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Conservation decision making can involve irre-
versible risks (such as species extinction) and is

often carried out based on scarce data. Conservation
scientists use statistical tests to decide if two or more
groups, such as two different fire management regimes
in a protected area, are significantly different from one
another (see Panel 1 for a primer on classical hypothe-
sis-testing frameworks). In this paper, we focus on when
such tests fail to find a statistically significant differ-
ence. Scientists routinely draw inappropriate conclu-
sions from this particular statistical outcome, with
potentially serious outcomes for management, policy,
and the environment. Here, we outline an illustrative
example and offer suggestions for scientists, managers,
and the judiciary regarding how this problem could be
more effectively addressed.

We focus here on the Endangered Species Act

(ESA), the primary law protecting biodiversity in the
US and, in particular, on statistical distinctions
between what should or should not constitute a pro-
tected taxon. The ESA’s unit of protection is a
“species”, including “subspecies” and “distinct popula-
tion segments” of vertebrate species (16 USC §§
1532[16] and 1533[a]). Listing a “species” as protected
under the ESA carries high stakes, because it involves
an investment of limited funds that could protect other
taxa, and because it triggers legal protection of habitat
that may limit economic activity.

The agencies in charge of implementing the ESA have
relied increasingly on genetics in defining “species” (eg
Goldstein et al. 2000; Fallon 2007), and have issued pol-
icy statements where the designation of a “subspecies” or
“distinct population segment” depends largely on genetic
differences (US FWS and NOAA 1996). Accordingly,
scientists’ conclusions about whether populations are
genetically distinct have become extremely important
for the regulatory process, and ultimately affect both
species survival and economic activity.

Time and funding for species conservation are
always limited. Protection of a spurious subspecies (ie
a population that is not truly biologically distinct
from its abundant and widespread conspecifics) takes
away resources from other species, subspecies, or pop-
ulations that need protection. On the other hand, the
ESA was drafted with the precautionary principle in
mind (Ruhl 2004), so management decisions under
the ESA should err on the side of caution. This is
especially true, given the asymmetric risk in conser-
vation, since extinction is irreversible. Accordingly,
the decision to list or delist a taxon is of critical
importance.
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Critical conservation decisions have been made based on the spurious belief that “no statistically significant
difference between two groups means the groups are the same”. We demonstrate this using the case of the
Preble’s meadow jumping mouse (Zapus hudsonious preblei), an endangered species in the US. Such faulty sta-
tistical logic has been recognized before, but ecologists have typically recommended assessing post hoc statis-
tical power as a remedy. Statisticians, however, have shown that observed power will necessarily be low when
no differences are found between two populations. Alternatives to assessments of statistical power include
equivalence testing (a method rarely used by ecologists) and Bayesian or likelihood methods. Although scien-
tists play a central role in ameliorating this problem, the courts could also assist by requiring litigated federal
agency decisions to consider the risks of both Type I and Type II errors.
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IInn  aa  nnuuttsshheellll::
• Ecologists often assume populations are identical (“null

hypothesis”), and then statistically test to identify differences;
if a significant difference is not found, ecologists usually accept
the null hypothesis as true, when in fact it cannot be rejected

• The statistical tools commonly recommended for use in such
situations are inadequate; a better option in some contexts is
equivalence testing, which assumes that populations are differ-
ent, and attempts to prove they are the same

• Scientists, land managers, and courts must work together to
avoid these pitfalls in conservation management
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� Preble’s meadow jumping mouse: a case study of
a common inferential error

A high-profile example of the challenges in species listing
decisions is the Preble’s meadow jumping mouse (Zapus
hudsonious preblei), a federally endangered subspecies in
Colorado and Wyoming (Figure 1). Attention has
focused on the listing decision because protection of this
animal has impacted development in a rapidly growing
region (Holthouse 2005). In 2004, a scientific group
released a study that compared genetic sequences and
morphometric data between the Preble’s jumping mouse
and other, more abundant and widespread subspecies of
Z hudsonious, especially Z hudsonious campestris (Ramey et
al. 2004). The study found no statistically significant
genetic differences between the two groups of mice.
Based on this finding, they reported, “Our analysis of
mtDNA [mitochondrial DNA] sequence data refutes…
that Z h preblei is a unique taxon” (Ramey et al. 2004). 

