RNR 614 Home Page

Professor: Brian McGill (614@brianmcgill.org), 621-9389, BSE 310, Office hours: W 10:10-11:00
TA: Christine Lamana (clamanna@email.arizona.edu)

Upload Homework

Upload Reading Writeup

Submit anonymous feedback

Email instructor

Dates Topic Readings
(due Mondays before class)
Homework
(due Fridays 5:00 PM)
1 Aug 24, 26 Scientific inference & the need for statistics G&E 4 N/A
2 Aug 31, Sep 2 continued + probablity crash course Lakatos (text) (MP3)
Platt
Quinn & Dunn
G&E 1-2
(Optional: Absence of evidence)
(optional: How science really works)
N/A
3 Sep 9 OLS Brett
Garcia
Welsh etal
G&E Ch 9:239:259
(Crawley 1-7 - especially 2&3)
Sep 11 Help session
11:30-1:30 BSE 328
R-Matlab guide
4 Sep 14, 16 Collinearity, path analysis Freckelton
Grace
Freedman
(Optional: Murtaugh)
(Optional: Wilcox)
(Optional: Whittingham)
(Optional: Graham)
(Guide to Path Anal in R)
(Crawley 10)
1 - R Introduction - Sep 16
5 Sep 21, 23 GLM - what is it, ANCOVA Stewart-Oaten
Steidl & Thomas
Brosi & Biber
G&E Ch 10
(Crawley 11-12)
(Steidl & Thomas bibliography)
Sep 25 Help session
11:30-1:30 BSE 328
6 Sep 28, 30 3 schools: Frequentist/Bayesian/Monte Carlo, Likliehood, AIC Moller & Jenions
Wyckoff & Clark
Johnson & Omland
G&E 5, Ch 9:264-267
(optional: Clark 2005 - why Bayesian)
(optional: Fidler et al - why reform is slow in ecology)
(optional: Ellison - Bayesian)
(optional: Yoccoz - trouble with p)
2 - GLM in R Oct 2
Sample path analysis input file
7 Oct 5, 7 Generalized Linear Model (GLIM)
Zabel etal
Cunningham & Lindenmayer
(late breaking update: if you haven't started reading cunningham & lindenmayer yet read this one instead: Potts & Elith)
(optional Muenchow 1986 (survivorship))
(optional Pollock et al 1989 (survivorship))
(Crawley 13-17)
Oct 9 Help session
11:30-1:30 BSE 328
8 Oct 12, 14 Experimental design Hurlbert
Oksanen
Newman etal
G&E 6-8
(Crawley 9)
3 - GLIM Oct 16
9 Oct 19, 21 GLS (nonindependence)
Garland & Ives
Fortin et al
(Optional: Felsenstein (PIC))
(Optional: Horton & Lipsitz on GEE)
(Optional: Website on using APE)
(Optional: Potvin etal)
Oct 23 Help session
11:30-1:30 BSE 328
10 Oct 26, 28 Mixed & hierarchical models Gillies et al.
McMahon & Diez
Clark 2003 - Bayesian Hiearchical
(optional: Bolker et al)
(optional: Clark & Bjornstad 2004 - Bayesian Population Process)
(Crawley 19)
(guide to lmodel2)
(also see this - lectures 42-48)
(for good technical overview of LMM see this)
4 - GLS/Mixed/Hierarchical Oct 30
11 Nov 2, 4 Modern regression DeAth & Fabricus - CART
Cade & Noon
G&E 9 p 268-281
(Crawley 18,20-21, 25)
(optional: Elith et al 2006 - comparison)
(optional: Guisan & Zimmerman)
(optional: Elith et al 2008 - Boosted Regression Trees)
(optional: Machine Learning Without Tears)
(optional: Trexler & Travis (LOESS))
Nov 6 Help session
11:30-1:30 BSE 328
12 Nov 9 Multivariate statistics Wainer
James & McCulloch
G&E 12
(Crawley 23)
also see Vegan package tutorial
also see Palmer's key to which ordination technique to use
5 - Modern Regression
Nov 13
13 Nov 16, 18 Multivariate continued Pick 3
Riiters et al (Landscape ecology, Factor Analysis)
Chase (Community ecology, PERMANOVA)
Jones et al (Vegetation gradients, PCA, Partitioning, space)
Host etal (Land cover, PCA, Cluster)
Roff & Mousseau (Evolution, MANOVA)
Nov 20 Help session
11:30-1:30 BSE 328
14 Nov 23, 25 Spatial-temporal Halley
McGill Book Chapter
Statistics in Iraq
(Crawley 22,24)
(Optional: Dormann et al)
(R code for Dormann et al)
6 - Multivariate
Nov 25 (Wed)
15 Nov 30, Dec 2 Modelling, generalization, metaanalysis Dunham & Beaupre
Levins & Lewontin
Arnqvist & Wooster
(optional: Meta-analysis overview)
(optional: McGill)
(optional: Belovsky et al 2004)
(optional: Schindler)
(Crawley 26)
Dec 4 Help session
11:30-1:30 BSE 328
16 Dec 7 Wrap up No class Dec 9! 7 - Time & Space Dec 9(Wed)
Take home essay due Dec 11(directions)

 G&E=Gotelli & Ellison - A Primer of Ecological Statistcs - Sinauer Associates 2004

 Crawley = Michael J Crawley - The R Book - Wiley 2007

An overview of R functions/packages useful in ecology


Assignment/Testing Schedule/Due Dates

No excuses will be accepted for late homeworks or reading write-ups. Missed assignments will be treated as lowest scores.

Attendance Policy

The fine (but important!) print: