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Correlations which are artifacts of various types of data
transformations can be said to be spurious. This study considers
four common types of analyses where the X and Y variables are
not independent; these include regressions of the form X/Z vs Y/Z,
X�/Z vs Y�/Z, X vs Y/X, and X�/Y vs Y. These analyses were
carried out using a series of Monte Carlo simulations while
varying sample size and sample variability. The impact of
disparities in variability between the shared and non-shared
terms and measurement error for the shared term on the
magnitude of the spurious correlations was also considered. The
accuracy of equations previously derived to predict the magnitude
of spurious correlations was also assessed. These results show the
risk of producing spurious correlations when analyzing non-
independent variables is very large. Spurious correlations
occurred in all cases assessed, the mean spurious coefficient of
determination (r2) frequently exceeded 0.50, and in some cases the
90% confidence interval for these simulations included all large r2

values. The magnitude of spurious correlations was sensitive to
differences in the variability of the shared and non-shared terms,
with large spurious correlations obtained when the variability for
the shared term was larger. Sample size had only a modest impact
on the magnitude of spurious correlations. When measurement
error for the shared variable was smaller than one half the
coefficient of variation for that variable, which is generally the
case, the measurement error did not generate large spurious
correlations. The equations available to predict expected spurious
correlations provided accurate predictions for the case of X�/Z vs
Y�/Z, variable predictions for the case of X vs Y/X, and poor
predictions for most cases of X/Z vs Y/Z, and X�/Y vs Y.

It is common practice to conduct statistical analyses of

non-independent variables in the scientific literature.

This was first commented on by Pearson (1897) who

discussed cases where ratios with identical denominators

are analyzed. When commenting on published examples

of this type, Pearson stated ‘‘a part of the correlation he

discovers. . . is solely due to his arithmetic, and as a

measure of organic relationship is spurious.’’ Pearson

defined spurious correlations to be correlations caused

solely by data transformations which do not reflect

meaningful properties of the underlying data. Pearson

(1897) also derived a general equation to describe the

spurious correlation between any two ratio statistics

where components of these ratios were themselves

correlated with each other. Pearson went on to show

how using certain simplifying assumptions his general

equation could be modified to an equation describing

the spurious correlation expected when ratios with

identical denominators are analyzed, e.g. X/Z versus Y/

Z. Reed (1921) followed up on Pearson’s study by

deriving additional equations, using Pearson’s general

equation, describing the spurious correlation for other

specific non-independent ratio statistics. Reed also

showed how Pearson’s general equation could be used

to describe the spurious correlation for analyses of non-

independent products, e.g. X�/Z versus Y�/Z. Chayes

(1949) derived a wide range of new equations from

Pearson’s original equation which cover most types of

spurious correlations of general interest.

Pearson (1897), Reed (1921), Chayes (1949), and more

recently Bensen (1965) and Kenney (1982), were careful

to point out how widespread these types of spurious

correlations were in the literature of their day. More

recently, however, Prairie and Bird (1989) suggested that

the spurious correlation problem is over-inflated, and

they further argued misunderstanding about the true

extent of this problem can be attributed to the failure of

modern ecologists to keep up with the relevant statistical

literature. Peters (1991) also claimed the risk of ‘‘self-

correlations’’ was overstated. Other authors have sug-

gested the risk of generating spurious correlations when

analyzing non-independent variables is so large that such

analyses should be avoided whenever possible (Rauben-

heimer 1995). Several researchers have suggested some of

modern ecology’s most celebrated relationships may in

fact be spurious correlations (Atchley et al. 1976,

Kenney 1982, Weller 1987, Packard and Boardman

1988, Jackson et al. 1990, Jackson and Somers 1991,

Raubenheimer 1995, Berges 1997, Knops et al. 1997,

Jasienski and Bazzaz 1999). It has also been argued that

regressing non-independent variables against each other

can obscure real correlations (Packard and Boardman
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1988, Beaupre and Dunham 1995). Despite the long

history of these warnings, statistical analyses of non-

independent terms are still widespread in the modern

literature.