When a statistical hypothesis test such as this one (see
Panel 1) finds no significant difference between two pop-
ulations (Figure 2, bottom row shaded in yellow), the test
outcome could be correct (Figure 2, bottom left cell) or,

alternatively, could represent a Type II
error (Figure 2, bottom right cell; explained
in Panel 1). The key problem with Ramey
et al.’s conclusion is that it fails to distin-
guish between these two possibilities. A
lack of statistical significance does support
the statement that the researchers “cannot
reject the null hypothesis”. But that state-
ment is subtly, yet crucially, different from
the statement that the researchers should
“accept the null hypothesis as true” (eg
Taylor and Dizon 1996), which is the state-
ment that Ramey et al. in essence made in
their paper. As Wellek (2002) put it, “A
non-significant difference must not be confused
with significant homogeneity” between two
populations (emphasis in original). Indeed,
this problem is highlighted by a later study
that examined more specimens and a larger

genetic sequence, and concluded that Preble’s jumping
mouse was indeed a separate subspecies (King et al. 2006).
While policy makers could consider this outcome typical
of the inconsistencies between scientific studies, a more
important message is the importance of sample size,
which we address later.

The fundamental cause of this confusion is that stan-
dard statistical tests are set up in a way that gives
researchers relative certainty about the result only when
the test shows a significant difference between two
groups. By definition, you can be at least 95% sure that
you are correct when a hypothesis test finds a significant
difference (assuming the standard � = 0.05; Figure 2, top
row). But when the test outcome is not significant
(Figure 2, bottom row), there is no way to reliably esti-
mate how likely you are to be wrong (from Type II error)
if you conclude that the populations in question are
homogeneous (eg Hoenig and Heisey 2001). Thus, if a
significant difference is not found in a statistical test, the
only appropriate conclusion is that the null hypothesis can-
not be rejected.

Concern about non-significant test results is not new,
and has largely been framed in the context of Type II

FFiigguurree  11.. Preble’s meadow jumping mouse, Zapus hudsonious preblei.

Panel 1. A primer on classical hypothesis-testing statistical frameworks 

Classical hypothesis-testing frameworks are typically structured with two hypotheses: a “null hypothesis” (symbolized as H0; left column of
Figure 2) that is assumed as the background state of reality and which usually states that there is no difference between two groups being
analyzed, and an “alternative hypothesis” (H1; right column of Figure 2) that generally states that there is a detectable difference between
the two groups. In the context of conservation genetics, H0 might be that a putative subspecies is taxonomically the same as a more com-
mon subspecies, with H1 stating that the putative subspecies is distinct from other subspecies. If evidence for H1 is not sufficiently strong,
then the researcher concludes that H0 cannot be rejected.

The four possible outcomes of a hypothesis test are presented in Figure 2.Type I error (a “false positive”, with probability �) is the
chance of accepting H1 when the groups are not different (Figure 2, top left cell). Reporting of Type I errors is essentially mandatory in
scientific venues where statistics are used, presented as the ubiquitous P value. Scientists generally now accept a threshold of � < 0.05,
or a less than 1-in-20 chance, as representing a statistically significant difference.Type II error (a “false negative”, with probability �) is
the chance of not rejecting H0, or finding no difference between two groups, when a difference does, in fact, exist (Figure 2, bottom right
cell). Probabilities of Type II error are much less commonly reported, and are usually presented as its inverse, statistical power (1–�),
which is the probability of detecting a significant difference if one were truly there (Figure 2, bottom left cell).
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error and statistical power, the two cells
comprising the bottom row of Figure 2
(eg Toft and Shea 1983; McGarvey
2007). The recognition of this prob-
lem, however, has not lessened the
incidence of faulty inference from non-
significant statistical outcomes. Indeed,
a review of studies published in the
journals Conservation Biology and
Biological Conservation in 2003 found
that nearly two-thirds of manuscripts
with non-significant results inappropri-
ately interpreted these as evidence for
significant homogeneity (Fidler et al.
2006). In response, there have been
regular calls for scientists and managers
to rethink non-significant statistical
results in decision-making (eg Taylor
and Dizon 1996; Palsbøll et al. 2006)
and to consider alternatives to hypoth-
esis testing (eg Fidler et al. 2006).

