assumes the

same error structure, but having five times as many
samples. Rather than the normal approximation (Eq.
8), I used a resampling routine (bootstrap) to generate
the predictive distributions for l in Fig. 2a, but they
are similar for large sample size. The figure illustrates
the assumption of a ‘‘true’’ parameter value that is
approached as sampling effort increases. The predictive
distribution on l likewise collapses with large n.

The problem

Neither of the alternatives for modeling parameter
variability (Eqs. 2 and 4) is ideal for most demographic
data: differences among individuals or subpopulations
are large, the causes are poorly understood, and the
explanatory variables are not quantified. The Bernoulli
(coin-flipping) process that gives rise to Eq. 1 does not
accommodate such differences, and nothing in the es-
timation error of u compensates for it. Eq. 1 only ap-
plies when all individuals are flipping identical coins.
The implications of Fig. 2 are not appreciated by most
ecologists or by the managers who interpret their anal-
yses. Fig. 2 could be realistic if the underlying de-
mographic rates were fixed and identical for all indi-
viduals. The problem results from the fact that the mod-
el allows no place for variation among individuals or
groups. It does not depend on technical details; it exists
regardless of whether the approach is classical (Eqs.
2, 6) or Bayesian (Eqs. 4, 7). While adding more stages
to a matrix model allows for a greater range of rates,
there is still within-stage variability. The problem is
not solved by independently fitting more parameters to
smaller data sets (e.g., highly subdivided populations).
Overfitting results, because the individual parameters
have no predictive capacity. The assumption that each
is independent is unrealistic. Independent estimates do
not ‘‘inform’’ one another, as would be expected if
individuals belong to a ‘‘population.’’

Finally, variability among individuals is not the ‘‘de-
mographic stochasticity’’ of discrete-state, difference-
equation models (May 1973, Hensen et al. 2001). De-
mographic stochasticity is associated with the reali-
zation of discrete events (birth and death), it exists
regardless of whether underlying parameters vary, and
it becomes important when densities are low. Individ-
ual variation matters at all densities, because it affects
the distribution of rates, whether a process is modeled
as continuous or discrete.

A hierarchical solution

Here, I adapt a hierarchical strategy for modeling
population growth rate that accommodates variability
that cannot be assigned to a specific cause. It explicitly
models random effects on parameters and estimation
error of ‘‘hyperparameters’’ that summarize parameter
densities. Rather than overfitting with many indepen-
dent parameters, it admits parameter variability, but
assumes that individuals derive from a population. Hi-
erarchical models are a recent development designed
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FIG. 2. Parameter sampling distributions and their effect on uncertainty in growth rate of the population (a). The density
of growth rates is obtained by resampling from parameter sample distributions. Dashed lines assume the same data structure,
but sample sizes five times as large.

to allow for processes that are more variable than ad-
mitted by traditional models (Gelman et al. 1995, Car-
lin and Louis 2000).

A hierarchical model.—Consider the sampling dis-
tribution for a variable y represented by the density
f(yzu). The likelihood is the joint probability condi-
tioned on a parameter u:

n

L(u; y) 5 f (y z u). (9)P i
j51

For the coin-flipping process in Eq. 1, yi assumes values
of 1 or 0, with probability u and 1 2 u, respectively.
A hierarchical model assumes that parameters have dis-
tributions of their own. For example, survival proba-
bility u may vary among individuals. Let p(uza, b)
represent the density of parameter u; the ‘‘hyperpara-
meters’’ a and b describe this density. The hierarchical
version of Eq. 9 is as follows:

` n

g(y z a, b) 5 f (y z u )p (u z a, b) duPE i i i
i512`

n

5 f (y z a, b). (10)P i
i51

Within a classical framework, Eq. 10 could be substi-
tuted for Eq. 9:

L(a, b; y) [ g(yza, b). (11)

Rather than fitting u, we fit a and b. Likelihood Eq.
11 has a broader spread than likelihood Eq. 9, because
it accommodates the additional variability conferred by
the distribution of u. This approach is termed para-
metric empirical Bayes (PEB; e.g., Morris 1983, Ver
Hoef 1996).