The objective of this study is to demonstrate the

conditions under which ‘‘spurious correlations’’ are

likely to arise, their expected magnitudes, and to show

how the statistical significance of analyses of non-

independent variables can be directly assessed. This

was done using a Monte Carlo simulation approach,

under a range of conditions ecologists are likely to

encounter when conducting biometric analyses. These

simulations were run for four common types of non-

independent statistical analyses; i.e. regressions of the

form X/Z vs Y/Z, X�/Z vs Y�/Z, X vs Y/X, and X�/Y

vs Y. The impact of measurement error, sample size,

sample variability, and differences in numerator and

denominator variability on the magnitude of spurious

correlations was examined. Since Pearson neglected

third or higher order variables when deriving his general

equation, several authors (Reed 1921, Chayes 1949,

Bensen 1965, Kenney 1982) have suggested the analytical

solutions for the various forms of spurious correlations

may only apply when the sample CV is small, which is

generally not the case for ecological data. The validity of

these analytic solutions was assessed using the results of

the Monte Carlo simulations to show whether these

equations can be used to estimate the expected magni-

tude of spurious correlations. This analysis will also

present a simple approach for independently assessing

the magnitude and statistical significance of expected

spurious correlations using an example from a classic

ecological hypothesis, i.e. the ‘‘nutrient-use efficiency’’

hypothesis (Vitousek 1982).

Methods

All random numbers were generated using the random

number generator function of Microsoft Excel†, with a

different random seed used for each simulation. The

mean and standard deviations of all generated series

were checked against the originally specified distribu-

tion. In about half the cases this procedure detected 1 or

2 values per 10 000 observations which were obviously

not within the originally specified distribution. For

example, a value of :/50 000 when the specified dis-

tribution was mean�/25, SD�/10, and the second

highest observation in the generated series was 62.

Distributions with implausible values were not used for

the Monte Carlo simulations. Once the appropriate

random files were generated, correlation coefficients

were calculated for the appropriate sample size and

then squared to obtain the coefficient of determination.

McCullough and Wilson (1999) pointed out that there

are a variety of problems with the statistical packages in

various Microsoft Excel† products. Because of the

previously mentioned anomalous random number re-

sults, and McCullough and Wilson’s (1999) warnings,

both random number distributions and regression results

were carefully screened. The validity of the correlation

coefficients obtained using Excel† was assessed by

comparing 100 correlation coefficients generated using

Excel† and the statistical package Statview† using the

same data-set. In the 100 cases assessed the correlation

coefficients provided by the two software packages

agreed perfectly to nine significant figures.

After three columns of 10 000 observations were

generated, a test of the spurious correlation problem

for regressions of the form X/Z vs Y/Z was conducted.

For each simulation a mean of 25 and a constant SD was

used when generating X, Y and Z. This process was

repeated ten times (SD�/2.5, 5, 7.5, 10, 12.5, 15, 17.5,

20, 22.5, and 25) to cover a range of CVs relevant to

biometry. To create X/Z and Y/Z variables, two new

columns of data were created by dividing the 1st (X) and

2nd (Y) columns by data from the corresponding 3rd (Z)

column. For the case where CV�/0 the X variable was

compared directly to the Y variable, with a mean and SD

of 259/12.5. In cases where sample sizes of 20 or 100

were used, 500 or 100 simulations were conducted,

respectively.

To test for spurious correlations for regressions of the

form X�/Z vs Y�/Z, new data were randomly gener-

ated, and 4th and 5th data columns were created by

multiplying the 1st (X) and 2nd (Y) columns by the

corresponding 3rd (Z) column. These simulations used

the same range of sample variability, sample sizes, and

number of simulations as for the X/Z vs Y/Z simulations.

To test for spurious correlations of the form X vs Y/X,

two columns with 10 000 observations were generated,

and a 3rd set of observations was created by dividing the

2nd column by the 1st (Y/X). The 1st column was then

correlated with the 3rd column. These simulations used

the same range of sample variability, sample sizes, and

number of simulations as the preceding simulations. For

these simulations, it was necessary to first transform all

random numbers to their absolute value in order to

eliminate negative values. This was done because results

for negative numbers had the mirror image of results for

positive numbers. These results were log transformed, i.e.

log(1�/X) vs log(1�/Y/X), before coefficients of deter-

mination were calculated.

To test for spurious correlations of the form X�/Y vs

Y, 10 000 X and Y observations were generated. A mean

and SD of 259/12.5 was used, with a second set of

simulations using a mean and SD of 259/2.5 also run. A

3rd set of observations was created by adding some

fraction of the Y column to the X column (X�/Y). The

fraction of the Y column added to the X column was

varied from 0.1�/Y to 2�/Y by units of 0.1, for 20

different simulations using a new set of random numbers
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for each case. The 3rd (X�/Y) data column was then

correlated with the 2nd column (Y), using the same

sample sizes and number of simulations as the preceding

cases.

The impact of disparities between the shared term and

non-shared term variability on the magnitude of spur-

ious correlations for the cases considered was assessed by

holding the mean and SD of the non-shared term

constant at 259/5 (9/1 SD), and varying the SD of the

randomly generated shared term (mean�/25) from 20,

14.29, 10, 7.04, 5, 3.55, 2.5, 1.77, and 1.25. This resulted

in ratios of non-shared to shared term variability of 0.25,

0.35, 0.5, 0.71, 1, 1.41, 2, 2.83 and 4, respectively.

Spurious correlations were then generated for each of

the four cases as described above using a sample size of

20 and repeated 500 times.

An analysis of measurement error impacts on the four

non-independent regression types was conducted by

calculating spurious correlations as previously described.

A new variable was then randomly generated which gave

a ‘‘measurement error’’ (9/1 SD) which corresponded to

9/10%, 3.3% or 1% of the mean. This new variable was

then added to the shared term in these non-independent

regressions. That is, it was added to Z for X/Z vs Y/Z

and X�/Z vs Y�/Z regressions, to X for X vs Y/X

regressions, and to Y for X�/Y vs Y regressions. This

procedure was repeated for a range of sample variation

(i.e. SD�/2.5, 5, 7.5, 10, 12.5, and 15). This process was

carried out 500 times using a sample size of 20 for each

combination of sample variability and sample error.

In addition, the accuracy of the equations for predict-

ing the expected spurious correlation was compared to

the results of the Monte Carlo simulations. For a non-

independent analysis of the form X/Z vs Y/Z (assuming

rXY�/rXZ�/rYZ�/0) the expected spurious correlation

is:

r�
CV2

Z

(CV2
X � CV2

X)1=2(CV2
Y � CV2

X)1=2 (1)

where CVZ, CVX, and CVY equal the CVs of variables Z,

X, and Y, respectively (Pearson 1897). The equation for a

non-independent analysis of the form X�/Z vs Y�/Z

(again assuming rXY�/rXZ�/rYZ�/0) is identical to Eq.

1 above (Reed 1921). The equation for the expected

spurious correlation of the form X vs Y/X (assuming

rXY�/0) is:

r�
�CVX

(CV2
Y � CV2

X)1=2
(2)

(Chayes 1949). The equation for the expected spurious

correlation for regressions of the form X�/Y vs Y

(assuming rXY�/0) is:

r�
1

(1 � (CVX=CVY)2)1=2
(3)

(Bensen 1965). These equations are special cases of

Pearson’s general equation, which assume no underlying

correlations between the variables. Chayes (1949) also

published these equations in their more general form

which accounts for correlations between the variables.

This study will also demonstrate the ease with which

the expected magnitude of spurious correlations and the

statistical significance of analyses of non-independent

variables can be determined using data from a classic

study which regressed two non-independent variables

against each other (Vitousek’s 1982, 1984). To test for

the expected spurious correlation in Vitousek’s (1982)

Fig. 4, the data from this figure were first extracted. A

series of 1000 bootstrap simulations with replacement

were then conducted by copying Vitousek’s nitrogen and

carbon data 1000 times, randomly sorting each indepen-

dently of the other several times, and then calculating

1000 regressions of nitrogen vs dry weight/nitrogen using

the same sample size (n�/105) as Vitousek. Because

Vitousek (1997) claimed a significant positive intercept

when regressing litterfall dry weight (Y) against litterfall

nitrogen content (X) provided statistical support for the

original ‘‘nutrient-use efficiency hypothesis’’, the same

data were then used to test whether statistically sig-

nificant intercepts resulted when regressing randomly

sorted data against each other. This was tested by

randomly sorting Vitousek’s data and regressing litterfall

dry weight against nitrogen content 100 times with

replacement.