Emblematic of both the subtle nature
and the widespread occurrence of the
error of inferring significant homogene-
ity from a non-significant test result is
the fact that almost no one in the
Preble’s debate, on any side, recognized it as a problem,
despite the intense scrutiny of the report. This includes the
authors of the two studies, relevant officials at the US Fish
and Wildlife Service (FWS), any of the interest groups
concerned about the conservation status of this organism,
and all but two of the 15 scientists who peer-reviewed the
studies. We acknowledge that there were other issues in
the debate over Ramey et al.’s study, including potential
genetic contamination (Colorado Division of Wildlife
2004; King et al. 2006), and it is also true that Ramey et al.
(2005) qualified their statements to some degree in a later
paper, though the inferential error remained. Moreover, in
focusing on this particular example, we emphasize that we
do not endorse any side in the controversy; given the wide-
spread nature of this inferential error in conservation biol-
ogy, our selection of the Preble’s jumping mouse case as an
example should not be taken as a critique of the overall
quality of the work of Ramey and his co-authors.
Nonetheless, we think this example is enlightening
because so many parties made the inferential error, despite
the high profile of the case. 

The larger problem here is not limited to the Preble’s
case, or even conservation genetics. For example, when
the FWS analyzed whether low water flows were corre-
lated with endangered fish mortality in the Klamath River
of Oregon and California, the agency required a statisti-
cally significant connection between the two before it
would commit to action to increase water flows, even
though (as discussed above) the lack of a statistically sig-
nificant correlation would provide little or no information
about whether such a correlation existed (McGarvey 2007).

Likewise, in the Grand Canyon, FWS planned on reduc-
ing ESA protection for the humpback chub (Gila cypha),
absent a statistically significant decline in population lev-
els over time (US FWS 2002), again even though a
hypothesis-testing result of no statistical significance
would provide little or no information about whether the
population was, in fact, declining. In contexts such as
these, the classical hypothesis-testing framework that sci-
entists turn to by default may be inappropriate for address-
ing conservation issues, precisely because the inability to
determine the risk of Type II errors will leave decision
makers with little additional information if no statistically
significant results are identified. The end result may be
that major policy decisions will be made, with potentially
irreversible risks, based on fundamentally incorrect con-
clusions.

�What to do with a non-significant test result

There is clearly room for improvement in dealing with
non-significant test results in conservation, particularly
when this affects the legal designation of protected
species. Although ecologists have recognized the flaws of
interpreting a non-significant test finding as proving the
null hypothesis for the past two decades, the typical rec-
ommendation has been to use power analyses to assess
Type II errors (eg Toft and Shea 1983; Taylor and Dizon
1996). However, most ecologists are unaware of the seri-
ous problems with such post hoc (also called “observed”
or “retrospective”) power calculations.

Statisticians argue that observed statistical power

FFiigguurree  22.. Outcomes of statistical tests. In this 2 x 2 table, the null hypothesis (no
difference between groups) is true of cells in the left column, and the alternative
hypothesis (groups are different) is true for cells in the right column. The top row
represents cases where the statistical test found a significant difference between groups.
The bottom row (shaded in yellow) is for cases when the null hypothesis cannot be
rejected. Cells whose outcome matches the underlying reality are marked with a “�”,
and those with errors are marked with an “x”.
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should never be used in data analysis (eg Goodman and
Berlin 1994; Hoenig and Heisey 2001), for the fundamen-
tal reason that power is directly related to the P value of
the test (Figure 3). When a P value is not sig-
nificant, power will necessarily be low. In
nearly all cases, when P>0.05, power will be
0.5 or lower. As such, observed power gives
essentially no additional information: if an
experimenter finds a significant difference,
the power of the test to resolve differences was
high, and if no significant difference was
found, then the power was low. We note,
however, that statistical power can be very
useful for planning future experiments (eg
Hoenig and Heisey 2001).