The hierarchical approach that led to Eq. 10 differs
from a Bayesian analysis, which might begin with the
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TABLE 1. Structure used for data simulation.

Para-
meter

Parameter
estimate

Variance
among

individuals
Parameter

distributions† n

s0

s
b

0.159
0.868
0.382

0.01
0.01
0.09

Beta(1.97, 10.4)
Beta(9.08, 1.38)
Gam(1.62, 4.24)

63
114
197

† Distributions used to draw random data sets; n parameter
values are drawn from each distribution, followed by n data
values from Binomial (survival) or Poisson (fecundity) dis-
tributions.

same two distributions, but treat them in a different
way. A nonhierarchical Bayesian model writes a pos-
terior density for u using Bayes’ theorem:

n

f (y z u)p (u)P i
i51p(u z y) 5

` n

f (y z u)p (u) duPE i
i512`

f (y z u)
5 3 p (u). (12)

g(y)

(The parameters of p(u) are suppressed for brevity.)
The posterior distribution contains the marginal dis-
tribution of the data as a normalizing constant (the
denominator of Eq. 12), but the likelihood itself (the
assumed distribution of data conditioned on u) remains
nonhierarchical (it is Eq. 9). As data dominate the prior
in Eq. 12, the posterior assumes the shape of a nor-
malized likelihood, described by Eq. 4. Unlike the hi-
erarchical (PEB) model, the nonhierarchical Bayesian
posterior converges to the classical result (Eq. 4 looks
like Eq. 2). Like the classical nonhierarchical model,
Eq. 12 does not admit variability in u. It simply ex-
presses our posterior belief in values of u, which col-
lapses to a point estimate with large sample size.

The hierarchical Bayesian method adopted here
makes use of the likelihood Eq. 9, but assigns priors
u(a) and v(b) to yield the joint posterior:

n

f (y z u )p (u z a, b)u(a)v(b)P i i i
i51p(u, a, b z y) 5 (13)

g(u z a, b)

where ui indicates that each individual can have a dif-
ferent demographic rate, but all are linked through hy-
perparameters. (In theory, priors need not be indepen-
dent of one another.)

The hierarchical model (Eq. 11 or 13) admits vari-
ability. Hyperparameters [a, b] have the estimation er-
ror, while the individual parameters ui have distribu-
tions that depend on data for the ith individual and for
the entire population. Two parameters define a condi-
tional distribution for the ui (p(uiza, b) in Eq. 10), and
this distribution does not collapse with increasing sam-
ple size. The posterior is obtained using Monte Carlo
simulation.

A predictive distribution for l.—Because l is cal-
culated, not estimated directly, we require methods for
constructing a distribution for l. We shall see below
that the assumption of normality can be unreasonable
for the hierarchical model, so Eq. 8 is inappropriate.
Draws are taken from the posterior (Bayesian) or sam-
pling (classical) distributions. For each resampled pa-
rameter set, the growth rate l is calculated (using Lot-
ka’s equation or matrix methods) and used to assemble
the predictive distribution. Because estimates are typ-
ically in the form of a list constructed by Markov chain
Monte Carlo methods (MCMC; Bayesian) or bootstrap

(classical), the distribution of l is straightforward.
Confidence intervals incorporate estimation error and
individual variability.

APPLICATION

To demonstrate the approach, I use the example of
the Northern Spotted Owl (NSO). Many analyses of
this familiar example employ simple demographic
models, including several excellent studies of param-
eter variability (Franklin et al. 2000). Because NSO
has a broad distribution, low density, long life, and
large home range, they exemplify a population that is
difficult to census comprehensively. I adopt the sim-
plest model, because key points are not model specific.
The analysis consists of (1) generating random data
having sample sizes and parameter means and standard
errors of literature values (Table 1), (2) development
of the hierarchical models, and (3) comparison with
the traditional analysis. I focus on effects of sample
size and the substructure assumed in statistical models.

