|
Dates |
Topic |
Readings (due Mondays before class) |
Homework |
1 |
Jan 4 |
Scientific inference & the need for statistics |
|
|
2 |
Jan 7, 9 |
continued. |
Lakatos (text) (MP3)
Platt
Quinn & Dunn
G&E 4 | \
(optional: website)
|
3 |
Jan 14, 16 |
Probability crash course |
Brett
Garcia
Welsh etal
G&E 1-3
(Crawley 7)
(Optional: Absence of evidence) |
|
4 |
Jan 21, 23 |
Experimental design |
Hurlbert
Oksanen
G&E 6
(Crawley 1-6) |
Help session Jan 25 2:30-4:30 |
5 |
Jan 28, 30 |
Frequentist, OLS Regression |
Yoccoz
Moller & Jenions
Toft & Shea
Crawley 9
(G&E 9 p 207-267)
(Crawley 8, 10) |
1 - R Introduction - Jan 30 |
6 |
Feb 4, 6 |
GLM - What is it |
Stewart-Oaten
Newman etal
(optional: Shaw && Mithchell-Olds (unbalanced ANOVA))
(G&E 10)
(Crawley 11-12) |
Help session Feb 8 2:30-4:30 |
7 |
Feb 11, 13 |
GLM Multivariate & PICS Website on using APE |
Freedman
Garland & Ives
Freckelton
(Optional: Graham)
(Optional: Whittingham - problems with stepwise
G&E 9 p. 282-287 |
2 - GLM Basics |
8 |
Feb 18, 20 |
GLM -Random, nested, hierarchical
(also see this - lectures 42-48)
(for good technical overview see this |
Potvin etal
McMahon & Diez
Crawley 19 |
Help session Feb 22 2:30-4:30 |
9 |
Mar 3, 5 |
Likelihood & GLIM |
Johnson & Omland
Zabel etal
(Crawley 13-17) |
3 - GLM
Multivariate & Random |
10 |
Mar 10, 12 |
Modern Regression |
Trexler & Travis
De'Ath & Fabricus
Cade & Noon
(optional: Guisan & Zimmerman)
(optional: Elith et al 2008 - Boosted Regression Trees)
(optional: Machine Learning Without Tears)
(optional: Davidson etal 2009 - Extinction regression tree)
G&E 9 p 268-281
(Crawley 20-21) |
Help Session Mar 14 2:30-4:30 |
11 |
Mar 17, 19 |
Multivariate also see Vegan package also see Palmer's key to which ordination technique to use |
Wainer Jones et al
G&E 12
(Crawley 23) |
4 - GLIM & Modern Regression |
12 |
Mar 26 |
Modelling, generalization, boostrapping |
Dunham & Beaupre
Levins & Lewontin
McGill
(optional: Schindler)
|
Help Session ???
|
13 |
Mar 31, Apr 2 |
Time and space |
Halley
Dormann et al
Statistics in Iraq
(Crawley 22-24)
(R code for Dormann et al) |
5 - Bootstrap & Multivariate Help Session Apr 2 2:30-4:30 |
14 |
Apr 7, 9 |
Time and space continued, Bayesian |
Ellison
Wyckoff & Clark
, (optional WinBugs tutorial |
6 - Time and space |
|
Apr 16 |
|
|
Take home essay due (directions) |