Since using post hoc statistical power in
data analysis is inappropriate, what are the
alternatives? One is to reverse the conven-
tional null and alternative hypotheses
through equivalence testing – that is, setting a
null hypothesis that two groups are different
and then testing whether or not they are the
same (Hoenig and Heisey 2001; Wellek
2002; McGarvey 2007; see Panel 2 for a basic
explanation of a simple equivalence t test).
One challenge of this technique is that the
investigator must set a minimum difference
(�) between samples that is assumed as the
null hypothesis, analogous to effect size in
assessing the power of a standard hypothesis
test. While this requirement could be
thought to introduce an element of subjec-

tivity into the analysis, it also forces researchers to make
their underlying assumptions more explicit. For example,
what is the minimum genetic difference that a researcher
is using to define taxa as distinct enough to qualify for
legal protection? The result of equivalence testing, prop-
erly used, is that the risk of a Type II error (as defined in a
traditional hypothesis test) is reduced to 5% or less.

Scientists could also consider adopting a Bayesian or
likelihood-based statistical framework; these come with
their own limitations, but do reduce the problems with
frequentist statistics (the hypothesis-testing paradigm,
based on the probabilities of events occurring over many
trials) discussed here, by avoiding the hypothesis-testing
paradigm. See Wade (2000) for guidelines on using
Bayesian statistics in conservation biology. For Bayesian
readers, we suggest consideration of Bayesian equivalence
testing (eg Wellek 2002); likelihood ratio tests can also be
reversed for likelihood-based equivalence testing. Given
the reluctance of many scientists and federal agency offi-
cials to utilize Bayesian and likelihood methods, however,
for the foreseeable future conservation biologists will
probably have to rely in part on frequentist methods.

Finally, one major factor contributing to the problems of
interpreting non-significant test results is sample size
(Figure 4). On the one hand, with small sample sizes it is
very difficult to find a statistically significant difference
between two populations (low power). On the other hand,
with a very large sample size one can often establish a sig-

FFiigguurree  33.. Observed statistical power and P value, redrawn from
Hoenig and Heisey (2001). The curve is based on a one-tailed
z test where � = 0.05; the blue dashed lines indicate that where
P= 0.05, observed power = 0.5. Thus, when P > 0.05, the test
is not significant and observed power is lower than 50%.
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FFiigguurree  44.. Sample size, effect size, and statistical power. Here, we show statistical
power, or the probability that a statistical comparison will find a significant
difference when one is present, as a function of sample size (on the x-axis) and
effect size (the different colored lines, representing the magnitude of difference
between the two groups in a comparison, shown in standard deviation
equivalents). Power was calculated for two-sample, two-tailed t tests, using the
“PWR” package for the R statistical language. With small effect sizes, a very
large sample size is needed to reliably find a significant difference between groups.
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Panel 2. Equivalence testing

Here, we present a practical method for calculating a two-sample t test for equivalence in means using confidence intervals, following Jones et al. (1996) and
assuming equal variance in the two samples.Readers who use the R statistical programming language can easily conduct the same equivalence test using the
“tost.data” function in the “equivalence” package (Robinson 2008). Readers wishing to conduct calculations by hand, or wanting details on equivalence test-
ing in other contexts, should refer to Wellek (2002).

In equivalence testing, the experimenter must define an a priori minimum difference � between studies that is assumed as the null hypothesis.This inter-
val must be considered carefully as an expected effect size, minimum functional difference, or minimum detectable biological difference.Wellek (2002) sets
out general guidelines for defining � with “strict” and “liberal” criteria; these guidelines are quite generic, however, and researchers should work to identify
the most relevant biological difference between the two study groups in setting equivalence intervals.

Whatever the context, t tests are parametric, and the researcher must assess whether or not the data meet the necessary assumptions of sample inde-
pendence, normal data, and so forth. Equivalence tests have been developed for non-parametric tests (eg the Mann-Whitney test;Wellek 2002) if data do
not meet these assumptions.