Data structure

Parameter sampling distributions from the literature
are drawn as solid lines in Fig. 2b, c, and d. I used the
standard assumption of a homogeneous population of
size n and compared the analysis with that for two
levels of substructure. The first assumes 10 subpopu-
lations of size ni approximately equal to n/10 (rounded
to the nearest integer). The second assumes that vari-
ability exists at the individual level.

I used standard distributions to describe variability
among subgroups or individuals. Fecundity is a Poisson
process, with offspring production from the ith sub-
group yi ; Pois(bi). Fecundity is assumed to vary
among subgroups according to the gamma density bi

; Gam(ab,bb). This mixture incorporates the common
observation, including from NSO (Barrowclough and
Coats 1985), that variability in offspring production is
greater than Poisson. I assumed the mean value b̂ used
by McKelvey et al. (1993; Table 1) and a conservative
variance of Vb 5 0.09. Gamma parameters were se-
lected by moment matching with ab 5 b̂/Vb and bb 5
b̂/Vb (Table 1). Simulation consisted of drawing ni Pois-
son parameters from Gam(ab,bb) followed by ni Poisson
variates.
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Identical methods were used for survivorship s and
s0. Survivorship is yi ; Bin(ni, si) where si is survi-
vorship of the ith subgroup. For individual variation,
yi ; Bin(1, si) 5 Bernoulli(si). Variability among
groups follows a beta density si ; Beta(as,bs). I use
the mean value ŝ of McKelvey et al. (1993) and vari-
ance Vs 5 0.01. Beta parameters were selected by
moment matching, as 5 ŝ[ŝ(1 2 ŝ)/Vs 2 1] and bs 5
as(1 2 ŝ)/ŝ. I drew ni binomial parameters from
Beta(as,bs) followed by ni binomial variates.

A standard population model

The simple model of Lande (1988, McKelvey et al.
1993) involves three survival rates, juvenile, subadult,
and adult, a fecundity parameter, and a maturation age.
Subadult and adult survival rates are similar, and
McKelvey et al. (1993) use the same value. The tran-
sition matrix is

 0 0 b
 

A 5 s 0 0 . (14) 0 
0 s s 

Roots were obtained directly from Lotka’s equation, l
5 (s 6 )/2 (Lande 1988). McKelvey et al.2Ïs 1 4bs s0

(1993) calculated 5 0.925 and determined that al̂
value of l 5 1 was outside the 95% CI. The growth
rate can also be estimated by eigenanalysis of A (Eq.
14). An effect of sample size on propagated error is
shown in Fig. 2a.

A hierarchical analysis

The hierarchical structure was applied in both clas-
sical (PEB) and Bayesian contexts.

PEB.—For the PEB analysis, the likelihood function
is a mixture, obtained by marginalizing over parameter
distributions. For fecundity, I use Eq. 10, together with
the gamma distributed b to obtain the likelihood that
is negative binomial (NB):

` n

L(a , b ; y) 5 Poisson(y z b)Gam(b z a , b ) dbPb b E i b b
i512`

n

5 NB(y z a , b ).P i b b
i51

For survival I use the marginal beta-binomial (BetaBin):

` n

L(a, b; y) 5 Bin(y z n, s) Beta(s z a, b) dsPE i
i512`

n

5 BetaBin(y z n, a, b).P i
i51

Parameter sampling errors were estimated by nonpara-
metric bootstrap. Simulated data were sampled with
replacement and fitted to negative binomial or beta-
binonimal likelihoods.

Hierarchical Bayes.—The Bayesian analysis makes
use of Eq. 13 and a Gibbs sampler, a type of MCMC.