Results

X/Z vs Y/Z

This type of spurious correlation can be generated when,

for example, lake primary production/surface area is

compared to lake fisheries production/surface area

(Jackson et al. 1990) or in the case of Sterner et al.

(1997) when they compared the carbon to phosphorus

ratio in epilimnetic seston to the light to phosphorus

ratio in the epilimnion. Spurious correlations of the form

X/Z vs Y/Z always occur, and they are moderately strong

when the CV of the sample is B/0.4 (Fig. 1). When the

sample CV is ]/0.4, the 90% confidence intervals of

these distributions include essentially all large and

interesting r2 values.

X�/Z vs Y�/Z

This type of non-independent regression can occur when

hydrologists attempt to validate sediment loading curves

by comparing predicted sediment concentration (Cp)

multiplied by the observed flow (Q) against observed

sediment concentration (Co) multiplied by the observed

flow or Cp�/Q vs Co�/Q (Cohn et al. 1992). Unlike
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regressions of the form X/Z vs Y/Z, this type of non-

independent regression only produced moderately large

(r2�/0.15�/0.35) spurious correlations (Fig. 1). These

spurious correlations were not strongly dependent on

sample variability.

X vs Y/X

This is a very common type of non-independent regres-

sion. Examples include regressing the ratio of leaf litter

nitrogen to dry weight against leaf litter nitrogen or

some weight specific function (e.g. nutrient excretion/

body weight) against an organism’s body weight (Berges

1997). The present analysis shows regressions of the

form X vs Y/X often produce spurious correlations

averaging r2�/0.52�/0.63 (Fig. 1). Although not shown

in Fig. 1, these regressions are almost always negative.

X�/Y vs Y

Prairie and Bird (1989) used the example of regressing

body mass against liver mass in vertebrates as a form of

the X�/Y vs Y regression. Another example of this type

of non-independent regression is regressing lake water

total phosphorus against particulate phosphorus. The

present analysis shows that in cases where Y�/X (e.g.

liver mass is a small portion of body mass), this form of

non-independent regression will only produce small

spurious correlations (Fig. 1). This form of spurious

correlation is not notably influenced by variation for the

data used to generate them. An analysis of the magni-

tude of spurious correlations generated using large

(CV�/0.5) or small (CV�/0.1) sample variation resulted

in spurious correlations with nearly identical means and

distributions as those presented in Fig. 1.

Sample size impacts on spurious correlations

In almost all the cases simulated in Fig. 1, similar

average spurious correlations were observed when using

sample sizes of 20 and 100. However, for the cases of

X�/Z vs Y�/Z, X vs Y/X, and X�/Y vs Y only about

45% as much variability in the generated spurious

correlations was observed when using the larger sample

size. For the case of X/Z vs Y/Z, about 15% less

variability was observed when using a larger sample

size.

Fig. 1. The results of Monte
Carlo simulations for the cases of
X/Z vs Y/Z, X�/Z vs Y�/Z, and
X vs Y/X across a gradient of
equal sample CVs, and X�/Y vs
Y across a gradient of Y versus
X. The CV�/0 results represent
the case where the X and Y
variables were completely
independent of each other (e.g. X
vs Y). The ‘‘Box and Whisker’’
plots show the median (inner
horizontal bar), the 25th and
75th percentiles (the outer
dimensions on the ‘‘boxes’’) and
the 10th and 90th percentiles (the
‘‘whiskers’’) of these
distributions. The sample size for
these simulations was 20, and 500
simulations were run. Although
not depicted, the results for a
sample size of 100 had in most
cases virtually identical means,
but much less variability. The
hatched horizontal lines show the
spurious correlations predicted
by Eq. 1, 2 and 3.
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Disparities between shared and non-shared term

CVs

The magnitude of spurious correlations was very

strongly correlated with disparities in variability between

the shared and non-shared terms (Fig. 2). When the

shared term CV was more than 1.5 times larger than the

non-shared term CV, spurious correlations were very

large. Conversely, when the shared term CV was smaller,

spurious correlations were generally much smaller.

Measurement error in shared terms and spurious
correlations

This study also examined the impact of measurement

error for shared terms on the spurious correlation

problem. Measurement error refers to error due to

collecting an unrepresentative sample and/or analytical

error when this sample is processed in the lab. This error

can be directly estimated by collecting a blind field

duplicate; i.e. collecting a separate sample in the field

which is processed independently of the other duplicate

in both the field and the laboratory. Measurement error

should be distinguished from natural variability, such as

that variability normally obtained within treatments by

the end of an experiment or the variability that occurs

within a population of observations (e.g. between lake

variation in nutrient concentrations). If, for example,

measurement error for Z is large and natural variation in

Z is small it is easy to envision a scenario where a

regression of the form X/Z vs Y/Z would generate strong

but meaningless correlations. An analysis of the mea-

surement error problem shows that unless the measure-

ment error is a substantial fraction of the variable

variance, e.g. measurement error/CV]/0.5 then spurious

correlations generated by measurement error are gen-

erally small and much less than the spurious correlations

introduced by the common term (Fig. 3).

Analytical versus simulation results

Equation 1 failed to predict the strong dependence of

spurious correlations of the form X/Z vs Y/Z on the

overall variable CV when all CVs were equal (Fig. 1). In

addition, when variable CVs were equal and larger than

0.3, Eq. 1 severely underestimated the magnitude of the

observed spurious correlation. Equation 1 also under-

estimated the magnitude of the expected spurious

Fig. 2. The impact of disparities
in variability between the shared
and non-shared terms for each of
the four types of regressions
considered in this study. For
these simulations the mean and
variability of the non-shared
term was held constant at 259/5
(9/1 SD), and the variability of
the shared term was varied in an
exponential series from 1.25 to
20. For each case, 500
simulations with sample sizes of
20 were run. The results for
simulations with samples sizes of
100 had virtually identical means
and much less variability.
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correlation when the CV for Z was greater than that for

X and Y (Fig. 4). In contrast, Eq. 1 did a very good job

of predicting the expected spurious correlation for the

case of X�/Z vs Y�/Z across a wide range of shared

CVs (Fig. 1), as well as when the CV for Z differed from

that for X and Y (Fig. 4). Equation 2 did a good job of

predicting the expected spurious correlation for the case

of X vs Y/X when the variable CV was 5/0.20 (Fig. 1),

but tended to strongly underestimate the spurious

correlation at higher sample CVs (Fig. 4). Furthermore,

Eq. 2 only provided accurate predictions when the data

were first log(1�/X) transformed. Equation 3 predicted

the spurious correlation perfectly for the case of X�/Y vs

Y when X�/Y (Fig. 4), but failed to accurately predict

the expected spurious correlation in all other cases

(Fig. 1).

Vitousek (1982) reconsidered

The litterfall nitrogen and dry weight in Vitousek’s

(1982) Fig. 4 had means9/1 SD of 659/50 and 55539/

2782 (kg ha�1 yr�1), respectively. When the data from

Vitousek’s Fig. 4 was statistically analyzed, after log(1�/

X) transformation, a coefficient of determination of 0.65

was obtained. The mean9/1 SD r2 values of the 1000

bootstrap simulations, after randomly sorting these data,

was 0.699/0.07. According to these results the relation

reported by Vitousek (1982) in his Fig. 4 had a P-value

of 0.7265. To test whether a significant positive intercept

when regressing litterfall dry weight (y) against litterfall

nitrogen content (x) is positive support for Vitousek’s

‘‘nutrient-use efficiency’’ hypothesis, we randomly sorted

Vitousek’s litterfall dry weight and nitrogen content data

and calculated 100 regression equations. The mean

intercept of these regressions was 55669/455. The t-

value for these intercepts averaged 12.569/1.36 and was

significant in each case at the 0.0001 level.

Discussion

The most fundamental premise of statistics is that the

strength of any association should be judged against the

likelihood that that association could have occurred

purely due to random chance. The present study shows

regressing non-independent variables against each other

frequently results in regressions which appear to be

strong based on their r2 values, but which are not

Fig. 3. The impact of measurement
error for the shared term on the
magnitude of spurious correlations
for each of the four types of
regressions considered in this study.
These simulations were run across a
gradient of sample variability and
measurement error. These simulations
were conducted by first assigning a
common variability to the shared and
non-shared terms and then adding a
random error term equivalent to some
percentage of the sample mean to the
shared term. For each case, 500
simulations with sample sizes of 20
were run. The medians of these
distributions were plotted.
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significant (at P�/0.05) as determined by Monte Carlo