Confidence intervals have the advantage of allowing the experimenter to simultaneously conduct an equivalence test and a traditional hypothesis test
(Jones et al. 1996).To show significant equivalence for a two-tailed test, the confidence interval of the difference in means between the two groups must fall
completely within the equivalence interval –� to +�. Confidence intervals are familiar to most scientists (the calculations are the same as in a traditional
test), and are good statistical practice, because visualizing the variation in the data generally translates to a more holistic view of the problem than will be
provided by a binary test result (eg Fidler et al. 2006).

To conduct a t test for equivalence using confidence intervals:
(1) Check that the data meet assumptions for t tests.
(2) Set the equivalence interval –� to +� based on biological understanding of the system at hand (for advanced applications, an asymmetric equivalence

interval can be defined; see Wellek 2002).
(3) Calculate the confidence interval:

confidence limits = estimate ± critical value x standard error
(a) The estimate is the difference between the means of the two sample distributions, which can be set in units of the data (eg meters) or in stan-

dard deviation units.
(b) The critical value is the value that defines the limits of a standard normal distribution containing (1– �)% (typically 95%) of the curve’s area. For a

two-tailed test with � = 0.05, this critical value = 1.96. See Sokal and Rohlf (1995) for calculations in other contexts.
(4) Plot the confidence and equivalence intervals and assess significance following Figure 5 (Jones et al. 1996).

The interpretation of confidence intervals in the context of
equivalence testing is usually straightforward, but can, in some
cases, lead to conflicting test results. For example, in Figure 5, the
confidence interval for example D does not cross zero, indicating a
significant difference between the two groups. However, the confi-
dence interval is also completely contained within the equivalence
interval, indicating significant homogeneity between the two
groups.

How is this result – that two groups are both significantly differ-
ent and significantly homogeneous – possible? Such a result can
occur with a very small but significant difference between two
groups, when the difference is small enough to be deemed not
important by the researcher. It can, in part, be explained by the
concept that, with enough samples from two groups, one is likely
to find a significant difference between them, however small its
magnitude. For example, imagine that scientists or other US FWS
personnel have deemed a difference of > 1% of genomic variation
to constitute a taxonomic difference worthy of protected legal sta-
tus (this is simplistic, but illustrates the point). Thus, two popula-
tions of the same species, if sampled enough, might be significantly
different from one another using a traditional hypothesis test,while
still having less than 1% genomic difference (and thus also being sig-
nificantly homogeneous using an equivalence test). In such a case,
we would generally suggest using the result from the equivalence
procedure, since it relates back to the difference that scientists or
policy makers care about; it can also help to prevent problems from
significant results in traditional tests that come about only because
of extremely large sample sizes. Note that such an outcome (when
a result is both significantly different and significantly homoge-
neous) is unlikely in most ecological contexts.

The opposite result – that the two groups are neither signifi-
cantly different nor significantly homogeneous – is also possible
(Figure 5, examples E and F), and indicates that more data are
needed to reach a reliable conclusion. The possibility of such a
result – not just in the context of equivalence testing – should be
communicated to policy makers as a normal, even common out-
come of scientific studies.

FFiigguurree  55.. Hypothetical confidence intervals for the difference between two
means, following Jones et al. (1996). Each example (A–F) represents a
confidence interval derived from the difference between two sample means.
Confidence intervals contained completely within the equivalence region
–� to +� are significantly homogeneous; confidence intervals not
overlapping zero are significantly different. Examples A and B have
confidence intervals that do not overlap zero and are thus significantly
different; neither confidence interval is contained completely within the
equivalence region, and therefore neither is significantly homogeneous. In
example C, the confidence interval is contained within the equivalence
interval and also overlaps zero, and thus is significantly homogeneous (and
not significantly different). The confidence interval of D is contained
within the equivalence region but does not cross zero, meaning that it is
both significantly different and significantly homogeneous; see the text of
Panel 2 for interpretation. In examples E and F, the confidence intervals
overlap both zero and the edges of the equivalence interval; therefore,
neither result is significantly different or significantly homogeneous.
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nificant difference between two essentially identical popu-
lations (see also Panel 2 on equivalence testing). Usually,
this isn’t an issue in ecological studies, because such large
sample sizes are hard to come by in ecological contexts. As
a matter of course, scientists should conduct a priori esti-
mates of statistical power to assess the proper and practical
level of sampling necessary to answer the question at hand;
such methods are widely available for classical hypothesis
tests and even for equivalence tests (eg Jones et al. 1996).