The algorithm described in the Appendix results in pos-
terior distributions of parameters and hyperparameters.
A kernel estimator with a narrow bandwidth (Silverman
1986) was used to smooth marginal posteriors produced
by MCMC simulation. All CIs are 95%.

Predictive distribution for l.—Distributions of l
were produced from bootstrapped parameter estimates
(PEB) or MCMC (Bayes).

RESULTS

To illustrate how a nonhierarchical analysis might
compare with a hierarchical model that admits modest
structure, I initially assume 10 subgroups simulated
using parameters from Table 1. Fig. 3 shows boot-
strapped hyperparameter distributions and ‘‘parame-
ter’’ distributions for the PEB model. Parameter sample
distributions (Fig. 3b) are determined by hyperpara-
meter distributions (Fig. 3c). The PEB model for fe-
cundity is unstable, because bootstrapped resamples
contained too many zeros to consistently yield param-
eter estimates—to produce Fig. 3, I bounded the search
algorithm below ab 5 20 (Table 2). Although asymp-
totics provide approximate CIs (Eq. 6), they are not
useful for this parameter having mean near zero.
George et al. (1993) report similar broad dispersion in
MLEs for a comparable PEB model when fully Bayes-
ian inference yielded more consistent results. Param-
eter distributions for survivorship are homogeneous
(Fig. 3c). The spread in parameter distributions (Fig.
3b) describes the variability that could have been
missed by a traditional model (compare Fig. 2).

The Bayesian analysis (Fig. 4, Table 3) yields stable
hyperparameter estimates, despite many parameters.
For each of the three demographic rates, there are two
hyperparameters plus 10 parameters, one for each sub-
group. The parameter distributions in Fig. 4b are in-
tegrated over the n individual posteriors, which, col-
lectively, are summarized by two hyperparameter pos-
teriors (Fig. 4c). The predictive distribution for l is
broad, reflecting the variability in parameters, which
the nonhierarchical model does not permit (Fig. 4a).

Despite contrasting approaches of PEB and hierar-
chical Bayes, at the levels of parameters and population
growth rate the results are similar to each other and
different from the traditional model. Subgroup vari-
ability results in similar parameter distributions for the
two hierarchical models (Fig. 5b), whereas the non-
hierarchical model overestimates parameter confidence
(Fig. 5c). The predictive distributions for l that come
from PEB and hierarchical Bayes are also similar and
contrast with the unrealistically narrow distribution
predicted by the traditional approach (Fig. 5a). Neither
of the broad, hierarchical models excludes l 5 1 at
95% confidence.

The hierarchical model does not collapse simply be-
cause sample size is large. The comparison of sample
size effects from Fig. 2 was repeated using hierarchical
Bayes. The effects on hyperparameters are noticeable
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FIG. 3. Hierarchical model analysis using a bootstrap and PEB: (a) comparison of hierarchical (dashed) and nonhierarchical
(solid) models; (b) parameter distributions and 95% envelopes calculated by resampling from hyperparameter distributions
in (c). Vertical lines in (a) and (c) are 95% confidence intervals.

TABLE 2. Parameters and quantiles for a PEB analysis of a
data set that assumed 10 subgroups.

Para-
meter†

Hyper
para-
meter MLE 1 SE

Quantiles

0.025 0.975

s0

s

b

as

bs

as

bs

ab

bb

0.143
1.34
8.05

0.816
92.2
20.8

0.270
2.02
7.48

0.0441
0.459
0.260

0.363
0.139
0.397

0.190
1.69
5.80

0.557
7.71

7.56
1.04

1.04
3.87

2.41
8.22

8.10
2.58

6.79
20.0

† Parameter distributions are marginalized over hyperpar-
ameter distributions.

(Fig. 6c), but parameter posteriors (Fig. 6b) and the
shape of the predictive distribution for l (Fig. 6a) are
little affected.