simulations. These results indicate researchers should be

cautious when drawing inferences from analyses of non-

independent terms. In many cases such analyses will not

produce meaningful results, e.g. regressions of the form

X/Z vs Y/Z and X vs Y/X when the sample CVs�/0.4, or

regressions of the form X�/Y vs Y when the Y term is

equal to or greater than the X term. In addition, all non-

independent analyses assessed in this study produced

very large spurious correlations when the shared variable

CV was greater than that for the non-shared terms. In

the preceding cases regressing non-independent variables

against each other produced a range of results encom-

passing virtually all large and interesting coefficients of

determination. Counter-intuitively, sample size did not

have a substantial impact on the average magnitude of

spurious correlations, although large sample sizes did

result in less variance in expected outcomes. It should be

emphasized that these results do not mean that all

observed correlations between non-independent vari-

ables are solely due to spurious correlations. The results

of the simulations summarized in this study simply

suggest that in many cases the expected spurious

correlation may be so large that it will be very difficult

to discern the actual magnitude of any true correlations.

In some cases, however, the spurious correlation is

sufficiently small (mean r2B/0.3) so that it is possible to

conduct a careful statistical analysis of the data provided

the correct null model is specified (see later). For

example regressions of the form X�/Z vs Y�/Z,

regressions of the form X�/Y vs Y when the Y term is

much smaller than the X term, or all analyses assessed in

this study when the shared term variability was sub-

stantially less than that for the non-shared terms.

However, it should be noted that the statistical signifi-

cance of any such regressions can only be determined

through Monte Carlo (Crowley 1992) or Bootstrap

simulations (Efron and Tibshirani 1993). Significance

values generated from least squares or similar para-

metric analyses will not be accurate.

It is also worth noting that the relevance of whether a

specific correlation is spurious depends on whether that

statistical association is being used to predict or to

explain, sensu Pedhazur (1997). When using a statistical

association to merely make a prediction the fact that the

statistical association might be a mathematical artifact

could be irrelevant. For example, if X is being used to

predict X�/Y when filling in missing data it could be

advantageous that X�/Y is dependent on X out of

mathematical necessity. However, when a correlation is

Fig. 4. An analysis of the
predicted spurious correlation
from Eq. 1, 2 and 3 (open
squares) and the spurious
correlations obtained from the
simulations (closed circles)
when variability between the
shared and non-shared terms
differed. The cross-hatches (�/)
represent cases for the X�/Y vs
Y simulations where the values
were not log transformed. For
each point, 500 simulations with
sample sizes of 20 were run.
Median values are plotted.
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being used for explanatory purposes, i.e. when making

the inference that one variable appears to cause variation

in the other in a mechanistic sense, whether or not a

correlation is spurious is of critical importance. For

example, in a study of the biogeochemical composition

of lake seston in 115 northwest Ontario lakes (Fee et al.

1989), lake water particulate phosphorus (PP) content

was very highly correlated with lake water total phos-

phorus (TP) content (r2�/0.91). For this data-set,

knowing a lake’s PP concentration makes it possible

to predict the corresponding TP concentration with a

high degree of accuracy because in this survey PP

constituted on average 459/9% (9/1 SD) of TP. However,

knowing the PP concentrations in these lakes provides

no insight into why the 25th percentile of this sample had

a TP concentration of 15.3 mg/l and the 75th percentile

had a TP concentration of 22.9 mg/l. Interestingly, the

mean spurious correlation between PP and TP in the

Fee et al. (1989) data-set was found to be r2�/0.809/0.02

(9/1 SD), by randomly disaggregating the data and

correlating PP against TP (where TP equals PP plus total

dissolved phosphorus).

Several authors have suggested that measurement

error for the shared term is an important (Atchley et

al. 1976, Raubenheimer 1995) or the most important

(Prairie and Bird 1989, Sterner et al. 1997) factor likely

to generate spurious correlations. Measurement error is

the variability introduced by unrepresentative sampling

and/or instrument error during sample processing (i.e.

the error normally assessed using field duplicates), and

should be clearly distinguished from natural variability

which normally occurs within a treatment or a popula-

tion of interest and is the primary focus of this study.