� Incentives and inferential error

Given the lengthy training of scientists and managers and
the quality control of peer-review systems, why do we still
see inappropriate interpretations of non-significant statis-
tical test results? Much of the answer lies in the institu-
tional incentives for both research scientists and regula-
tory agencies.

In “basic” or “fundamental” studies – the historical
model underlying most scientific endeavors – the social
benefit arises from the advance of knowledge, and avoiding
Type I errors is the primary concern. A Type II error might
result from the improper rejection of a new theory when
statistical differences are not found. While slowing down
the march of scientific progress, the Type II error does no
other direct harm, and generates no benefit to the scientist
who committed the error. On the other hand, a Type I
error could lead to the allocation of scientific resources
down an unpromising pathway, and would simultaneously
generate undeserved benefits of increased prestige and
recognition for the scientist(s) responsible. Accordingly,
the scientific establishment has placed an emphasis on
reducing Type I error to reduce perverse incentives for sci-
entists proposing theories that are supported only by spuri-
ous statistical findings (NRC 1995; Lemons et al. 1997;
Doremus 2005; Doremus and Tarlock 2005).

In contrast, in applied scientific studies, a Type II error
can have substantial repercussions, for example when a
life-saving drug is not found to have a benefit in a small
sample-size study or when a species is lost forever because
it is not found to be genetically distinct. The considera-
tion of Type II error has therefore been connected by
many commentators to a more robust use of the “precau-
tionary principle” in policymaking (eg Lemons et al.
1997). The medical community has developed ways of
addressing Type II error, including, among others, defin-
ing “clinical” significance as opposed to “statistical” sig-
nificance (eg Kendall and Grove 1988), but the conser-
vation science community has yet to follow suit.

Regulatory agencies such as the FWS also face pressures
that discourage the consideration of Type II errors. In situ-
ations such as the Preble’s debate, the consideration of
Type II errors might generate regulatory restrictions that
carry considerable economic impacts. Such impacts are
often concrete, substantial, and borne by small groups (eg
businesses faced with increased production costs because of
regulation), while benefits from regulatory restrictions are

often abstract (eg public gain from preventing an extinc-
tion). Thus, stakeholders facing restrictions have a greater
incentive to organize and lobby the agencies or the US
Congress to influence its decisions and prevent regulatory
restrictions (Biber 2007). Accordingly, regulatory agencies
(such as FWS) will systematically face pressure not to regu-
late, and to avoid or discount the analysis of Type II statis-
tical errors that would provide support for regulation.

How might we overcome these institutional challenges?
One option is through the judiciary, especially since most
ESA decisions are litigated at some stage. As a general
rule, courts could require agencies that have relied on a
quantitative statistical analysis to explain the uncertain-
ties in their analysis in both directions (ie the risk of both
false positives and false negatives). For instance, where an
agency has relied on the lack of statistical significance to
make a management decision (a Type I error analysis), a
court should require some consideration of the Type II
error (eg with an equivalence test where appropriate).
Agencies that failed to provide such an explanation in a
clear manner, accessible to non-specialist judges, would be
required to reconsider their decision.

There is precedent for such a course in the courts. In
one recent decision, a court struck down the National
Oceanic and Atmospheric Administration’s (NOAA)
decision to weaken the “dolphin-safe” tuna labeling stan-
dard, because the sample sizes in the agency’s research
were too small to provide adequate power (Earth Island
Institute v Hogarth, 494 F 3d 757 [9th Circuit 2007]). In
general, courts have the authority to strike down agency
decisions that are irrational, fail to consider important
factors, or are incoherent or inexplicable (eg Motor
Vehicle Manufacturers Association v State Farm Mutual
Automobile Insurance Company, 463 US 29 [1983]; Federal
Power Commission v Texaco, 417 US 380 [1974]).