If random effects exist at the individual level, pa-
rameters and growth rates become more dispersed (Fig.
7a). To isolate the effects of substructure in Table 1,
the examples in Fig. 7 are all Bayesian. As previously,
there is individual variation, and total population sizes
and parameters come from Table 1. Models assume
homogeneity (7a, bottom: nonhierarchical Bayes), 10
subgroups (7a, middle), and individual variation (7a,
top). Ten simulated data sets for each level of structure
show that the hierarchical model consistently repro-
duced the underlying mean growth rate, with broad
spread reflecting variability. The nonstructured model
predicts variable mean values but narrow credible in-
tervals. Fig. 7b shows that the hierarchical model
shows only slightly narrower confidence intervals
when sample size is increased fivefold.
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FIG. 4. Same as Fig. 3 for the hierarchical Bayesian analysis. Abbreviations are: NH, nonhierarchical; H-Bayes, hierarchical
Bayes.

TABLE 3. Bayesian analysis of a data set that assumed 10
subgroups, showing parameters with posterior moments
and quantiles.

Para-
meter†

Hyperprior
value

Posterior
mean

Posterior quantiles

0.025 0.975

s0

as

bs

s
as

bs

b
ab

bb

0.5
0.5

0.5
0.5

1
1

0.155
0.387
2.14

0.812
2.95
0.708

0.286
0.999
3.49

0.00000361
0.176
0.859

0.297
0.844
0.215

0.00637
0.8323
2.19

0.716
1.14
6.21

0.999
8.69
1.76

1.08
1.19
6.39

† Parameters are marginalized over parameter distributions
for n individuals.

DISCUSSION

Demographic varies among individuals

Change in a demographic rate like survival might
come to pass in at least three different ways:

A) All individuals are subject to the same rate, and
all experience a shift from one rate to another rate.

B) Individuals might be subject to different rates,
but all rates change by the same magnitude.

C) Individuals are subject to different rates, and the
average rate changes with the changing fraction of the
population exposed to different risks.

Ecologists could agree that scenario C is most com-
mon, and scenario A is usually unrealistic. Individuals
die from many causes, and they vary in their exposure
to different risks. The population survival rate averages
over individuals having differential susceptibility to
disease, predation, pathogens, accidents, and so forth.
Individuals affect the population mean as they enter
and leave high-risk categories; the more individuals
with high exposure to one risk or another, the lower
the mean survival. A change in the mean usually does
not occur because the risk from all mortality sources
change in concert.

Traditional models do not accommodate scenario C;
they do not even accommodate scenario B. Hierarchical
models are designed for scenarios B and C. Observed

variation in fecundity and mortality is typically larger
than admitted by the standard distributions used to de-
scribe them (Poisson and binomial, respectively; Bar-
rowclough and Coats 1985, Franklin et al. 2000, Wyck-
off and Clark 2002). These overdispersed distributions
are the motivation for hierarchical modeling.

Hierarchical modeling: where, when,
and how much?

Ecologists recognize that different factors operate at
different scales (e.g., Carpenter 1996), and that the re-
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FIG. 5. Comparison of the standard nonhierarchical (NH) and two hierarchical approaches.

lationships among the same variables can vary from
one scale to the next (e.g., Chase and Leibold 2002).
To illustrate fundamental impacts on inference, I have
focused on a simple model structure. The approach is
readily extended to admit contextual influences that can
be used to explore covariates that operate at different
scales or, when influences are unknown, random effects
structured in appropriate ways. There are few data sets
for which comprehensive information permits incor-
poration of the many factors that control variability in
demographic rates (Clark et al. 1999). Franklin et al.
(2000) provide an excellent, albeit atypical, example
where extensive data permit a wide-ranging analysis
of effects. Hierarchical models provide a way forward
by allowing for the variability that cannot be assigned
to specific causes. The advantages of a hierarchical
approach are not limited to population growth estimates
that are calculated from demographic data. For ex-
ample, hierarchical structures can be applied to indi-
vidual growth responses (Gelfand et al. 1990, Clark et
al. 2003), to mortality (Stroud 1994, Lavine et al.
2002), to population time series (Bjornstad et al. 1999),
and to population spread (Wikle 2003). They are not
restricted to individual effects, but also apply when
variability is structured in space, in time, and among

groups (e.g., MacGibbon and Tomberlin 1989, Zeger
and Karim 1991).