However, in direct contrast to these predictions, the

present study shows measurement error will usually not

generate strong spurious correlations in most statistical

analyses. True to hypothetical examples cited in past

studies (Kenney 1982), the impact of measurement error

on spurious correlations is quite large when the mea-

surement error is larger than the natural background

variability for the shared variable, i.e. when measurement

error is the main source of variation for that variable.

However, large spurious correlations due to measure-

ment error only occurred when measurement error for

the shared variable was larger than the CV for that

variable. The special case of measurement error exceed-

ing natural variability for a variable is, hopefully, rare in

statistical analyses of ecological data. Assessment of the

impact measurement error on spurious correlation gen-

eration strongly suggests that it is the actual shared

terms, and not measurement error, which is the main

cause of spurious correlations.

The analytical equations developed by Pearson (1897),

Reed (1921), Chayes (1949) and Bensen (1965) vary

greatly in their ability to predict the expected spurious

correlation. Equation 2 provided in many cases accurate

predictions of the expected spurious correlation for

analyses of the form X�/Z vs Y�/Z. Equation 2

provided accurate predictions for spurious correlations

of the form X vs Y/X provided the variable CV was

small and the data were log(1�/X) transformed. It is not

surprising that log transforming the data would improve

the accuracy of Eq. 2, but it is surprising that Eq. 2

provided very inaccurate predictions under some condi-

tions without log transformation. Equation 1 did a poor

job of predicting the expected spurious correlation for

analyses of the form X/Z vs Y/Z under a wide range of

conditions. This result is noteworthy because previous

investigators (Reed 1921, Chayes 1949, Bensen 1965)

pointed out that Eq. 1 should work for both analyses of

the form X�/Z vs Y�/Z and X/Z vs Y/Z. The failure of

Eq. 1 and 2 to accurately predict spurious correlations

when variable CVs were ]/0.30 is in all likelihood due to

the dependence of these types of spurious correlations

on the overall variable variability and the fact that

Pearson’s original derivation is strictly speaking only

valid at small CVs. Equation 3 only predicted the

expected spurious correlation under very special circum-

stances, i.e. X�/Y, which will rarely be satisfied. If these

equations actually provided accurate estimates of the

expected magnitude of spurious correlations for a wide

range of conditions, they would be very useful tools

when conducting analyses of non-independent variables.

A disadvantage with all these analytical solutions, even

when they provide accurate predictions, is that they do

not allow investigators to establish a significance level

for a calculated correlation. To do this it is still necessary

to carry out appropriate bootstrap or Monte Carlo

simulations. The fact that most of the above mentioned

equations failed to accurately predict the true magnitude

of spurious correlations in most scenarios shows there is

an opportunity for statisticians to develop a new series

of equations that can accurately predict spurious

correlations.

The null model mis-specification problem

Some authors have argued that the problem with

analyzing non-independent variables using regression

approaches is not that spurious correlations are gener-

ated, but instead that virtually all authors mis-specify

their null model (Prairie and Bird 1989). The intuitive

and most commonly used, but incorrect, null model in

cases where non-independent variables are analyzeed is

r:/0 (Chayes 1949, Bensen 1965, Atchley et al. 1976,

Kenney 1982, Jackson et al. 1990, Raubenheimer 1995).

However, as this study has already shown, randomly

generated regressions of non-independent variables al-

most always produce correlation coefficients larger than

this. Logically, one can conduct regression analyses of

non-independent variables as long as one is clear that the
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null model is the average r or r2 generated from an

appropriate Monte Carlo or Bootstrap simulation, and

statistical significance is judged based on the results of

these simulations. Gotelli and Graves (1996) provided

useful guidance on this problem ‘‘A null model is a

pattern-generating model that is based on randomiza-

tion of ecological data. . . [with] the randomization

designed to produce a pattern that would be expected

in the absence of a particular ecological mechanism.’’

Some authors have misinterpreted theoretical arguments

in favor of conducting regressions of non-independent

variables to mean that one can also use a null model of

r:/0. To quote Reed (1921) ‘‘the value of the spurious

correlation involved should always be considered when

drawing conclusions from the coefficient of correlation

of any two index numbers regardless of their functional

form’’.

For the sake of simplicity, this study has based all of

its conclusions on analyses of distributions of simulated

r2 values. This was done because most ecologists prefer

to report r2 values, and because the coefficient of

determination describes the variability explained by a

statistical association. However, as a practical matter, it

will usually make the most sense to base these simula-

tions on analyses of r value distributions. This is because

regressing non-independent ratios against each other

produces distributions of r values which are strongly

skewed towards one sign. For example, spurious correla-

tions of the form X/Z vs Y/Z, X�/Z vs Y�/Z, and X�/

Y vs Y are positive, while spurious correlations of the

form X vs Y/X are negative.

Vitousek’s (1982) nutrient-use efficiency

In some cases regressions analyzing ratios which are not

entirely independent may be the only approach that

makes sense given the hypothesis being tested. Several

authors have recommended randomization or Boot-

strapping procedures to calculate the true significance

of non-independent regression analyses (Buonaccorsi

and Liebhold 1988, Jackson and Somers 1991). To

demonstrate the ease with which these simulations can

be preformed, the results of a reanalysis of data from a

classic study will be discussed.

Vitousek’s 1982 paper on nutrient-use efficiency by

terrestrial plants is a citation classic, with this and a very

similar paper (Vitousek 1984) receiving over 600 cita-

tions since their publication. Based on a comparison of

the nitrogen content of litterfall against the ratio of

litterfall dry weight to litterfall nitrogen content (his Fig.

4), Vitousek concluded plants from nutrient poor

habitats to produce more organic matter per unit

nitrogen than plants from nutrient-rich habitats. As

Knops et al. (1997) previously pointed out, and Vitousek

(1997) acknowledged, this X vs Y/X type analysis is

quite prone to spurious correlations. In fact, my

reanalysis of the data in Vitousek’s (1982) Fig. 4 shows

it could simply be a spurious correlation. This is an

important point because 13 of the 16 statements regard-

ing the nutrient-use efficiency hypothesis in the discus-

sion section of Vitousek (1982) referred to Fig. 4. After

acknowledging that the regression in his Fig. 4 might

indeed be spurious, Vitousek (1997) went on to argue

that the true test of the nutrient use efficiency hypothesis

is whether the ‘‘y-intercept of litterfall dry mass regressed

against litterfall N’’ is positive. According to Vitousek

(1997), ‘‘positive y-intercepts establish that there is

systematically more dry mass per unit of nutrient in

litterfall in the low-nutrient sites’’. In contrast to

Vitousek’s claim, the present study found a positive

intercept, which can simply be caused by lack of fit in the

original data. Thus, the evidence Vitousek originally

(Vitousek 1982) and subsequently (Vitousek 1997) used

to support his formulation of the nutrient-use efficiency

hypothesis can be attributed to various forms of spurious

correlations.

Conclusions

The risk of producing a spurious correlation when

analyzing non-independent variables should not be

surprising because one of the first things most students

learn about regression analysis is the X and Y variables

should always be independent. In fact, the literature on

this topic is very old! There have been several excellent

and clearly written papers on this topic (Chayes 1949,

Atchley et al. 1976, Kenney 1982), but their warnings

have often been ignored. For some reason, the rationale

behind and the risks associated with this statistical

problem have failed to resonate with the ecological

community in the same way as Hurlbert’s (1984) warning

against pseudo-replication. This is true although the

danger with pseudo-replication and spurious correla-

tions is exactly the same, i.e. drawing incorrect inferences

from improperly designed analyses which inflate the

strength of statistical associations. It may also be true

that spurious correlations are more widespread and

persistent in the literature than pseudo-replication ever

was.

A number of authors have argued that regressions of

non-independent ratios should be avoided at all costs,

and researchers should instead use analysis of covariance

(ANCOVA) of the relevant variables to analyze data in

these cases (Atchley et al. 1976, Packard and Boardman

1988, Jasienski and Bazzaz 1999). The results of the

present study clearly show that in some cases bivariate

regression analyses will provide completely meaningless

results. In other cases, however, it is possible to conduct

meaningful bivariate analyses of non-independent ratio

variables provided the appropriate null model is speci-
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fied. The statistical significance of any analysis of non-

independent variables can be easily determined using

bootstrap or Monte Carlo simulations. The results of the

present study show researchers should exercise caution

when conducting classic parametric statistical analyses

of non-independent variables. As Kenney (1982) and

Jackson and Somers (1991) aptly warned, ‘‘beware the

spectre of ‘spurious’ correlations’’.
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