We emphasize that we are not calling for courts to
require wildlife agencies to provide particular types of any
statistical analysis in their decisions, but rather that agen-
cies be required to explain the risk that their analysis
failed to find differences that would have resulted in an
alternative policy choice. In many cases, this could be
done through Bayesian methods or equivalence tests. If
special cases arise, where such relative uncertainties can-
not be calculated quantitatively, agencies should give a
clear and thorough qualitative assessment of the risks
associated with both sides of their decision.

The benefits of a more active judicial role here are
twofold. First, agencies would be provided with at least
some incentive to be more attentive to the risk of Type II
errors in their decision making. Second, it could help to
encourage more thorough consideration of Type II errors
by the scientific community.

� Conclusion

Scientists play the most important role in reducing errors
of interpretation from non-significant test results. People
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conducting conservation studies or making management
decisions should remember the importance of both Type I
and II errors, the pitfalls of using post hoc power analysis to
assess Type II errors, and the need to use alternatives such
as equivalence testing. Editors and peer reviewers should
carefully examine submissions for the inferential errors
that we discuss here and, where appropriate, encourage the
use of alternative statistical techniques. And educators
should reinforce in their students an understanding of the
limitations of statistical analyses in this area.

Ecologists can also play a role in helping educate policy
makers, lawyers, and even the courts, about the statistical
pitfalls discussed in this paper. For instance, scientists who
are working on wildlife populations that are the subject of
litigation can inform all parties about the risks of statisti-
cal inferential error through, for example, communica-
tions with the lawyers in the case, or even the submission
of an amicus brief (a brief filed in court on behalf of out-
side groups who are not parties to the case, but seek to
inform the court about important, relevant policy issues).

An increased focus on better statistical inference will
have broad benefits by providing an impetus for a more
intelligent and productive debate about our conservation
priorities. In most cases, both power analysis and equiva-
lence testing require a determination about what is the
minimum level of change or difference (“effect size”) that
the analyst wishes to detect (Sokal and Rohlf 1995; Wellek
2002; Adelman 2004). In the context of decision making,
a determination must be made of the meaningful effect size
that could influence a management or policy change.

For instance, for agencies that rely on genetic differ-
ences to make decisions about protected taxa, equiva-
lence testing requires setting a numeric threshold for the
level of genetic differentiation that we are concerned
about. Defining such a threshold is at some level subjec-
tive (eg Waples and Gaggiotti 2006); thus, methods such
as equivalence testing force us to recognize that genetics
alone cannot answer the question of “how much” differ-
ence is enough to warrant protection.

Accordingly, proper consideration of Type II errors
opens the door to discussions about a range of other val-
ues besides genetic variation and evolutionary trajectory.
On the one hand, selecting a very low threshold of differ-
ence between taxa could result in the identification of
many more conservation units (taxa) for protection, with
potentially important economic and political conse-
quences. At the same time, reliably resolving small differ-
ences statistically involves large sample sizes. On the
other hand, selection of a higher threshold to justify pro-
tection might result in the disappearance of not just valu-
able genetic diversity, but also ecosystems that might oth-
erwise be protected through the conservation of the
population in question, and the loss of important aes-
thetic and cultural values associated with certain plant
and animal populations (eg, the persistence of bald
eagles, grizzly bears, and gray wolves in the conterminous
US). We are not arguing that genetic information is irrel-
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evant, only that better statistical inference might bring
more balance to a debate that, in the case of the Preble’s
meadow jumping mouse, was too focused on genetics and
not on the other important values that necessarily inform
our conservation efforts (Taylor and Dizon 1996;
Doremus 2005; Doremus and Tarlock 2005).

To the extent that policy makers and scientists rely on
the reporting of only Type I errors and levels of statistical
significance to make these types of decisions, they allow
themselves to avoid these hard discussions. While that
may be the easy road in the short term, we believe that in
the long run it ill serves efforts to conserve our valuable
biodiversity resources.
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