Hierarchical models represent a middle ground be-
tween traditional models that do not admit individual
variation (solid bar in Fig. 8a) and overfitted models
that, taken to the extreme, could assign an estimate to
each observation (a histogram of estimates in Fig. 8b).
The marginalized posterior density of fecundity taken
across all observations (Fig. 8a) integrates n posteriors;
each observation has its own posterior. But, unlike n
independent estimates, the individual estimates are
each informed by the full data set (Fig. 8b). The col-
lective posterior includes the variability among obser-
vations, without assuming that they simply represent
n independent populations, each with a sample size of
1, and it is summarized by hyperparameters.

Hierarchical Bayes is more straightforward (and sim-
ple) than classical methods (e.g., Zeger and Karim
1991, Gelfand and Sahu 1999). For example, a classical
analysis that allows for dependence between adjacent
cohorts of demersal marine fish (Myers and Cadigan
1993) could accommodate only parts of the data, pa-
rameters did not consistently converge or ‘‘make
sense’’ (e.g., correlations .1), and the complex and
highly specialized analysis is not flexible to alternative
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FIG. 6. Increased sample size (from n to n 3 5) for the hierarchical model reduces spread on hyperparameter posteriors
(c), but does not have much effect on parameters posteriors (b) or on the growth rate uncertainty (a).

FIG. 7. (a) Comparison of growth-rate 95% confidence
intervals for three levels of structure for 10 simulated data
sets. (b) Confidence intervals for 10 simulated data sets as-
suming five times as many samples.

assumptions. The hierarchical Bayes model, analyzed
with a sampling based approach, readily admits diverse
assumptions without resort to diverse structures (Gel-
fand and Smith 1990).

The cost of ignoring variability

Confidence intervals can be unrealistically narrow,
because standard analysis does not admit that demo-

graphic rates vary among individuals. Classical models
treat demographic rates as fixed constants, whereas in-
dividuals display dramatic differences in mortality risk
and reproductive potential. These differences result
from age, size, sex, habitat, behavior, and their inter-
actions with environmental variability. In the classical
context, it is difficult to allow for the variability that
all ecologists recognize as typical of natural popula-
tions.

Forecast failure can be one of the most important
consequences of analyses that ignore individual vari-
ability. Managers require realistic estimates of uncer-
tainty. Fig. 5a contrasts uncertainty estimated from the
standard nonhierarchical model, predicting low prob-
ability of a sustainable population, with the hierarchical
forecast acknowledging variability. Hierarchical mod-
els admitting modest individual variation might include
l 5 1 within a 95% CI. This result does not increase
optimism, because it also raises the possibility that
growth rates are perilously low. Rather than optimism,
the message is one of more realistic evaluation of the
possibilities. Narrow confidence intervals have the
short-term advantage of fostering a sense of precision.
The mid- to long-term consequence can be loss of cred-
ibility.
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FIG. 8. Three assumptions for fecundity parameter dis-
tributions. A nonhierarchical model assumes that all individ-
uals have the same fixed parameter value (shaded value at
the MLE in [a]). An overfitted model assumes each individual
has its own parameter value (shaded histogram bars repre-
senting the fraction of the population having a given value
in [b]). The hierarchical model yields a conditional distri-
bution for each individual that is informed by all other in-
dividuals (individual densities in [b]).
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APPENDIX

A Gibbs sampler for the hierarchical model is available in ESA’s Electronic Data Archive: Ecological Archives E084-
031-A1.


